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Abstract: The environmental risk analysis involves the observation of complex
phenomena. Different kinds of information, such as environmental, socio-economic,
political and institutional data, are usually collected. In this paper, spatial-temporal
geostatistical analysis is combined with the use of a Geographic Information System
(GIS): the integration between geostatistical tools and GIS enables the identification
of alternative scenarios and possible strategies for the environmental risk manage-
ment. A case study on environmental data measured in the southern part of Apulia
region (South of Italy), called Grande Salento, is discussed. Sample data (concentra-
tions of PMjg, wind speed, temperature) taken at different air monitoring stations
are used for stochastic prediction, through space-time indicator kriging.
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1 Introduction

Environmental risk management involves the integrated use of several tools and
techniques, including GIS, sample design, Geostatistics and data management. In
particular, data management process requires the integration of several data divided
into three categories: i) environmental data (land use, land cover, vegetation, geol-
ogy, meteorology and measures of pollutants concentration); ii) socio-economic data
(population and housing census data, community vulnerability data and data on util-
ities and access); iii) political and institutional data (Chen et al., 2003). Moreover,
a spatial-temporal approach is often required for environmental risk assessment;
hence, the interaction between space-time modeling of air pollution, adopted by the
statistical community in environmental studies (De laco et. al, 2001; Kolovos et
al., 2004; Spadavecchia and Williams, 2009, among others), and urban environment
representation (traffic network, location of industrial facilities, emission sources and
topographic conditions), easily managed in a GIS, is necessary. The aim of this
paper is to combine the use of space-time geostatistical techniques and the GIS
potential. A case study on an environmental data set, involving both atmospheric
variables and air pollutant concentrations, measured in November 2009 at moni-
toring stations located in Grande Salento (Lecce, Brindisi and Taranto districts in
the Apulia Region) is discussed. In particular, air pollution due to PM;j, (Partic-
ulate matter) concentrations and atmospherical variables, such as wind speed and

'Supported by Fondazione Cassa di Risparmio di Puglia.



temperature in the same region, are considered. Exploratory Spatial Data Analy-
sis for a deep understanding of the analyzed phenomenon is performed using the
Geostatistical Analyst Tool of ArcGis. Structural analysis for space-time variogram
estimating and modeling and space-time prediction, based on kriging, is computed
by using modified G'slib routines. A 3D representation for the space-time evolution
of the conditional probability associated with P Mg is produced by using ArcScene
(an extension of ArcGis). The overlay between the probability map and relevant
urban spatial data is shown for Brindisi Municipality.

2 Empirical framework and methods

The study of the evolution of PM;, is very important for the effects that this pol-
lutant has on human health. Many studies have shown that exposure to PMi
increases the risk of mortality both in long and short term. According to National
Laws concerning the human health protection, PMjy hourly average concentrations
cannot be greater than 50 ug/m? for more than 35 times per year. During the
month under study, the PM;j, hourly values exceeded the threshold 80 times, es-
pecially on the 13rd, 14th, 23rd and 24th of November. In the present case study,
the following steps have been considered: (1) defining the space-time indicator vari-
ables according to appropriate thresholds, computed from the observed data; (2)
modeling space-time indicator variogram of the variables by using the generalized
product-sum variogram model; (3) using space-time indicator kriging, over the area
of interest and during the period 1-6 December 2009, in order to obtain: a) the
joint probability that PM;y concentrations exceed fixed thresholds and the atmo-
pheric variables take values not greater than the corresponding monthly means, b)
the joint probability that the atmopheric variables take values not greater than the
corresponding monthly means; (4) computation and 3D representation of the prob-
ability that P M, concentrations exceed the fixed thresholds, conditioned to adverse
atmospheric conditions (i.e. wind speed and temperature which are lower than the
corresponding monthly mean values). In Geostatistics, observations are modelled
as a partial realization of a spatio-temporal random function Z, which is decom-
posed into a sum of a trend component and a stochastic residual component. In the
following case study, the formalism of a spatio-temporal indicator random function

(STIRF),

I(u,2) = 1 in case of Z not greater (or not less) than the threshold z,
“) =1 0 otherwise,

where u = (s,;t) € Dx T,z € R (D C R*> and T C R, ), is considered. Spatio-
temporal dependence of a STIRF' is characterized by the indicator variogram of I:
279, (h) = Var[Y (s + hy,t + h;) — Y (s, )], which depends solely on the lag vector
h = (hg, ), (s,s +hy) € D? and (t,t + hy) € T? The fitted model for v,
must satisfy an admissibility condition in order to be valid. Hence, the following
generalized product-sum model (De laco et al. 2001) has been fitted to the empirical
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indicator space-time variograms:

