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Abstract: Several papers have recently strengthened the bridge connecting geo-
statistics and spatial econometrics. For these two fields various criteria have been
developed for constructing optimal spatial sampling designs. We will explore re-
lationships between these types of criteria as well as elude to space-filling or not
space-filling properties.
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1 Introduction

Lindgren et al. (2011) further strengthen the bridge connecting the two somewhat
disparate worlds of spatial analysis. One is rooted in the idea of observing con-
tinuously varying spatial processes and led to what is largely referred to as geo-
statistics. The other, which assumes (usually aggregate) observations attached to
discrete (mostly irregular) lattices, is commonly known under the name of spatial
econometrics. In particular in the latter literature the rift between these two points
of view - manifesting itself along various themes - is a constant challenge towards a
unified understanding (Griffith and Paelinck, 2007). Also for the more narrow topic
of efficient estimation and prediction early contributions can be found there (Griffith
and Csillag, 1993) and that the issue is of great current interest is documentable
as well (Fernández-Avilés Calderón, 2009). The method of explicitely linking some
Gaussian fields to Gaussian Markov random fields on irregular grids given in Lind-
gren et al. (2011) is certainly a very welcome addition to the equipment connecting
the two views as the authors rightfully claim in their discussion section. It remains
to be seen whether practitioners will be able to take it up as easily as a perhaps
more pragmatic recent suggestion like Nagle et al. (2011).

2 Materials and Methods

But let us draw the attention towards a rather neglected (in the discussion sec-
tion of Lindgren et al. (2011) as well most of the literature in general) aspect of
establishing such a link as above. That is the potential impact of this link on the
respective optimal sampling designs and the question of their effective generation.

1A considerably shortened and edited version of this paper will be published as a discussion of
Lindgren et al. (2011) in JRSS-B.
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We will illustrate our points on the same example as used in Section 2.3 of Lindgren
et al. (2011), namely the leukaemia survival data, utilizing some of the calculations
thankfully provided by the authors.

In geostatistics the optimal sampling design is often based upon the kriging
variance over the region of interest X , frequently by minimizing its maximum. It
has turned out that this reflects rather not so well the true variation as the uncer-
tainty introduced by estimating covariance parameters γ is thereby neglected. To
compensate for that Zhu and Stein (2006) and Zimmerman (2006) have suggested
minimizing the modification

max
x∈X

{
Var[Ŷ (x)] + tr

{
M−1

γ Var[∂Ŷ (x)/∂γ]
}}

,

which the latter has termed the EK(empirical kriging)-criterion. Here Mγ stands
for the Fisher information matrix with respect to γ, and we can analogously denote
Mβ for trend parameters β for later usage.

In spatial econometrics it is common to test for spatial autocorrelation by spec-
ifying a spatial linkage or weight matrix W and utilize an overall type measure
such as Moran’s I. Therefore Gumprecht et al. (2009) have suggested to employ the
power of Moran’s I under a hypothesized spatial lattice process given by its precision
matrix Q as the design criterion; let us call maximization of it the MIP(Moran’s I
power)-criterion in the following.

3 Results

Now as there is a link established with respect to estimation between the two mod-
elling paradigms, can we expect a similar link with respect to those associated design
criteria? Looking at the example a sensible design question we could pose is to which
out of the 24 districts in north-west England should we sample if we are limited to a
number k < 24 for financial reasons. To keep things simple, we will in the following
choose k = 3, which allows for

(
24
3

)
= 2024 different designs. For all those designs

we can then calculate the values for the above design criteria and plot them against
each other to judge for a potential linkage. As the only covariance parameter, which
is not predetermined in the example is ρ, we have γ = ρ and EK reduces to scalar
operations localized at ρ = 0.2. For the MIP we required the precision matrix Q,
which was provided by Lindgren et al. (2011). The matrix W was defined by as-
signing 1 to point pairs with intersite distances less than the range ρ = 0.2 and 0
else, which turned out to be an insensitive choice.

At this point we now had to slightly modify the example: since the spatial
correlation is so strong in the leukaemia data most of the realized powers were very
close to one, thus obscuring all potential patterns. We therefore artifically reduced
the number of cases (and thus the powers) by randomly sampling 20 locations from
the 3 districts respectively. This resulted in the scatter plot of criteria displayed
in the left panel of the figure in the discussion of Lindgren et al. (2011). While
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Figure 1: left panel: MIP (horizontal) versus EK (vertical) criterion values; right
panel: MIP (horizontal) versus CD (vertical) criterion values.

from this display the link between the criteria already becomes quite evident, we
present here in Figure 1 an even stronger one well extending into the corners where
the optima lie. This was achieved by simply doubling the diagonal entries of the
covariance matrix Q−1, which emulates a stronger nugget effect.

It thus looks that in cases with reasonable localized spatial dependence one
could achieve reasonably high design efficiencies by employing one for the other
criterion, which offers advantages in both directions. Where MIP requires little
prior knowledge its optimization is nonstandard, whereas for EK and related cases
well developed theory is available (Müller and Pázman, 2003).

Both criteria, however, are computationally quite intensive and it makes thus
sense to look for cheaper alternatives. Motivated by the traditional connection
between estimation and prediction based criteria (”equivalence theory”), Müller and
Stehĺık (2010) have suggested to replace the EK-criterion by a compound criterion
for determinants of information matrices, i.e. maximizing

|Mβ)|α · |Mγ|(1−α),

with a weighing factor α, which we will call in the following CDα(compound D)-
optimality. The relationship of this criterion (assuming a constant trend β) with an
α = 0.5 to the MIP is displayed in the right panel of Figure 1. This clearly shows
that one could computationally very cheaply find the optimum with respect to CD
and still achieve rather high efficiencies on the MIP criterion.

4 Concluding remarks

We must note that our calculations have shown that the dependence between the
criteria is related to the specific setup. It turns out that the strength of the relation-
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ship between MIP and the other two criteria decreases when the powers approach
one, but strongly increases for decreasing ranges and increasing nuggets. Note also
the relationships to the ubiquitous space-filling designs as explored in Pronzato and
Müller (2011). Summarizing, we believe our discussion showed that the relations
between the two linked approaches can go far beyond mere estimation issues.
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