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Abstract: The lethal earthquake of 6 April 2009 in L’Aquila, Central Italy, re-opened 
the discussion about the earthquake prediction due to the several precursory phenomena 
described in association to the event. One of the most important precursors that 
preceded L’Aquila main-shock was the foreshock activity. Papadopoulos et al. 
(NHESS, 2010) reported that a foreshock activity was there in the last months before 
the main-shock but the foreshock signal became very strong in the last 10 days with 
drastic changes in space-time-size domains of local seismicity. The importance of short-
term foreshocks for the prediction of the main-shock was noted since the 1960’s. 
However, foreshocks appear to precede only some main shocks and not others, while 
there are also foreshocks too small to detect by routine seismic analysis. In this context, 
the aim of the paper is to analyse the phenomenon of swarm as a dynamic ergodic 
stochastic process with particular reference to mean time of transition of a certain class 
of earthquake swarms (belonging to a certain state) to other classes of varying intensity. 
This kind of analysis can be referred to some indicators such as the mean first passage 
time and the mean time to return with their respective probabilities, that constitute an 
important interpretive tool in forecasting. 
 
Keywords: seismic swarm, markovian processes, ergodicity. 

 
1. Introduction 
  
The available data consists of a data set of more than 15.000 shocks that occurred in the 
province of L'Aquila during the entire calendar year 2009 from 1st January to 31th 
December and were drawn by the Italian Seismic Bulletin (ISIDE). 
A preliminary descriptive space time analysis of available data shows that the random 
phenomenon can be considered as a dynamic continuous parameter stochastic process 
and as such dealt with probability theory for  the analysis of events random increments. 
As known, the problem of ergodicity of a dynamic stochastic process has been 
addressed for the first time by physicists in the study of the kinetic theory of gases. For 
example, when a mass of gas is subject to random changes as a result of subsequent 
changes in status, the reiteration of these changes tends to create some regularity of 
behavior in the long run. 
In our study of the swarm we will try to find out if there are similarities in its behavior 
to that of the kinetic theory of gases, using similar methods of analysis. 
 



 

2. Methods and results 
 
The dynamic  characteristics of a destructive earthquake swarm, are known as being 
characterized by a foreshock (frequent shocks that occur before the main shock) and the 
main-shock, The shock of magnitude 6.3 that occurred on 6 th April can be placed 
within a sequence of four time intervals characterized as follow: 
 

• Interval 1  - from January 1 to December 31, 2009 for a total of 15890 shocks; 
• Interval 2 - from March 2 to May 2 (one month before and one month after the 

main-shock) for a total of 8611 shocks; 
• Interval 3 - from March 22 to April 21, 2009 (fifteen days before and fifteen 

days after the main-shock) for a total of 6781 shocks 
• Interval 4  - from 1 to 13 April 2009 (one week before and one week after the 

main-shock) for a total of 4369 shocks 
 
For each of the four time intervals, we have defined five transition states corresponding 
to the following classes of earthquake magnitude: 
 

State 1- (S1)- shock with a magnitude of less than 1; 
State 2 -(S2) -shock with a magnitude between 1 and 1.4; 
State 3 -(S3) -shock with a magnitude between 1.4 and 1.8; 
State 4 -(S4) -shock with a magnitude between 1.8 and 2.4; 
State 5-(S5) -shock with a magnitude greater than 2.4. 
 

From the above time intervals, we have estimated four 5x5 ergodic transition matrices 
and we have calculated the limit vectors and the corresponding matrix of the mean of 
first passage . 
Dynamic processes are related to the time evolution and apply when the time factor (t) 
is a fundamental entity influencing the process. 
In our study, states constitute a finite sequence of events not referred to the time at 
which they occurred. 
An evolutionary system of random events is able to move between h incompatible 
transition states S1, S2, S3, ..., Si, ..., Sj, ..., Sh . At a given time the system may be in one 
and a only of these states. Once a certain state is reached at time (th), the system stays 
there until (tk), with k steps of random transition , passes to the new state Sj . 
In this case study, we are in the presence of a random evolutionary process and would 
like to know what is the probability that the system is in a generic state (Si) with 
probability p(Si),  regardless of the instant at which this happens, taking into account the 
type state previously occurred. 
This can also be defined as the probability of transition from state Si to Sj or Pij. These 
probabilities are obtained studying the statistical behavior of the phenomenon: the 
frequencies with which state changes define an array whose elements correspond to the 
estimated transition probabilities, if normalized by row. 
The “inheritance property” of few steps of transition, even if partial implying the system 
“memory”, may be limited. 
For some classes of earthquake intensity the observed regularity allows to predict the 
future of the phenomenon and to conclude that some memory mechanism exists. 
 



