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Abstract: The satellites from NASA’s Earth Science Project Division, like
AURA, produce data for the concentration of various airborne pollutants. Calibrat-
ing satellite data using ground level monitoring networks and other meteorological
and land characterizing variables is mandatory. To do this, it is important to use
an approach which is able to manage large datasets coming from different sources,
structural missingness and spatial and temporal correlation. In this paper, we ex-
tend the Dynamic Coregionalization Model introduced in Fassò and Finazzi (2011)
to the case of space-time varying coefficients in order to increase the model flexibility
and to make it suitable for large regions such as Europe.
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1 Introduction

The Dynamic Coregionalization Model (DCM) of Fassò and Finazzi (2011) has been
proven to be quite appropriate for modeling multivariate space-time environmental
data in the non-collocated case and in the presence of missing data. When data
are collected over continent-size regions, the statistical model considered must be
enough flexible to accommodate for local conditions. In order to gain this flexibility,
the DCM is extended here to the case of varying coefficients. The model is described
in Section 2 and its estimation is addressed in Section 3.

2 The varying coefficients model

Let y(s, t) = (y1(s, t), ..., yq(s, t)) be the q−variate response variable at site s ∈
D ⊂ R2 and time t ∈ N+. The model equation is

y(s, t) = X(s, t) ·

[
Kxβ + Kzz(t) +

c∑
j=1

γjK
j
wwj(s, t)

]
+ ε(s, t) (1)

1This research is part of Project EN17, ‘Methods for the integration of different renewable energy
sources and impact monitoring with satellite data’, Lombardy Region under ‘Frame Agreement
2009’
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where X(s, t) is a matrix of known coefficients (for instance X(s, t) = Iq ⊗ x(s, t)
is the q × (bq) diagonal block matrix built from the 1 × b covariate vector x(s, t)),
z(t) is a latent p−dimensional temporal state with markovian dynamics z(t) =
Gz(t − 1) + η(t) with G a stable transition matrix and η ∼ N(0,Ση) while each
wj(s, t) =

(
wj1(s, t), ..., wjq(s, t)

)
, 1 ≤ j ≤ c is a q-dimensional gaussian latent

coregionalization component with covariance and cross-covariance matrix function
Γj = cov

(
wji (s, t) , wji′ (s′, t)

)
= Vjρj (h, θj), 1 ≤ i, i

′ ≤ q, 1 ≤ j ≤ c. Each Vj is
a correlation matrix and each ρj is a valid correlation function parametrized by θj.
Finally, ε(s, t) = (ε1(s, t), ..., εq(s, t)) is the measurement error which is assumed to
be white-noise in space and time with εi(s, t) ∼ N(0, σ2

ε,i), 1 ≤ i ≤ q.
The matrices Kx, Kz and Kj

w are matrices of known coefficients which guarantee
conformability of the model equation (1) and acts as selection matrices with respect
to the columns of X(s, t). The model parameter set is Ψ = {β, σ2

ε ,G,Ση, γ,V, θ}
where β = (β1, ..., βq)

′, σ2
ε =

{
σ2
ε,1, ..., σ

2
ε,q

}
, γ = {γj, ..., γc}, θ = {θ1, ..., θc} and

V = {V1, ...,Vc}.

3 Likelihood function and missing data

At each time t, each variable yi is observed over the set of spatial sites Si =
{si,1, ..., si,ni

}, 1 ≤ i ≤ q. The sets in S = {S1, ...,Sq} are not constrained and
can be disjoint. The observed vector at time t is then yt(S) = (y1,t(S1), ...,yq,t(S1))′

= yt and it has dimension N = n1+...+nq. The observation equation is yt = µt+εt,
where µt = Ux,tβ + Uz,tzt + γ1U

1
w,tw

1
t + ...+ γcU

c
w,tw

c
t , Ux,t = XtKx, Uz,t = XtKz

and Uj
w,t = XtK

j
w.

In the definition of the likelihood function, the distributions involved are(
yt | zt,w1

t , ...,w
c
t

)
∼ NN (µt,Σε)

(zt | zt−1) ∼ Np (Gzt−1,Ση)

wj
t ∼ NN

(
0,Σj

)
, 1 ≤ j ≤ c

Let Y = (y1, ...,yT ), Z = (z1, ..., zT ) and Wj =
(
wj

1, ...w
j
T

)
. The complete-data

log-likelihood function is given by:

−2l
(
Ψ; Y,Z,W1, ...,Wc

)
= T log |Σε|+

T∑
t=1

(yt − µt)′Σ−1
ε (yt − µt) +

T log |Ση|+
T∑
t=1

(zt −Gzt−1)′Σ−1
η (zt −Gzt−1) +

c∑
j=1

T log
∣∣Σj
∣∣ T∑
t=1

(
wj
t

)′ (
Σj
)−1

wj
t

At each time t, the observation vector yt can be partitioned in the following way:

y∗t =
[

y
(1)
t y

(2)
t

]′
where y

(1)
t = Ltyt is the sub-vector of the non-missing data

and Lt is the selection matrix of the observed data at time t. The vector y∗t is a
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permutation of yt and yt = Dt ·
[

y
(1)
t y

(2)
t

]′
, where Dt is a permutation matrix.

