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Abstract: Multivariate model-based geostatistics refers to the extension of clas-
sical multivariate geostatistical techniques, in particular the classical linear model of
coregionalization, to the case of non-Gaussian data. Extensions of this kind are still
limited in the statistical literature, mainly for the inferential problems they pose,
and almost invariably inference is carried out in a Bayesian context. In this work we
present some new results on likelihood inference for the unknown parameters of a
hierarchical geostatistical factor model. In particular, we show the implementation
of some Monte Carlo EM algorithms and discuss their performances, in particular
their sampling distributions, mainly through some simulation studies.
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1 Introduction

The classical linear model of coregionalization, or its simpler counterpart, the pro-
portional covariance model, otherwise known as intrinsic correlation model, and
the related ‘factorial kriging analysis’ have become standard tools in many areas
of application for the analysis of multivariate spatial data. However, in presence
of non-Gaussian data, in particular count or skew data, the use of these geostatis-
tical instruments can lead to misleading predictions and to erroneous conclusions
about the underling factors. To cope with these situations, following the proposal
put forward in the univariate case by Diggle et al. (1998), and somehow extending
the works of Zhang (2007) and of Zhu et al. (2005), we propose in Section 2 a
hierarchical multivariate spatial model, built upon a generalization of the classical
geostatistical proportional covariance model. Adopting a non-Bayesian inferential
framework, and assuming that the number of underlying common factors and their
spatial autocorrelation structure are known, in Section 3 we show how to carry out
likelihood inference on the parameters of the model by exploiting the capabilities of
Markov chain Monte Carlo (MCMC) and Monte Carlo EM (MCEM) algorithms.
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2 Multivariate Model-Based Geostatistics

Let us consider the following hierarchical extension of the classical geostatistical
linear model of coregionalization. Let yi(xk), i = 1, . . . ,m, k = 1, . . . , K, be a set
of geo-referenced data measurements relative to m regionalized variables, gathered
at K spatial locations xk. These m regionalized variables are seen as a partial
realization of a set of m random functions Yi(x), i = 1, . . . ,m, x ∈ R2. For these
functions we assume, for any x, and for i ̸= j,

Yi(x)⊥⊥Yj(x)|Zi(x) and Yi(x)⊥⊥Zj(x)|Zi(x), (1)

and, for x′ ̸= x′′, and i, j = 1, . . . ,m,

Yi(x
′)⊥⊥Yj(x

′′)|Zi(x
′) and Yi(x

′)⊥⊥Zj(x
′′)|Zi(x

′), (2)

where Zi(x), i = 1, . . . ,m, x ∈ R2, are mean zero joint stationary Gaussian pro-
cesses.

Moreover, for any given i and x, we assume that, conditionally on Zi(x), the ran-
dom variables Yi(x) have conditional distributions fi(y;Mi(x)), that is, Yi(x)|Zi(x) ∼
fi(y;Mi(x)), specified by the conditional expectations Mi(x) = E[Yi(x)|Zi(x)], and
that hi(Mi(x)) = βi+Zi(x), for some parameters βi and some known link functions
hi(·). For instance, we might assume that for some or all i, and for any given x, the
data are conditionally Poisson distributed, that is, that

fi(y;Mi(x)) = exp{−Mi(x)}(Mi(x))
y/y!, y = 0, 1, 2, . . . , (3)

and that the linear predictor βi + Zi(x) is related to the conditional mean Mi(x)
through a logarithmic link function so that ln(Mi(x)) = βi + Zi(x). On the other
hand, for the rest of the i, we might assume that, for any given x, conditionally on
Zi(x), the random variables Yi(x) are Gamma distributed with conditional expec-
tations Mi(x) = E

[
Yi(x)

∣∣Zi(x)
]
= exp

{
βi + Zi(x)

}
= νb, (here again hi(·) = ln(·))

and conditional variances Var
[
Yi(x)

∣∣Zi(x)
]

= νb2 = ν−1 exp
{
2βi + 2Zi(x)

}
=

ν−1(Mi(x))
2, where ν > 0 and b > 0 are parameters, that is, we might assume

fi(y;Mi(x)) = (yν−1/Γ(ν)) exp{−yν/Mi(x)}(ν/Mi(x))
ν , y > 0. (4)

Here the ‘shape’ parameter ν is constant for x ∈ R, whereas the ‘scale’ parameter
b varies over R depending on the conditional expectation Mi(x). In addition to the
Poisson or Gamma distributions, other discrete or continuous distributions could be
considered to account for particular set of data.