 

An effective way to verify the assumptions just mentioned, is to try to assess the 
situation after n successive steps of the transition process the ergodic behavior at the 
limit of its evolution. 
Let Pij denote the probability of transition from a single step, estimated with the 
observed data, the corresponding probability of transition Pij (n) from i to j, in n steps. 
The transition may occur, in different ways, namely by following multiple mutually 
incompatible route A , B, or C, ... 
The probability Pij (n) is calculated as the sum of the probabilities of each route  
Pij (n) = (pij (A)) + (pij (B)) + (pij (C)), where Pij (n)  gives rise a recurrence relation that 
consent us to distinguish some important features of the process during its evolution, 
such us the average transition time from one state to another or the average time to 
return to the starting state or even the time of permanence in a state, as well as the 
process configuration limit.  
When the process is able to achieve any state of the system starting from any other 
during its evolution, it satisfies the conditions for ergodicity. 
From an analysis of the indicators of the mean time of first passage for the four interval, 
we can see a substantial confirmation of the characteristics of the phenomenon in terms 
of probability of switching from one state to another. 
 
Limit vector (15809 shocks)                                  Limit vector (8611 shocks) 
 

S1 S2 S3 S4 S5 
 

S1 S2 S3 S4 S5 

0.01 0.67 0.13 0.10 0.07  
0.01 0.14 0.34 0.30 0.21 

 
Limit vector (6781 shocks)                                   Limit vector (4369 shocks) 
 

S1 S2 S3 S4 S5 
 

S1 S2 S3 S4 S5 

0.01 0.14 0.34 0.30 0.21 
 

0.046 0.082 0.295 0.344 0.274 

 
Mean first passage time matrix (15809 shocks) Mean first passage time matrix (8611 shocks) 
 

 S1 S2 S3 S4 S5 
 

 S1 S2 S3 S4 S5 

S1 13.16 4.48 3.94 6.072 9.22 
 

S1 156.24 1.24 8.54 13.87 24.48 

S2 13.12 4.18 3.78 6 9.21 
 

S2 169.27 1.49 8.01 12.88 23.46 

S3 13.19 4.31 3.67 5.83 9.19 
 

S3 175.42 1.76 7.63 11.59 22.86 

S4 13.2 4.5 3.8 5.93 9.06 
 

S4 176.25 2 9.01 9.9 20.16 

S5 13.2 4.52 3.92 6 9.03 
 

S5 176.84 2.17 10.32 11.09 14.28 

 
Mean first passage time matrix (6781 shocks) Mean first passage time matrix (4369 shocks) 
 

 S1 S2 S3 S4 S5 
 

 S1 S2 S3 S4 S5 

S1 12.19 3.32 3.2 6.63 24.48 
 

S1 217.38 10.95 3.67 4.71 1.15 

S2 12.64 3.7 3.05 6.44 23.46 
 

S2 227.02 12.19 3.27 4.72 1.04 

S3 12.75 4.22 3.03 5.91 22.86 
 

S3 227.84 13.7 3.33 4.4 0.9 

S4 12.82 4.74 3.65 5.05 20.16 
 

S4 228.25 14.88 4.13 3.98 0.18 

S5 12.94 5.08 4.29 5.83 14.28 
 

S5 228.72 15.78 4.9 4.67 0.08 

 
For example, if we consider the 15.900 shocks, occurred in 2009, it would take 13 
transitional stages to reach the transition state S1 of lowest hazard from any previous 



 

state, 5 steps to reach the state S2, and so on, until 9 steps to be in the most dangerous 
state S 5 with a magnitude greater then 2.4. 
A very different behaviour is observed for the seismic swarm of 4369 shocks occurred a 
week before and one after 6 April 2009. 
During this time interval, shocks belonging to the state S1 occurring very rarely and 
reaching the lowest value of the magnitude contemplated in the S1 state took more than 
200 stages of transition (shock). On the other hand, only one stage of transition is 
necessary  in order to have two successively shocks of the highest magnitude S5. 
The number of stages of transition which determine the mean time to return from 
certain level to same level could be defined as an indicator dangerous due to recursion 
of this type of shock. 
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