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Summary: The assumption of direction invariance, i.e., isotropy, is often made in the practical analysis of spatial

point processes due to simpler interpretation and ease of analysis. However, this assumption is many times hard to

find in real applications. Many homogeneous point processes are indeed anisotropic. This paper concerns the analysis

and detection of spatial anisotropies in terms of detection of linearities in spatial point processes, and even more

generally, in terms of testing for spatial anisotropy.

We propose a wavelet-based approach to test for isotropy in spatial point processes based on the logarithm of

the directional scalogram. Under the null hypothesis of isotropy, a random isotropic process should be expected to

have the same value of the directional scalogram for any possible direction. Hence, Monte Carlo simulations of the

logarithm of the directional scalograms over all directions are used to approximate the test distribution and the

critical values. We demonstrate the efficacy of the approach through simulation studies and an application to a desert

plant data set, where our approach confirms suspected directional effects in the spatial distribution of the desert plant

species.
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1. Introduction

Spatial point process models are useful tools to model irregularly scattered point patterns

that are frequently encountered in biological, ecological, and epidemiological studies; exam-

ples include locations of biological cells in a tissue, trees in a forest, or leukemia patients in a

state. A spatial point pattern is a set of points {xi ∈ A : i = 1, . . . , n} for some planar region

A. Very often, A is a sampling window within a much larger region and it is reasonable to

regard the point pattern as a partial realization of a stochastic planar point process, the

events consisting of all points of the process which lie within A. Let N be this stochastic

planar point process defined on R2 but observed on a finite observation window W . For an

arbitrary set A ∈ R, let |A| and N(A) denote the area of A and the number of events from

N that are in A, respectively.

The mathematical theory of point processes was first developed in order to solve various

problems where it is sensible to model the locations of events as random. Indeed, the study

of spatial point patterns has a long history in ecology and forestry (Goodall, 1952; Pielou,

1977; Ripley, 1981). Spatial point patterns have also found application in fields as diverse

as archeology (Hodder and Orton, 1976), cosmology (Neyman and Scott, 1958), geography

(Cliff and Ord, 1981), seismology (Ogata, 1998) and epidemiology (Diggle and Richardson,

1993). Recent textbooks related to the topic of analysis and modeling of point processes

include Stoyan et al. (1995), Diggle (2003), Baddeley et al. (2006), Illian et al. (2008), or

Gelfand et al. (2010). The concept of complete spatial randomness (CSR) is fundamental

to the quantitative description of a spatial pattern. A formal definition of CSR is that the

events in the region of observation A constitute a partial realization of a homogeneous,

planar Poisson process (Diggle, 2003). This process incorporates a single parameter, λ, the

intensity, or mean number of events per unit area. The actual number of events in A, n say,
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is an observation from a Poisson distribution with mean λ |A|, where |A| denotes the area of

the region A.

A point process is stationary and isotropic if its statistical properties do not change under

translation and rotation, respectively. Informally, stationarity implies that you can estimate

properties of the process from a single realization on A, by exploiting the fact that these

properties are the same in different, but geometrically similar, subregions of A; isotropy

means that there are no directional effects.

Let dx denote a small region containing the point x. The first-order intensity function of

a spatial point process is defined as λ(x) = lim {IE[N(dx)]/|dx|} when |dx| → 0. Intuitively,

λ(x)|dx| is the approximate probability for dx to contain exactly one event from N . If we

assume stationarity and isotropy, then λ(x) ≡ λ = IE[N(A)]/|A|, (constant, for all A). Thus,

if the process is homogeneous the intensity function reduces to a constant, λ, equal to the

expected number of events per unit area.

The assumption of isotropy is often made in practice due to simpler interpretation and

ease of analysis. However, stationarity and/or isotropy are many times hard to find in real

applications. Many homogeneous point processes are indeed anisotropic. There are many

varied forms of anisotropy: (a) anisotropic arrangements of the points; (b) anisotropic behav-

ior of marks if they describe orientations; (c) combination of anisotropic point distribution

and anisotropic mark behavior. Orientation analysis is the quantification of the degree of

anisotropy in the case of non-isotropic point patterns and the detection of inner orientations

in case of isotropy (Ohser and Stoyan, 1981; Stoyan and Benes, 1991; Mateu, 2000; Redenbach

et al., 2009). Typical examples of oriented point patterns are patterns in which the points lie

randomly in parallel strips of random or constant breadth (anisotropic case) or on an isotropic

system of random fibres (inner orientation). Anisotropy is the converse of isotropy but it has

many different aspects. A given pattern may appear as isotropic with respect to one aspect,
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whilst it is in fact anisotropic when considering another aspect. For example, if a structure

consists of isolated particles, then the arrangement of the particles may be anisotropic,

whilst the particles are isotropic. It is also possible that the arrangement is isotropic whilst

the particles are anisotropic. For example, the anisotropy (directionality) is a significant

property of images. The anisotropy may be the result of the process by which the imaged

object might have been formed. Thus, on numerous occasions anisotropy reflects properties

and determines the behavior of the textured objects. The importance of anisotropy in visual

perception and object characterization inspired a range of studies for anisotropy analysis

