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Abstract: Hierarchical spatio-temporal models permit to estimate many sources of 
variability. In many environmental problems, different features characterizing spatial 
locations can be found. Differences in these classifications can show discrepancies 
either in mean levels or in the spatio-temporal dependence structure. When these 
characteristics are not included in the model structure, model performances and spatial 
predictions may lead to poor results. Here, we compare alternative enrichments of the 
hierarchical spatio-temporal model that consider the presence of groups. Our application 
concerns Ozone data in the Emilia-Romagna region in which the monitoring sites can 
be classified according to their relative position with respect to traffic emissions. 
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1. Introduction 
 
Hierarchical models, being very flexible, are suitable for dealing with differences both 
at the measurement and the process level (Wikle, 2003). 
In the following, we expand the general framework describing hierarchical spatio-
temporal models for studying geostatistical data by the inclusion of domain 
classifications with respect to certain differentiating features (Wang et al., 2009). When 
studying air pollution, for example, monitoring stations may be differently located with 
respect to traffic or household density. This peculiarity can be modeled in a number of 
different ways. Models that allow for differences between groups of sites have recently 
been proposed (Cocchi and Bruno, 2010). In environmental applications: for example, 
Paci (2010) proposed a hierarchical spatio-temporal model for pollutants where the 
group differences were captured by the intercept of the model (i.e. difference in 
pollution levels between the urban and rural locations). In Sahu et al. (2006) a 
hierarchical space-time model for PM2.5 that includes two spatio-temporal processes 
was proposed, where the first captures the background effects, and the second adds 
extra variability for urban locations by using the relationship between the response 
variable and suitable covariates (the population density, in this case). 
Here the inclusion of groups in spatio-temporal models is formalized in a more general 
way. We describe alternative proposals for including group differences in hierarchical 
Bayesian models. The assessment of the consequences for spatial prediction under this 
innovation will be also considered. 

                                                           
1 Work supported by the project PRIN 2008: New developments in sampling theory and practice, Project 
number 2008CEFF37, Sector: Economics and Statistics, awarded by the Italian Government. 
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This paper is organized as follows: the next section describes the Ozone dataset; Section 
3 sketches the main models that include spatial groups; the final section presents the 
main results and some concluding remarks. 
 
 

2. The Ozone Dataset 
 
Tropospheric ozone is one of the most important pollutants when studying  air quality. 
Here, the dataset consists of Ozone daily measurements (in µg/m3) collected from 31 
monitoring stations across the Emilia–Romagna Region in 2001. Monitoring sites can 
be classified according to traffic pollution exposure (D.M.A. 16/05/1996); the two 
groups consist of 17 background monitoring sites (denoted by “G1”) and 14 sites 
characterized by their vicinity to traffic emissions (denoted by “G2”). Monitoring sites 
belonging to G1 are expected to measure higher Ozone levels than sites belonging to 
G2. Some meteorological covariates are available for each site and each time. In 
particular,  one of the most correlated with Ozone is the daily mixing height, that will be 
included as a covariate in the model. 
 
 

3. Model specification 
 
Let �∗ = ��∗��, �	; � ∈ ���, ⋯ , ��∗	, � ∈ �1, ⋯ , �	� denote the log-Ozone 
concentrations for the generic location and time ��, �	. We consider 27 of the 31 sites 
for estimation and 4 sites for prediction assessment (2 for each group). Let define  � as 
the ��-dimensional subset of the original dataset under these specifications. 
Following the usual hierarchical spatio-temporal specification (Banerjee et al. 2004), let 

� = � + � (1) 
where � is the ��-dimensional spatio-temporal process and � is a Gaussian noise 
process ���, ������×��	, representing the spatio-temporal measurement error structure 
via homoscedastic and independent components. Conditionally on � and ��� the 
distribution of � is: ��|� ,  ��� ~ ��� , ������×��	  
The second stage of the hierarchy can be defined as the combination of a large scale 
spatio-temporal process �"	, a spatial effect �#	 and a temporal effect �$	: 

