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Abstract: The lethal earthquake of 6 April 2009 in L’Aquil@entral Italy, re-opened
the discussion about the earthquake predictiortatige several precursory phenomena
described in association to the event. One of tlestnimportant precursors that
preceded L’Aquila main-shock was the foreshock vagti Papadopoulos et al.
(NHESS, 2010) reported that a foreshock activitys weere in the last months before
the main-shock but the foreshock signal became s#ong in the last 10 days with
drastic changes in space-time-size domains of kgiamicity. The importance of short-
term foreshocks for the prediction of the main-$hezas noted since the 1960's.
However, foreshocks appear to precede only soma stecks and not others, while
there are also foreshocks too small to detect biirre seismic analysis. In this context,
the aim of the paper is to analyse the phenomem@warm as a dynamic ergodic
stochastic process with particular reference tomteae of transition of a certain class
of earthquake swarms (belonging to a certain statejher classes of varying intensity.
This kind of analysis can be referred to some imthics such as the mean first passage
time and the mean time to return with their respecprobabilities, that constitute an
important interpretive tool in forecasting.
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1. Introduction

The available data consists of a data set of ni@e 15.000 shocks that occurred in the
province of L'Aquila during the entire calendar y&®09 from 1st January to 31th
December and were drawn by the Italian SeismiceBul(ISIDE).

A preliminary descriptive space time analysis o&ilable data shows that the random
phenomenon can be considered as a dynamic contimerameter stochastic process
and as such dealt with probability theory for #malysis of events random increments.
As known, the problem of ergodicity of a dynamiocétastic process has been
addressed for the first time by physicists in thelg of the kinetic theory of gases. For
example, when a mass of gas is subject to rand@nges as a result of subsequent
changes in status, the reiteration of these chategets to create some regularity of
behavior in the long run.

In our study of the swarm we will try to find odtthere are similarities in its behavior
to that of the kinetic theory of gases, using samimethods of analysis.



2. Methods and results

The dynamic characteristics of a destructive eadke swarm, are known as being
characterized by a foreshock (frequent shocksdbatr before the main shock) and the
main-shock, The shock of magnitude 6.3 that ocduoe 6 th April can be placed
within a sequence of four time intervals charaztatias follow:

Interval 1 - fromJanuary 1 to December 31, 2009 for a total of 1538@ks;

Interval 2 - from March 2 to May 2 (one month befand one month after the
main-shock) for a total of 8611 shocks;

Interval 3 - from March 22 to April 21, 2009 (fike days before and fifteen
days after the main-shock) for a total of 6781 &koc

Interval 4 - from 1 to 13 April 2009 (one week twef and one week after the
main-shock) for a total of 4369 shocks

For each of the four time intervals, we have defifiee transition states corresponding
to the following classes of earthquake magnitude:

State 1- (9- shock with a magnitude of less than 1;

State 2 -(§ -shock with a magnitude between 1 and 1.4;
State 3 -(§ -shock with a magnitude between 1.4 and 1.8;
State 4 -(9 -shock with a magnitude between 1.8 and 2.4;
State 5-(§) -shock with a magnitude greater than 2.4.

From the above time intervals, we have estimated 55 ergodic transition matrices
and we have calculated the limit vectors and theesponding matrix of the mean of
first passage .

Dynamic processes are related to the time evolwmhapply when the time factor (t)
is a fundamental entity influencing the process.

In our study, states constitute a finite sequerfcevents not referred to the time at
which they occurred.

An evolutionary system of random events is ablentwve between h incompatible
transition states;$$, S5, ..., S, ..., §, ..., S . At a given time the system may be in one
and a only of these states. Once a certain stagached at time )t the system stays
there until (), with k steps of random transition , passes éorgw state;S

In this case study, we are in the presence of doranevolutionary process and would
like to know what is the probability that the systés in a generic state ;jSwith
probability p($), regardless of the instant at which this happtkéng into account the
type state previously occurred.