(Kovalev and Bondar, 1997). Anisotropy can be present when the spatial point patterns

contain points placed roughly on line segments. See details in Møller and Rasmussen (2009)

who consider a particular class of point processes whose realizations contain such linear

structures. Blackwell (2001), Blackwell and Møller (2002) consider point process models

with linear structures close to the edges of (deformed) Dirichlet (or Voronoi) tessellations.

However, the exact mechanism responsible for the formations of lines is unknown. Thus

the development of tractable and practically useful spatial point process models capable of

producing point patterns with linear structures becomes important (Penttinen and Stoyan,

1989).

The arguments shown and the literature involved in the analysis and detection of spatial

anisotropies sets a motivating research line in terms of detection of linearities in spatial

point patterns, and even more generally, in terms of testing for spatial anisotropy. Here we

understand spatial anisotropy as the presence of main directions in the point pattern (Schenk

and Mahall, 2002).

Ohser and Stoyan (1981) and Rosenberg (2004) have proposed methods to assess isotropy

(and to consequently detect anisotropy) for spatial point processes. These approaches, how-

ever, are limited to certain classes of models. Guan et al. (2004, 2006) propose a formal
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nonparametric approach to test for isotropy based on the asymptotic joint normality of the

sample second-order intensity function. They derive a L2 consistent subsampling estimator

for the asymptotic covariance matrix of the sample second-order intensity function and use

this to construct a test statistic with a χ2 limiting distribution. The authors state that their

approach requires only mild moment conditions and a weak dependence assumption for the

underlying process. However, we argue that their approach is based on asymptotic results

(not often attainable in practical situations) and can be considered quite technical for the vast

majority of practitioners. Alternative methods based on two-dimensional spectral analysis

were proposed by Mugglestone and Renshaw (1998) to calculate objective estimates of the

orientation and frequency of geological lineations from digitised images obtained from aerial

photographs of glaciated terrain in northern Canada. However, the complications inherent

in spectral analysis (particularly for more than one dimension) appear to have discouraged

applied statisticians and ecologists from making use of these methods.

Wavelet analysis has succeeded in a variety of applications and held promise in the area

of spatial pattern analysis (e.g. Donoho, 1993; Gao and Li, 1993; Grenfell et al., 2001). As

a flexible tool, wavelet analysis provides many advantages over other methods of analyzing

data series from one-dimensional transect. The main advantages are its ability to preserve

and to display locational information, while the approach allows for pattern decomposition,

and it does not require stationarity of the data. Despite its advantages, wavelet analysis

has only been involved in several works for detection of patterns (e.g. Saunders et al., 1998;

Brosofske et al., 1999; Harper and Macdonald, 2001; Perry et al., 2002).

Our goal in this paper is to detect anisotropy in terms of pinpointing main directions using

directional wavelets applied over a raw estimation of the spatial intensity through a quadrat

counting method. We show the efficacy of this approach through simulated examples, and

we further propose a statistical test to assess for isotropy. An application to a field data set
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of a complete 1984 census of 4358 Ambrosia dumosa plants is also considered. The rest of the

article is organized as follows. Section 2 provides the basics of directional wavelets as a tool

to detect main directions, and show their performance through several simulated examples.

Section 3 develops a statistical test and analyzes its (type I error and power) properties. We

apply this testing approach to the Ambrosia dumosa data set in Section 4. The paper ends

with some points for further discussion.

2. A wavelet approach

Wavelets are mathematical functions with zero mean and moderate decay such that they

are non-zero only over a small region. They can be defined as translations and re-scales of a

single squared-integrable function ψ(x) ∈ IL2(R), called the wavelet function or the mother

wavelet, as

ψa,b(x) =
1√
|a|
ψ

(
x− b

a

)
. (1)

where a ∈ R\{0} and b ∈ R are the scale and shift parameters, respectively. Normalization

by 1√
|a|

ensures that the energy of the corresponding wavelet is independent of a and b, i.e.
∫ ∞

−∞
|ψa,b(x)|2 =

∫ ∞

−∞
|ψ(x)|2.

