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Abstract: When the only available information is the true presence of a species
at few locations of a study area we refer to the data as presence-only data. Presence-
only data problem can be seen as a missing data problem with asymmetric and
partial information on a presence-absence process. This problem often characterizes
ecological studies requiring the prediction of potential spatial extent of a species
in suitable areas. Here we propose a Bayesian logistic spatial model adapted to
presence-only data with environmental covariates available over the entire area.
The spatial dependence among the observations is modelled indirectly as a latent
Gaussian Markov field over the landscape, through a data augmentation MCMC
algorithm we are able to estimate regression parameters jointly with the prevalence.
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1 Introduction
In the environmental sciences, the evaluation of spatial distribution of species and
its interaction with ecological variables is of primary interest i.e. to better plan and
manage strategies in habitat conservation. When presence/absence information on
a species is available in a given area together with environmental covariates, the
logistic regression model represents the natural approach to estimate the prevalence
of such species. Unfortunately, in many ecological studies, the collection of definitive
absences can be expensive or difficult. In those cases the information available is not
complete, we can observe only presences (Pierce and Boyce 2006) of the species at
few locations jointly with the environmental covariates referred to the whole study
area. In this work we propose a hierarchical Bayesian model to handle presence-only
data, based on an adjusted logistic regression model (Ward et al. 2009). Following
Divino et al. (2011) we introduce a random approximation of the correction factor
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in the model that allows us to overcome the need to know a priori the prevalence of
the species. We can estimate regression parameters jointly with prevalence through
a data augmentation MCMC algorithm (Divino et al. 2011). We account for spatial
variation adding a spatial random effect in the regression function.

2 Materials and Methods
With respect to a population P of spatially referenced sites i, let Y be a binary
presence/absence process, X a set of covariates and Pp the subset of P where the
species is present (Y = 1). When only presences are observed, samples (Sp) from
the process Y can be drawn only from the population Pp and the usual case-control
approach in logistic regression cannot be adopted as absences (Y = 0) are not
directly observed. Lancaster and Imbens (1996) and Ward et al. (2009) proposed
to overcome this problem by considering a completed sample composed by Sp and
a second sample Su, independent of Sp, ideally taken from the whole population P .
In this way the complete data sample S is composed by np presences (observed in
Sp) and nu unobserved values (Su). Let Z be a stratum variable such that Zi = 0
if i ∈ Su and Zi = 1 if i ∈ Sp. Notice that Zi = 1 implies Yi = 1 while Zi = 0
implies that Yi can assume value in {0, 1}. Hence we can identify the following
quantities: (Z = 0, Y = 0) n0u is the unknown number of absences in the subsample
Su, (Z = 0, Y = 1) n1u is the unknown number of presences in the subsample Su,
(Z = 1, Y = 1) n1p is the number of observed presences in the subsample Sp, n0
is the unknown total number of absences in S, n1 is the unknown total number of
presences in S and n = n1 + n0 is the complete sample size. All the unknowns
are random quantities induced by a censoring effect acting on the complete sample
S. In particular we can write n1u as ñ1u = ∑i∈Su Yi, where the ∼ represents the
random nature of the quantity. Now let π = P (Y = 1) be the prevalence of the
species in the area, under the assumption that Su is a random sample from the
population P we have that E[ñ1u] = πnu. If we assume that the covariates X,
concerning the environmental information on the process Y , are available for all
sites in the population, we can use the approach introduced by Ward et al. (2009)
and developed in a Bayesian framework by Divino et al. (2011). For a generic site
in the sample with covariates x, starting from the usual case-control logistic model
the conditional probability that a species of interest is present is given by

P (Y = 1|s = 1, η;x) =
exp{η(x) + log(γ1

γ0
)}

1 + exp{η(x) + log(γ1
γ0

)} (1)

where s = 1 denotes that the site is included in S, η(x) is the regression function,
γ0 = P (s = 1|Y = 0) and γ1 = P (s = 1|Y = 1) are the unknown probabilities of
sampling from the absences and from the presences respectively. The ratio γ1

γ0
adjusts

the logistic model under the case-control design. Following Ward et al. (2009), we
can manage the presence-only data problem by considering the joint probability
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distribution of Y and Z and write the full likelihood model (see Ward et al. 2009
for details). We can also consider the observed likelihood, built only with respect
to the stratum variable Z that results in an average over the process Y . In both
likelihood models, the unknown ratio γ1