� = " + %�×� ⊗ # + $ ⊗ %�×� (2) 

The expression for the ��-dimensional trend component �"	 is: 

" = '( (3) 

where ( = �)* , )�	′ and ' is a �� × 2 covariates matrix with unit values in the first 
column and daily mixing heights in the second column. The expression in (2) provides 
additive temporal and spatial effects (multiplicative on the original scale). The temporal 
random effect  $ = -.�1	 , ⋯ , .��	/′ and the spatial random effect 
 # = -0���	, ⋯ , 0���	/′ capture respectively any spatial and temporal dependence 
which remains unexplained by the model for the mean (3). The distribution of the 
random effect $ can be expressed via the multivariate distribution 

$  ~ �-�,  �1� 2�3	/   where   -2�3	/45 = 678-−3 :�4 − �5:/ (4) 
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and  �1� is the scalar variance of the temporal component; 2�3	 is the � × � correlation 
matrix defined by the exponential function. 
The spatial random effect # is modeled as a Gaussian process 

#  ~ �-�,  �;�  <�=	/   where   -<�=	/45 = 678-−= :�4 − �5:/ (5) 

and  �;�  is the scalar variance of the spatial process; <�=	 is the � × � spatial 
exponential correlation matrix. 
The model hierarchy is completed by the specification of noninformative prior 
distributions for the hyperparameters.  
In the following subsections we propose two different specifications of model (1) – (5) 
(from now on called “Model (A)”) in order to take groups into account. 

3.1 Modeling differences in the trend component 

When the differences between the two groups are captured by the average level, the 
discrepancies are developed from model (3), the large-scale process can be rewritten as: 

" = >?�∈@�,�AB�,⋯,�	 + '( (6) 

In (6) > is a scalar type-specific intercept and ?�∈@�,�AB�,⋯,�	 is a Tn-dimensional vector 
collecting the dummy variables that classify the spatial sites into groups. The )* 
parameter represents the intercept for the sites belonging to G2 and > + )* represents 
the intercept for the other group. This model will be referred to as “Model (B)”. 

3.2 Modeling differences in the spatio-temporal covariance structure 

When differences in the spatio-temporal dependence structure are included in the 
model, alternative  �;�  <�=	 might be considered in (5). Matrix  �;�  <�=	 is constituted 
by blocks, with group-specific spatial variance matrices in the diagonal after reordering 
sites according to the groups. The most complex model includes an out-of-diagonal 
between-group variance block matrix,  �;�@�,@�	� C-=@�,@�/, that is characterized by 
group parameters: 

 �;�  <�=	 = D  �;�@�	�  <�=@�	  �;�@�,@�	�  C-=@�,@�/
 �;�@�,@�	�  C-=@�,@�/  �;�@�	�  <�=@�	 E (7) 

Specification (7) needs the estimation of a huge number of parameters. When 
interactions between locations belonging to different groups are ignored, 
 �;�@�,@�	� C-=@�,@�/ is fixed at zero (in what follows “Model (C)”). 
 
 

3. Results 
 
The comparison between models is performed both in terms of goodness of fit (via 
DIC) and in terms of predictive assessment (via Predictive Model Choice Criterion, 
PMCC, Sahu et. al 2006).Table 1 shows that Model (B) has the best performance. This 
highlights that the main differences between groups concern the mean levels and it is 
reasonable to assume a common correlation structure for both groups. 
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Model (A)  
for G1 sites 

Model (A)  
for G2 sites 

Model (A)  
for all sites 

Model (B) Model (C) 

DIC 6403 5737 11840 11830 11840 
PMCC 187.50 231.03 391.32 377.13 400.99 

Table 1: DIC and PMCC for all models considered 
 
 

Figure 1 shows the predictions for a specific site and for all models. The predictive 
performances are similar for all models, the prediction credibility bands contain almost 
always the observed values. 
 

 
Figure 1: Predictions for a site belonging to G1 for 2001, estimated for all models 
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