The partitioned measurement equation becomes y
(l)
t = µ

(l)
t + ε

(l)
t , l = 1, 2. and

the variance-covariance matrix of the permuted errors is conformably partitioned,

namely V ar

[(
ε

(1)
t , ε

(2)
t

)′]
=

[
R11 R12

R21 R22

]
. In what follows, Y(1) =

(
y

(1)
1 , ...,y

(1)
T

)
is the collection of the observed data.

4 EM estimation

At the E-step of the EM algorithm, the following conditional expectation is evalu-
ated:

Q
(
Ψ,Ψ(k)

)
= EΨ(k)

[
−2l

(
Ψ; Y,Z,W1, ...,Wc

)
| Y(1)

]
= EΨ(k)

[
EΨ(k)

[
−2l

(
Ψ; Y,Z,W1, ...,Wc

)
| Y(1),Z,W1, ...,Wc

]
| Y(1)

]
= T log |Σε|+ tr

(
Σ−1
ε

T∑
t=1

Ωt

)
+

T log |Ση|+ tr
{
Σ−1
η (S11 − S10G

′ −GS′10 + GS00G
′)
}

+

c∑
j=1

T log
∣∣Σj
∣∣ · tr{(Σj

)−1
T∑
t=1

wj,T
t ·

(
wj,T
t

)′
+ Aj,T

t

}

where:

Ωt = EΨ(k)

[
et · e′t + Λt | Y(1)

]
= EΨ(k)

[
et · e′t | Y(1)

]
= Dt

[
Ω

(11)
t Ω

(11)
t R−1

11 R21

R21R
−1
11 R21R

−1
11 Ω

(11)
t R−1

11 R21 +
(
R22 −R21R

−1
11 R12

) ]D′t

et = EΨ(k)

[
yt − µt | Y(1),Z,W1, ...,Wc

]
= Dt

[
y

(1)
t − µ

(1)
t

R21R
−1
11

(
y

(1)
t − µ

(1)
t

) ]
Λt = V arΨ(k)

[
yt − µt | Y(1),Z,W1, ...,Wc

]
= Dt

[
0 0
0 R22 −R21R

−1
11 R12

]
D′t

Ω
(11)
t = EΨ(k)

[
e

(1)
t | Y(1)

]
· EΨ(k)

[
e

(1)
t | Y(1)

]′
+ V arΨ(k)

[
e

(1)
t | Y(1)

]
wj,T
t = EΨ(k)

(
wj
t | Y(1)

)
; 1 ≤ j ≤ c

Aj,T
t = V arΨ(k)

(
wj
t | Y(1)

)
; 1 ≤ j ≤ c

Moreover, zTt = EΨ(k)

(
zt | Y(1)

)
and PT

t = V arΨ(k)

(
zt | Y(1)

)
are given by the
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Kalman smoother output and

S11 =
T∑
t=1

zTt
(
zTt
)′

+PT
t ; S10 =

T∑
t=1

zTt
(
zTt−1

)′
+PT

t,t−1; S00 =
T∑
t=1

zTt−1

(
zTt−1

)′
+PT

t−1

The maximization step of the EM algorithm involves the minimization

Ψ(k+1) = arg min
Ψ

Q
(
Ψ,Ψ(k)

)
The estimates θ̂(k+1) =

{
θ̂1, ..., θ̂c

}(k+1)

and V̂ =
{

V̂1, ..., V̂c
}(k+1)

are obtained by

numerical minimization. The close form solutions for Ĝ(k+1) and Σ̂
(k+1)
η are already

given in Fassò and Finazzi (2011) while the solution for the remaining parameters

are obtained by solving
∂Q(Ψ,Ψ(k))

∂Ψ
= 0 and they are

(
σ̂2
i,ε

)(k+1)
=

tr
(∑T

t=1 Ωt|i,i
)

Tni

β̂(k+1) =

[
T∑
t=1

(
U′x,tUx,t

)]−1

·

[
T∑
t=1

X′x,t
(
eTt + U′x,tβ

(k)
)]

γ̂
(k+1)
i =

tr
[∑T

t=1

(
FT
t −GT

t −HT
t

)]
tr

[∑T
t=1 Uw,t

(
wi,T
t ·

(
w1,T
t

)′
+ Ai,T

t

)
U′w,t

]
for each 1 ≤ i ≤ q, with Ωt|i,i the i− th diagonal block of Ωt. Moreover

FT
t =

(
eTt + γiU

i
w,tw

i,T
t

)(
wi,T
t

)′ (
Ui

w,t

)′
GT
t = 2

c∑
j 6=i

γjU
i
w,tCovΨ(k)

(
wi
t,w

j
t | Y(1)

) (
Uj

w,t

)′
(2)

HT
t = 2Uz,tCovΨ(k)

(
zt,w

i
t | Y(1)

) (
Ui

w,t

)′
(3)

and the conditional covariances in (2) and (3) are computed straightforwardly from
the multivariate Gaussian distribution of the joint (yt,wt, zt).
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