Vst (hsv ht) = Ysr (h57 0) + Vst (07 ht) - k‘r}/ST (hsa 0)’73T (07 ht)> (1)

where v, (hs,0) and 7., (0, h;) are valid spatial and temporal bounded marginal
variograms and k €0, 1/max{sillvy,, (hs,0), silly,. (0, h;)}]. Basic theoretical re-
sults can be found in De Iaco et al. (2001), moreover recently it was shown that
strict conditional negative definiteness of both marginals is a necessary as well as
a sufficient condition for the product-sum (1) to be strictly conditionally negative
definite (De laco et al., 2011).

3 Case study

In this analysis, the STITRF's associated with the spatial-temporal distributions of
P M, as well as of temperature and wind speed, have been examined in the Grande
Salento region during November 2009. The data set consists of daily averages of 3
variables, P My, temperature and wind speed, measured in November 2009 at 28
monitoring stations located in the Grande Salento.

After computing descriptive statistics, spatial-temporal indicator kriging using the
generalized product-sum variogram model has been applied in order to predict,
over the area of interest and for the period 1-6 December 2009, the probabil-
ity that PM;, concentrations exceed the fixed limits, in the presence of adverse
atmospherical conditions to the pollutant dispersion, i.e. temperature (7)) and
wind speed (WS), which are lower than the corresponding monthly mean values
(12.54 °C and 2.11 meters/second, respectively). In this case study, the thresh-
olds for the PM;q have been fixed equal to the 75th and 80th percentiles of sam-
ples data (37.804 and 40.57 ug/m?, respectively), which can be considered critical
with respect to the law limit. Hence, 3 indicator random fields have been defined:
I1(u;37.804,12.53,2.11) = 1, if PMyy > 37.804, T < 12.53, WS < 2.11, 0 oth-
erwise, I5(u;40.57,12.53,2.11) = 1, if PMyy > 40.57, T" < 1253, WS < 2.11, 0
otherwise, I3(u;12.53,2.11) = 1, if T' < 12.53, WS < 2.11, 0 otherwise, with u € D.
Indicator sample space-time variograms for the indicator variables under study and
their models have been determined first. The fitted space-time variogram model for
the random fields I; is characterized by: 7, (hs,0) = 0.066 [1 — exp(—3 h,/15000)],
Yor (0, hy) = 0.185[1 — exp(—3 hy/6)], k = 3.767 and global sill equal to 0.205;

for I5: 74, (hs,0) = 0.059 [1—exp(—3h,/15000)], 74, (0, hy) = 0.169 [1—exp(—3 h:/6)]
k = 4.112 and global sill equal to 0.187;

for I5: 74, (hs, 0) = 0.094 [1—exp(—3h,/20000)], 74, (0, hy) = 0.235 [1—exp(—3 h:/6)]
k = 3.712 and global sill equal to 0.247. Probability maps have been predicted over
the area of interest for the period 1-6 December 2009. In particular, the indicator
kriging has been used to estimate the joint probability that PM;j, concentrations
exceed fixed thresholds and the atmopheric variables take values not greater than
the corresponding monthly means first, and secondly the joint probability that the
atmopheric variables take values not greater than the corresponding monthly means.

3



Then, the probabilities that PM;jy values do not exceed the fixed thresholds, con-
ditioned to adverse atmospheric conditions, over the area of interest and during
the period 1-6 December 2009, have been computed. From the obtained results
it is evident that, in Brindisi and Lecce districts, the probability that PMj, daily
concentrations exceed the fixed thresholds, under adverse atmospherical conditions,
decreases from the 1st to the 6th of December 2009 and along the NorthWest-
SouthEast direction (Fig. 1). Finally, the Brindisi Municipality is considered in

Figure 1: conditional probability maps of PM;q concentrations, for the thresholds: a) 37.804
pg/m?> (75th percentile), b) 40.57 pug/m? (80th percentile), during the period 1-6 December 2009.

detail. In this area, the concentrations of PMiy is compared with land use and
traffic network. The probability that PM;y concentrations do not exceed the fixed
threshold is higher in the city center; on the other hand it is much more likelihood
that the PM;y concentrations exceed the limit in the SouthWest hinterland.
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