For any function f(x) ∈ IL2(R), the continuous wavelet transform is given by

Wf (a, b) = 〈f,ψa,b〉 =
∫

R
f(x)ψa,b(x)dx, (2)

where the overline denotes complex conjugate. The two dimensional extension of (2) is

straightforward. By denoting with x = (x, y) and b = (b1, b2) a spatial location and the

translations, respectively, (2) for f(x) ∈ IL2(R2) can be written as

Wf (a,b) = 〈f,ψa,b〉 =
∫

R2

f(x)ψa,b(x)dx, (3)

Several wavelets has been proposed in literature. Although the first wavelet was introduced

by Haar (1910), the study of wavelets reaches its maximum development after the work of
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Goupillaud et al. (1984). Since this period we can find an explosion of scientific activity in a

wide variety of fields (see, for example, Mallat (1999) or Vidakovic (1999)).

2.1 Directional wavelets

For x ∈ R2, and any function f(x) ∈ IL2(R2), the continuous directional wavelet transform

for a scale a and an orientation θ is given by

Wf (a,b, θ) = 〈f,ψa,b,θ〉 =
∫

R2

f(x)ψa,b(x, θ)dx. (4)

In literature, a variety of directional wavelets ψa,b(x, θ) have been proposed. In particular

Neupauer and Powell (2005) introduced a flexible function called fully-anisotropic directional

Morlet wavelet, and is given by

ψa,b(x, θ) = eik0·Cxe1/2Cx·ATACx (5)

where k0 = (0, k0) is a wave vector with k0 ! 5.5, A = diag(D, 1) denotes a diagonal matrix,

and D is the anisotropy ratio defined as the ratio of the length of the elliptical envelope in

the y-direction to the length of the elliptical envelope in the x-direction. The matrix C is a

linear transformation given by

C =




cosθ sinθ

−sinθ cosθ





This transformation rotates the entire wavelet through an angle θ defined as positive in

the counterclockwise direction. Two examples of this fully-anisotropic wavelet for directions

θ = 30, 90 are shown in Figure 1.

[Figure 1 about here.]

In order to identify the behavior of the process in different directions, Kumar (1995)

introduced two new functions, η(a, θ) and ζ(a, θ), given by

η(a, θ) =

∫
|Wf (a,b, θ)|2db (6)
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and

ζ(a, θ) =
η(a, θ)∫
η(a, θ)dθ

. (7)

The component |Wf (a,b, θ)|2 in (6), called directional scalogram, gives the distribution of

the energy of a function at location x, scale a and direction θ. Hence, η(a, θ) characterizes

the distribution of the energy at different scales and directions, whereas ζ(a, θ) provides the

relative distribution of the energy in different directions at a particular scale.

In practice, (6) and (7) can be implemented by discretizing the parameters θ, a and b into a

fine grid covering the corresponding parameter space. Thus we can define a set of θi ∈ (0, π]

with i = 1, . . . ,m directions, aj with j = 1, ..., L scales, and finally bk with k = 1, ..., N

spatial coordinates. The computation of η(aj, θi) can be done by numerically integrating the

resulting scalogram over the domain of b.

2.2 Wavelet analysis of spatial point processes

The method proposed by Neupauer and Powell (2005) can be used for detecting anisotropy

in images, that is pixels located on a regular grid. Only few works consider the wavelet

transforms of spatial point processes. Most of them assumes isotropic processes and use

the Haar wavelet for the estimation of intensity function (De Miranda, 2008). However, the

statistical properties of these wavelet estimators are not easily derived.

Since our aim is testing for anisotropy through identification of dominant directions in

spatial point patterns, we suggest considering the fully-anisotropic Morlet wavelet proposed

by Neupauer and Powell (2005). This directional wavelet is applied over a quadrat counting-

based estimation of the first-order intensity of the point pattern. In quadrat counting, the

window A is divided into subregions A1, ..., Am (quadrats) of equal area. We then count

the numbers of points falling in each quadrat, nj = N(x ∩ Aj) for j = 1, . . . ,m. These

are unbiased estimators of the corresponding intensity measure values (Illian et al., 2008).