γ0
can be approximated as follow:

γ̃1

γ̃0
≈ ñ1u + np

ñ1u
(2)

the above expression can be handled by a data augmentation step in the estimation
procedure. The regression function adopted in this work is linear with a spatially
structured random effect u accounting for latent factors introducing geographical
dependence into species distribution. We can now write the hierarchical Bayesian
model. Let δ be the vector of hyperparameters with hyperprior p(δ). Conditioned on
δ, the regression parameters, β, are Gaussian random variables and the random effect
u is a Gaussian Markov random field. Given β, u and the covariate x, the process
Y is set of Bernoulli random variable with probability of occurence πs(x) = P (Y =
1|s = 1, η;x). At the lowest level of the hierarchy, the conditional distribution of
Z given Y can be easily derived from the above described relations between the
two processes. Then, the hierarchical Bayesian model is given by: (i) δ ∼ p(δ);
(ii) β|δ ∼ MN(δ) and u|δ ∼ GMRF (δ); (iii) Yi|si = 1, β, ui, xi ∼ Be[πs(xi)]; (iv)
Zi|Yi, si ∼ P (Zi|Yi, si = 1). Notice that the spatial structure of the random effect u
is given by the geographical neighborhood system among all sites in the population
P . In the following scheme we describe the MCMC algorithm implementing the
estimation of our model:

Step 0: initialize δ, β, u and Y over P ;
Step 1: set n1u = ∑i∈Su Yi;
Step 2: sample δ ∼ P (δ|Y, Z, β, u);
Step 3: sample β ∼ P (β|Y, Z, δ);
Step 4: sample u ∼ P (u|Y, Z, δ) over P ;
Step 5: sample Yi ∼ P (Yi|Z, β, ui, xi) over P .

Remark that we need to perform data augmentation (Step 4 and Step 5) over the
entire population P for both u and Y processes in order to consider the spatial
structure of the sites enclosed in both samples Su and Sp. The only requirement to
perform the augmentation is that the covariates X are available for all sites in P . A
nice feature of this estimation procedure is that we can easily obtain the prevalence
estimate π̂u = n̄1u

nu
, where n̄1u is the MCMC average of samples drawn in Step 1.

3 Results
In this section we report preliminary results from a small simulation study aiming at
investigating the behaviour of our proposal in a very simple situation. We generate a
population of 100 observations on a regular 10×10 lattice from the above described
model. In this example Y is obtained from the logistic model η(X) = βx+u, where
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β = −2, the covariate X is generated from a mixture distribution with two Gaussian
components with standard deviation σ1 = σ2 = 0.5 and mean µ1 = −2 and µ2 = 2,
u is a zero mean intrinsic first order Gaussian Markov random field with precision
k = 1.5 and prevalence π = 0.1. From this population we obtain 100 samples by
randomly thinning 30% of the available presences. We compare the performance of
our model (M1), with unknown prevalence, with the same model but with known
prevalence in the logistic correction (M2) and with the non spatial model prosed in
Divino et al. (2011) (M3). The three models are fitted with the same prior settings:
β ∼ N(0, 100) and k fixed (for M1 and M2). We run 20000 iterations of the MCMC
procedure with a burn-in of 10000. To evaluate models performances we compute
95% credibility intervals (CI) for β in each simulation using the 10000 samples from
the posterior distribution, the same intervals for the prevalence are computed from
the 100 simulations and the misclassification error is computed for each model by
setting to 1 grid cells with occurrence probability larger then 0.5 and compare results
with the “true” population. Results are as expected: the “best” model in terms of
point estimates accuracy is M2 with smaller CI for β̂ and π̂, followed by M1; all
models have a tendency to overfit with empirical coverage around 99%. In terms of
predictive capacity the average misclassification error is around 3% for all models,
as expected M1 and M2 better perform as far as the localization of presences is
concerned.

4 Concluding remarks
The above preliminary results are encouraging, especially in terms of predictive
capacity of the proposed model. Several issues will be object of further work, such
as identifiability problems related to a not zero intercept. Extensive simulation
studies will be carried on too.
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