For the latent part of the model, we adopt the following structure. For the m
joint stationary Gaussian processes Zi(x), let us assume the linear factor model

Zi(x) =
P∑

p=1

aipFp(x) + ξi(x), (5)
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where aip arem×P coefficients, Fp(x), p = 1, . . . , P , are P ≤ m non-observable spa-
tial components (common factors) responsible for the cross correlation between the
variables Zi(x), and ξi(x) are non-observable spatial components (unique factors)
responsible for the residual autocorrelation in the Zi(x) unexplained by the common
factors. We assume that Fp(x) and ξi(x) are mean zero stationary Gaussian pro-
cesses with covariance functions Cov

[
Fp(x), Fp(x+h)

]
= ρ(h), and Cov

[
ξi(x), ξi(x+

h)
]
= ψiρ(h), where h ∈ R2, ρ(h) is a real spatial autocorrelation function common

to all factors such that ρ(0) = 1 and ρ(h) → 0, as ||h|| → ∞, and ψi are non-
negative real parameters. We also assume that the processes Fp(x) and ξi(x) have
all cross-covariances identically equal to zero.

Assuming that the number P of latent common factors and that the spatial
autocorrelation function ρ(h) have already been chosen, the model depends on the
parameter vector θ = (β,A,ψ), where β = (β1, . . . , βm)

T , A = (a1, . . . , am)
T , with

ai = (ai1, . . . , aiP ), for i = 1, . . . ,m, and ψ = (ψ1, . . . , ψm)
T . Let us note that, as

the classical linear factor model, our model is not identifiable. However, the only
indeterminacy stays in a rotation of the matrix A.

3 Likelihood inference via MCEM

Adopting a non-Bayesian inferential framework, likelihood inference on the param-
eters of the model would require the maximization, with respect to θ = (β,A,ψ),
of the likelihood based on the marginal density function of the observations yi(xk).
However, since this marginal density is not available, and since the integration re-
quired in the E-step of the EM algorithm would not be easy, here, to maximize the
log-likelihood, we will resort to the MCEM algorithm (see Wei and Tanner 1990).

Our implementation of the algorithm proceeds as follows. Let us define ξ =
(ξ1, . . . , ξm) where ξi = (ξi(x1), . . . , ξi(xK))

T , i = 1, . . . ,m, and F = (F1, . . . ,FP )
where Fp = (Fp(x1), . . . , Fp(xK))

T , p = 1, . . . , P , and let f(y, ξ,F;θ) be the joint
distribution of the model, that is, the complete log-likelihood, accounting also for
the unobserved factors. Assuming that the current guess for the parameters after
the (s− 1)th iteration is given by θs−1, and that Rs is a fixed positive integer, the
sth iteration of the MCEM algorithm involves the following three steps (stochastic,
expectation, maximization):

S step – draw Rs samples (ξ(r),F(r)), r = 1,. . ., Rs, from the (filtered) conditional
distribution f(ξ,F|y;θs−1);

E step – compute Qs(θ,θs−1) = (1/Rs)
∑Rs

r=1 ln f(y, ξ
(r),F(r);θ);

M step – take as the new guess θs the value of θ which maximizes Qs(θ,θs−1).

With Rs very large this procedure approximates the EM algorithm, whereas a
simulated annealing version could be obtained by choosing an increasing sequence
Rs → ∞, as s→ ∞, (see, for instance, Fort and Moulines 2003). The S-step of the
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Figure 1: Histograms of the simulated marginal distributions of the MCEM estima-
tor for the 8 parameters of a model with m = 4 and one common factor, obtained
by running the algorithm over 50 simulated data sets. Dashed lines are the true pa-
rameter values; dotted lines are the empirical arithmetic means of the distributions.

algorithm can be dealt with through importance sampling or MCMC techniques,
whereas the M-step typically requires the use of numerical routines.

When the matrix A is known, the complete log-likelihood belongs to the curved
exponential family and by choosing an appropriate increasing sequence Rs the al-
gorithm converges to the maximum likelihood estimate (Fort and Moulines 2003).
On the other hand, when the matrix A is unknown, the complete likelihood does
not belong any more to the curved exponential family and theoretical convergence
properties are not available. However, we show, either in the case in which A is
known or unknown, through some extensive simulation studies, that the MCEM
algorithm provides estimates with quite reasonable sampling distributions. For in-
stance, Figure 1 shows the simulated distributions of the MCEM estimator in the
case in which P = 1 and A is known.
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