Quadrat counting has also a nice advantage, and it is that if we choose the quadrats in
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a meaningful way, for example defining the quadrats using covariate information, we take

advantage of the spatial covariance-based information. By application of the continuous fully-

anisotropic Morlet wavelet transform over the resulting quadrat counts we obtainWλ̂(a,b, θ),

and the corresponding η(a, θ) values for each scale and direction are evaluated. This approach

allows to: (a) identify anisotropic linear patterns, (b) estimate dominant directions, (c) build

a statistical test for isotropy.

In particular, dominant directions are identified by the largest values of η(·, ·) and ζ(·, ·)

in the scalogram plot. In addition, several features of linear patterns, such as localization

and standard deviation, can be highlighted by plotting the wavelet coefficients relative to

the largest values of the directional scalogram. As an example, the first two rows in Figure 2

show a simulated example of a spatial pattern with a marked main direction at 45 degrees.

The corresponding values of η(a, θ) for a set of scales, angles, and several levels of resolutions

are shown; the main direction is clearly detected. In contrast, the last row in Figure 2 shows

a random isotropic point pattern and the corresponding values of η(a, θ). As expected no

main direction is detected.

[Figure 2 about here.]

2.3 Simulated examples

We considered different scenarios of spatial point patterns with an average size of 1000

points on the unit square. We simulated realizations from a Poisson process and added a set

of points defining particular directions. For illustration purposes, three examples of added

sets of points were used: (a) one linear pattern, (b) two linear patterns, and (c) parallel linear

patterns.

Each linear pattern was simulated using a linear regression model yi = β0 + β1xi + εi,

with εi ∼ N(0, σ) and i = 1, . . . , np where np is the number of simulated points (xi, yi),

and σ the standard deviation of εi. Parameter β1 represents the direction θ of the linear
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(anisotropic) component. For each pattern with a given number of points over the unit

square, we considered several values for (β0, β1, σ). Each scenario was repeated 100 times,

and for each particular point pattern the fully-anisotropic Morlet wavelet with k0 = 5.5 and

D = 0.1 (see right plot in Figure 1) was applied over a quadrat counting-based estimation of

the first-order intensity of the point pattern. These Morlet wavelet parameters were chosen

in terms of a better adaptation to the detection of linearities in point patterns.

2.3.1 One linear pattern. We simulated point patterns formed by 70% of purely random

points generated by an isotropic Poisson process in the unit square, and 30% of points

belonging to a directional pattern representing the anisotropic component. In particular, the

linear pattern is the output of a regression model with slope θ and zero mean Gaussian

errors with a standard deviation of σ = 0.1. Figure 2 shows an example of a simulated point

pattern with N = 1000 points in the unit square with a marked directional pattern of 45

degrees. The η(·, ·) values show that the largest fraction of energy of the wavelet coefficients

is concentrated around the preferential direction of 45 degrees. This becomes clearer if we

observe the η(·, ·) behavior for some selected levels of resolution (see Figure 2c). Since the

maximum peaks are reached for scales 25 and 30, these levels of resolution contain the most

important information on the anisotropic component of the data. The representation of the

wavelet coefficients in Figure 2d for L = 25 allows to localize the dispersion of the points

around the identified linear structure.

To show that the wavelet approach is not sensible to a particular direction, we repeated the

experiment for different types of linear patterns. Results from anisotropic simulated spatial

point patterns with dominant directions of θ = 30, 60 and 135 are shown in Figure 3.

[Figure 3 about here.]

We note that in each case the directional scalogram highlights the largest values of η(·, ·)

around the same level of resolution (L = 20). This is because the scale parameter in the
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wavelet transform represents the variability of the main pattern. If we compare these results

with those obtained in the case of a purely random pattern in Figure 2e, we note many

differences. In the isotropic point pattern the largest fraction of energy is concentrated in

the finest levels of resolution, and the η(·, ·) values are approximatively the same for each

level of resolution without showing any significant dominant direction (see Figure 2f).

To show the ability of the wavelet method in estimating the dominant direction, we

simulated 100 data sets for each type of linear pattern (θ = 30, 60, and 135) and we

then estimated the dominant directions. The results are shown in Table 1. In all cases

the estimated directions resulted very close to the parameters used to simulate the linear

pattern. The low values of standard deviations for the anisotropic cases compared with those

values under the isotropic pattern indicate the robustness of the method in both assessing

anisotropy and estimating the main direction present in the data.

[Table 1 about here.]

2.3.2 Two linear patterns. We considered two cases of spatial point patterns with two

dominant directions. We first simulated a spatial point pattern with N = 1000 points in the

unit square with two perpendicular linear patterns with slopes θ1 = 45 and θ2 = 135 (Figure

4). The standard deviation of the errors of the regression defining the linear patterns was

fixed to σ = 0.1. The directional scalogram reaches its maximum at 45 and 135 degrees, at

the scales between 20 and 25. The wavelet coefficients at (θ1 = 45; L = 20) and (θ2 = 135;

L = 25) correctly detect the position and the variability of the anisotropy.