This can also be defined as the probability ofditeon from state Sto § or R;. These
probabilities are obtained studying the statistibehavior of the phenomenon: the
frequencies with which state changes define aryavlase elements correspond to the
estimated transition probabilities, if normalizedrbw.

The “inheritance property” of few steps of trarmiti even if partial implying the system
“memory”, may be limited.

For some classes of earthquake intensity the obdaregularity allows to predict the
future of the phenomenon and to conclude that smer@ory mechanism exists.



An effective way to verify the assumptions just mn@med, is to try to assess the
situation after n successive steps of the tramsitimocess the ergodic behavior at the
limit of its evolution.

Let B; denote the probability of transition from a sing&ep, estimated with the
observed data, the corresponding probability afiditeon R (n) from i to j, in n steps.
The transition may occur, in different ways, nambly following multiple mutually
incompatible route A, B, or C, ...

The probability B (n) is calculated as the sum of the probabilitiéseach route
Pi (n) = (B (A)) + (B (B)) + (1 (C)), where R(n) gives rise a recurrence relation that
consent us to distinguish some important featufethe process during its evolution,
such us the average transition time from one dtat@nother or the average time to
return to the starting state or even the time ofma@ence in a state, as well as the
process configuration limit.

When the process is able to achieve any stateeokyistem starting from any other
during its evolution, it satisfies the conditiors érgodicity.

From an analysis of the indicators of the mean st passage for the four interval,
we can see a substantial confirmation of the chearatics of the phenomenon in terms
of probability of switching from one state to anath

Limit vector (15809 shocks) Limit vector (8611 shocks)

S S S S S S S S S S
001 | 067] 013 010 0.07 001| 014 034) 030 021
Limit vector (6781 shocks) Limit vector (4369 shocks)

S S S S S S S S S S
0.01| 0.14| 0.34| 0.30| 0.21 0.046| 0.082| 0.295| 0.344| 0.274
Mean first passage time matrix (15809 shocks) Meanhpassage time matrix (8611 shocks)

S S S S S S S S S S
S, | 13.16| 4.48| 3.94| 6.072| 9.22 S 156.24 1.24| 8.54 13.8f  24.48
S, | 13.12| 4.18| 3.78 6| 9.21 S, 169.27 1.49) 8.01 12.88  23.46
S| 13.19] 4.31] 3.67| 5.83| 9.19 S 175.42 1.76 763 1159  22.86
S, | 13.2| 45 3.8| 5.93| 9.06 S 176.25 2 9.01 9. 20.1p
S 13.2| 4.52| 3.92 6| 9.03 S 176.84 217 10.3] 11.00 14.28
Mean first passage time matrix (6781 shocks) Méeahgassage time matrix (4369 shocks)
S S S S S S S S S S

S | 12.19] 3.32 3.2| 6.63]| 24.48 S 217.38|  10.95 3.6] 471 1.15
S, | 12.64 3.7| 3.05| 6.44| 23.46 S 227.02| 1219 3.21 4.7p 1.04
S | 12.75| 4.22| 3.03| 5.91| 22.86 S 227.84 13.7] 3.33 4.4 0p
S, | 12.82| 4.74| 3.65| 5.05|20.16 S 228.25| 14.88 4.1 3.98 0.18
S| 12.94| 5.08| 4.29| 5.83| 14.28 S 228.72| 15.7§ 4.9 4.67 0.98

For example, if we consider the 15.900 shocks, mweduin 2009, it would take 13
transitional stages to reach the transition statef $owest hazard from any previous



state, 5 steps to reach the statea®d so on, until 9 steps to be in the most dancger
state Swith a magnitude greater then 2.4.

A very different behaviour is observed for the seisswarm of 4369 shocks occurred a
week before and one after 6 April 2009.

During this time interval, shocks belonging to ttate $ occurring very rarely and
reaching the lowest value of the magnitude contateflin the §Sstate took more than
200 stages of transition (shock). On the other hamily one stage of transition is
necessary in order to have two successively shoicke highest magnitude,.S

The number of stages of transition which deterntime mean time to return from
certain level to same level could be defined asditator dangerous due to recursion
of this type of shock.
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