[Figure 4 about here.]

A second case, not shown here to save space, regards a simulated data set with two marked

linear patterns having different slopes and variability. One strip is characterized by a slope

of θ1 = 60 degrees and an error distribution given by N(0, σ1 = 0.04); the second strip has a
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slope of θ2 = 135 degrees with an error distribution given by N(0, σ2 = 0.08). The directional

scalogram clearly detects these two directions (60 and 135 degrees) with maximum values at

levels of resolution L = 10 (for the linear pattern of 60 degrees) and L = 20 (for the linear

pattern of 135 degrees). This means that the scale is strictly correlated with the variability

of the data. The wavelet coefficients at (θ1 = 60; L = 10) and (θ2 = 135; L = 20) correctly

detect the position and the variability of the anisotropy.

To analyze the ability of the wavelet method in estimating the two dominant directions,

we simulated 100 data sets for each type of point processes considered in this Section. A

summary of the results is shown in Table 2 (columns related to TLP1 and TLP2). In all

cases the estimated directions resulted very close to the parameters used to simulate the linear

pattern. Again the lowest standard deviation corresponded to the scale with maximum peak

in the directional scalogram. For example, the angle estimation for those data sets simulated

with a marked directionality at θ1 = 60 and θ2 = 135 showed lowest standard deviations at

scales L = 10 and L = 20, respectively. This reflects the different variability of errors for the

two linear patterns.

[Table 2 about here.]

2.3.3 Parallel patterns. We finally considered simulated point patterns with five parallel

linear patterns, each one with a slope of 45 degrees, as shown in Figure 5a. The simulated

patterns are formed by N = 1000 points in the unit square: 60% was generated by parallel

linear patterns with Gaussian errors, N(0, 0.06) (20% per each pattern), and the rest 40%

was generated following an isotropic random pattern.

The directional scalogram in Figure 5b shows that the wavelet method is able to detect

the parallel patterns. The levels of resolution L = 15−L = 30 identify the main directions of

anisotropy (equal to 45 degrees). We note an interesting comparison between the directional

scalogram for the case of parallel patterns (Figure 5b) and the case where there is only
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one pattern (Figure 2b): while in Figure 2b the scalogram has a bulb shape due to larger

variability of the coefficients at lower levels of resolution, the scalogram in Figure 5b shows

an elongated shape showing that the main direction of 45 degrees can be detected at different

scales.

The highest peak of Figure 5c highlights the scale L = 15 as the level of resolution with

the maximum energy. Hence, the wavelet coefficients at this scale identify the number of

patterns in the data, their spatial location and their variability (Figure 5d). One hundred

repetitions of simulated point patterns with N = 1000 points in the unit square showing five

parallel strips with a marked directionality of 45 degrees reported the results shown in Table

2 (PP).

[Figure 5 about here.]

3. A test for isotropy

3.1 Method

Let λ̂(x) be the estimated first-order intensity function by the quadrat counting method,

where x denotes the spatial locations. This is an unbiased estimator of the corresponding

intensity measure values (Illian et al., 2008). Assume we havem possible directions θi ∈ (0, π]

with i = 1, . . . ,m, L possible scales aj with j = 1, . . . , L, andN points, bk, with k = 1, . . . , N .

By applying the directional wavelet we obtain the directional scalogram Wλ̂(aj,bk, θi) giving

the distribution of the energy of λ̂(x). This scalogram is obtained for a range of scales and

orientations at all positions in the domain of λ̂(xi). Denote by Sθi,aj the variance of the

corresponding wavelet coefficients for a particular direction θi and a scale aj. Sθi,aj can be

considered the practical implementation of the η(a, θ) function in (6), and thus is given by

Sθi,aj =
1

N

∑
|Wλ̂(aj,bk, θi))|2. (8)

Under isotropy, we should expect having the same value of the directional scalogram for
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all possible directions, and thus we should expect Sθi,aj = Sθj ,aj for any two directions. Since

the mean of the logarithm of the variance of the wavelet coefficients is approximately Normal

distributed under isotropy, we consider the following test statistic

T (θi) =
1

L

∑

j

logSθi,aj , (9)

as a statistical test of isotropy for point processes. Under the null hypothesis of isotropy,

this statistical test should take similar values for each direction θi, that is T (θ1) = . . . =

T (θi) = . . . = T (θ180), whereas under the alternative hypothesis, there should be al least one

direction θ0 with corresponding values of T (θ0) statistically different from the values of the

statistical test evaluated in other directions.

3.2 Statistical properties

The statistical properties, type I error rate and power of the test, were analyzed by sim-

ulations. We considered different scenarios representing several possibilities. We simulated

spatial point patterns on the unit square with the following characteristics: (a) Varying

number of points, N = 1000 and N = 300; (b) One marked main direction at 45 degrees,

and two main directions at 30 and 120 degrees; (c) Varying variability within the linear

structures: σ = 0.06, 0.10, 0.40.

For the evaluation of the type I error rate, we simulated 1000 isotropic patterns for each

size (N = 1000 and N = 300). The power of the test was analyzed running the test over

1000 anisotropic patterns generated according to the previous considered scenarios. Given

a simulated point pattern we obtained 180 values of the test statistic T (θi) for each θi =

1, . . . , 180. And this was repeated 1000 times.

For each θi, the first 500 values were used to determine the empirical distribution of T (θi),

and this is shown in form of histogram in Figure 6. The other 500 values were used to

accept or reject the null hypothesis by comparing with the empirical distribution of T (θi).

By looking at Figure 6 we note a clear difference between the empirical distribution of T (θi)
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under isotropic and anisotropic scenarios. Note that this difference is higher for those point

patterns with smaller standard deviations within the linear structures.

[Figure 6 about here.]

Type I error rates and powers of the test are given in Figure 7. For each direction θi, the

type I error rate αθi is evaluated by the number of rejected over 500 cases under the null

hypothesis of isotropy, and the power 1 − β is given by the number of rejected over 500

cases under the alternative hypothesis of anisotropy. Hence, for each one of the considered

scenarios we have 180 values of α and 1− β.

In particular, first row in Figure 7 shows the values of α and 1 − β for each direction θi

for i = 1, . . . , 180 when we have N = 1000 points in the unit square, and the anisotropic

spatial pattern is given by a linear structure at direction 45 degrees. Three different standard

deviations for the linear model were considered under the alternative hypothesis (σ =

0.06, 0.10, 0.40). Note that most of the α values are lower than the threshold value of 0.05,

and the power is often larger than 0.95. As expected, the highest values of the power were

concentrated around the true direction of 45 degrees. The lowest values of the power refer to

those cases where the variability was highest (for example, σ = 0.40). Similar considerations

can be followed for the other cases in rows two to four in Figures 7. Our results suggest that

the proposed statistical test can be used as a reasonable measure of the degree of anisotropy,

and thus can be used in practice for the statistical analysis of anisotropic spatial point

patterns.

[Figure 7 about here.]

4. Application to Ambrosia dumosa Data

In this section, we apply the proposed testing method to the Ambrosia dumosa data (Miriti

et al., 1998). The data consist of locations of 4358 Ambrosia dumosa plants, recorded in the
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1984 census within a square hectare (100× 100 m2) area in the Colorado Desert (Figure 8).

Ambrosia dumosa is an extremely abundant, long-lived, and drought deciduous shrub which

is often found on well-drained soils below 1061-m elevation (Miriti et al., 1998). In the study

site, it accounts for approximately 62% of all the encountered perennial plant species.

Previous studies of the Ambrosia dumosa data have focused on detecting clustering and

assessing the effects of possible intra-specific interaction on the mortality of juvenile plants

under the assumption of isotropy (Miriti et al., 1998). Several authors (Perry et al., 2002;

Rosenberg, 2004 or Schenk and Mahall, 2002) noted graphical evidence of anisotropic pat-

terns of the Ambrosia dumosa locations arguing that the effects of directional shading on

germinating seeds and young seedlings may cause anisotropy of Ambrosia dumosa locations

(between seedlings and adult plants) in the north-south, northwest-southeast, and eastwest

directions.

Figure 8 (first row) shows the wavelet analysis of the Ambrosia dumosa data set: the

directional scalogram identifies a main dominant direction around 165 degrees and a second

(perhaps less important) direction around 43 degrees.

[Figure 8 about here.]

We conducted a comparative analysis evaluating the test statistic T (θi) for i = 1, . . . , 180

under 1000 simulated isotropic point patterns with the same number of points as the Am-

brosia dumosa in the unit square, and under the Ambrosia dumosa data set itself. The

summary statistics for T (θi), i = 1, . . . , 180 revealed that the values of T (θi) are clearly

larger for the Ambrosia dumosa data set, suggesting the presence of an anisotropic pattern.

We then applied our statistical test over the Ambrosia dumosa (see second row in Figure 8).

The histogram of T (θi), i = 1, . . . , 180 under 1000 isotropic simulations shows, as expected,

a normal distribution, and it is used to build confidence intervals for the mean of the

test statistic under isotropic patterns. Indeed, Figure 8e confirms that the values of T (θi),
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i = 1, . . . , 180 for the Ambrosia dumosa data set stay away from the confidence interval

under the null hypothesis of isotropy. Finally, the p-values for the Ambrosia dumosa data

set confirm a strong evidence against the assumption of isotropy, which agrees with the

findings/hypotheses in previous studies.

5. Discussion

Wavelet analysis, a booming approach to studying spatial pattern, widely used in mathe-

matics and physics for signal analysis, has started to make its way into the applied statistical

and ecological literature. Despite its advantages, wavelet analysis is still not a particularly

favorite technique, and only involved in several works for detection of patterns. Some gaps

exist between wavelet analysis and spatial pattern analysis.

The vast majority of statistical analyses in spatial point processes assume isotropy without

checking/testing for it. In practice, the goodness-of-fit of a fitted (isotropic) model is often

assessed through graphical methods (see, e.g., Diggle, 2003). Unfortunately, these methods

typically have little power in detecting an inadequate fit due to anisotropy. We note that

anisotropy has been extensively studied in geostatistics (i.e., for numerical spatial data).

It is well understood that misspecifying an isotropic model as anisotropic may result in

inappropriate spatial modeling and/or less efficient spatial prediction.

Here a simple adaptation of wavelet analysis is proposed for the detection of anisotropy

in point patterns. The directional scalogram within the more general context of directional

wavelets seems to be very good at identifying anisotropic patterns in point location data.

Our method has been described for the analysis of univariate patterns. Multivariate point

pattern analysis (e.g. analysing the relative spatial distribution of two plant species) is

another strong area of interest in environmental problems. Many existing point pattern

analysis methods can easily be adapted to multivariate data (Diggle, 2003), including some

of those for anisotropy. The current method could also clearly be adapted to multivariate
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data by repeating the analysis such that only points of a specific type are used as foci and

only points of a different type (for example) are counted within the sectors.
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Figure 1. Fully-anisotropic directional Morlet wavelet with parameters: (a) D = 0.8, k0 = 5.5, θ = 30, (b)

D = 0.1, k0 = 5.5, θ = 90
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Figure 2. (a) Simulated spatial point pattern with N = 1000 points in the unit square, with a marked directional

pattern of 45 degrees. (b) Values of η(a, θ) for the scales a = 10, . . . , 60 (in ordinates) and angles θ = 1, . . . , 180 (in

abscissas). (c) η(a, θ) function for fixed levels of resolutions (from L = 20 to L = 35). (d) Wavelet coefficients for

θ = 45 and scale L = 25. (e) Simulated isotropic random point pattern with N = 1000 points in the unit square. (f)

Values of η(a, θ) for the scales a = 15, . . . , 50 (in ordinates) and angles θ = 1, . . . , 180 (in abscissas)
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Figure 3. Left column: Simulated point patterns with N = 1000 points in the unit square with a marked

directional pattern of 30, 60 and 135 degrees, respectively. Right column: η(a, θ) function for fixed scales and angles

varying from 1 to 180 in abscissas
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Figure 4. (a) Simulated spatial point pattern with N = 1000 points in the unit square and two perpendicular

linear patterns with main directions at 45 and 135 degrees. (b) η(a, θ) function for several levels of resolution (from

L = 20 to L = 40), and angles varying from 1 to 180. (c) Wavelet coefficients for θ1 = 45 and scale L = 20. (d)

Wavelet coefficients for θ2 = 135 and scale L = 25
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Figure 5. (a) Simulated striped spatial point pattern with N = 1000 points in the unit square with a marked

directionality of 45 degrees. (b) Values of η(a, θ) function for scales a = 15, . . . , 50 (in ordinates) and angles varying

from 1 to 180 (in abscissas). (c) η(a, θ) function for some fixed levels of resolution (L = 15 to L = 30). (d) Wavelet

coefficients for θ = 45 and scale L = 15
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Figure 6. Empirical distributions of T (θi) for a particular θi under isotropy (white) and anisotropy (red) for

spatial data sets with 1000 (first and third rows) and 300 (second and fourth rows) points in the unit square. The

anisotropic patterns were defined through a main marked directionality at 45 degrees with σ = 0.06 (a,d), σ = 0.1

(b,e), and σ = 0.4 (c,f), and through two marked directionalities at 30 and 120 degrees with σ = (0.06, 0.10) (g,i)

and σ = (0.1, 0.06) (h,j)
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Figure 7. Type I error rates (first column) and power (second column) of the test for the case of N = 1000 (first

and third rows) and (second and fourth rows) points in the unit square. Cases a-d correspond to anisotropic patterns

with a main marked directionality at 45 degrees and standard deviations σ = 0.06, 0.10, 0.40. Cases e-h correspond

to anisotropic patterns with two marked directionalities at 30 and 120 degrees with σ = (0.06, 0.10) (mod1) and

σ = (0.1, 0.06) (mod2)
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Figure 8. First row: Directional wavelet analysis for the Ambrosia dumosa data set in (a): (b) Directional

scalogram (values of η(a, θ) function) for each direction and scale, and (c) Test statistic T (θi) for each direction θi.

Second row: (d) Empirical histogram of T (θi), i = 1, . . . , 180 under 1000 isotropic simulations. (e) Values of T (θi),

i = 1, . . . , 180 for the Ambrosia dumosa data set (solid line), mean of the test statistic from 1000 simulations under

isotropic Poisson processes with λ = 4370 (dashed line), and ±3σ confidence intervals for the mean of the test statistic

under isotropic patterns (dotted lines). (f) p-values for the Ambrosia dumosa data set compared with the dotted line

at α = 0.05
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Degree

lev. iso 30 45 60 135

15 88.84 (52.73) 30.62 (4.28) 44.94 (2.54) 59.66 (1.72) 134.78 (1.49)
20 90.89 (50.90) 30.65 (2.07) 44.91 (1.23) 59.60 (1.70) 134.93 (1.37)
25 90.01 (50.76) 30.54 (1.97 ) 44.95 (1.25) 59.32 (1.89) 134.01 (1.41)
30 87.90 (50.22) 30.63 (1.87) 44.89 (1.35) 59.26 (1.92) 134.89 (1.49)
35 86.67 (51.40) 30.33 (1.85) 44.96 (1.61) 59.47 (1.95) 134.84 (1.63)
40 86.27 (51.48) 29.91 (1.93) 44.96 (1.84) 59.80 (2.07) 134.83 (1.78)
45 85.31 (49.82) 29.43 (2.18) 45.01 (1.97) 60.12 (2.22) 134.81 (1.90)
50 85.31 (49.74) 29.03 (2.37) 45.07 (2.05) 60.53 (2.48) 134.81 (2.01)

Table 1
Averages and standard deviations (in parenthesis) of estimated directions from 100 repetitions of linear point

patterns in the unit square with marked directions at θ = 30, 45, 60 and 135 degrees.
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TLP1 TLP2 PP

lev. 45 135 60 135 45

5 43.67 (8.04) 134.85. (5.12) 59.72. (0.96) 135.32. (6.18) 44.54 (6.67)
10 46.22 (6.64) 135.66 (4.47) 59.92. (0.76) 134.75 (3.90) 45.00 (5.29)
15 44.98(1.04) 135.02 (1.00) 59.75 (1.02) 134.88 (1.03) 45.05 (0.71)
20 44.92(1.11) 135.08 (1.08) 59.79 (1.40) 135.11 (1.01) 45.01 (0.85)
25 44.86(1.15) 135.08 (1.16) 59.32 (1.44) 135.25 (1.17) 44.99 (0.86)
30 44.84(1.27) 135.09 (1.23) 59.05 (1.66) 135.89 (1.46) 45.98 (6.54)
35 44.89(1.43) 135.09 (1.34) 59.32 (2.03) 135.29 (1.82) 46.1 (8.52)
40 44.92(1.55) 135.04 (1.45) 59.93 (2.34) 135.70 (2.05) 47.68 (9.15)
45 44.89(1.73) 135.14 (1.57) 60.67 (2.78) 133.34 (2.25) 48.71 (8.74)
50 44.88(1.92) 135.11 (1.79) 61.62 (3.23) 132.91 (2.38) 49.03 (8.53)

Table 2
Averages and standard deviations (in parenthesis) of estimated directions from 100 repetitions of spatial patterns

with N = 1000 points in the unit square with two marked directions at (θ = 30, θ = 135) (TLP1), at
(θ = 60, θ = 135) (TLP2), and five parallel patterns at (θ = 45) (PP)


