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Abstract: Many studies link exposure to various air pollutants to respiratory
illness, making it important to identify regions where such exposure risks are high.
One way of addressing this problem is by modeling probabilities of exceeding specific
pollution thresholds. In this paper, we consider particulate matter with diameter
less than 10 microns (PM10) in the North-Italian region Piemonte. The problem of
interest is to predict the daily exceedance of 50 micrograms per cubic meter of PM10

based on air pollution data, geographic information, as well as exogenous variables.
We use a two-step procedure involving nonparametric modeling in the time domain,
followed by spatial interpolation. Resampling schemes are employed to evaluate the
uncertainty in these predictions.
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1 Motivation, background, data

It is well known that high levels of pollutants in the ambient air have adverse effects
on human and environmental health. Environmental directives have been issued
in order to account for such potential dangers, setting limit values for various air
pollutants. By estimating the probability to exceed a fixed value of a given pollu-
tant, we can identify areas where the risk to exceed such limit values is high. Past
environmental studies focused on mean behavior revealed that inclusion of exoge-
nous variables may lead to better estimators and predictors of pollutant concentra-
tions. It seems therefore natural to expect that including additional information,
such as meteorological and orographical variables might improve daily predictions
of exceedance probabilities. In this study we extend the methodology introduced
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in Draghicescu and Ignaccolo (2009) by including exogenous variables. Our case
study considers daily PM10 concentrations (in µg/m3) measured from October 2005
to March 2006 by the monitoring network of Piemonte region (Italy) containing 24
sites. As covariates we use daily maximum mixing height (HMIX, in m), daily mean
wind speed (WS, in m/s), daily emission rates of primary aerosols (EMI, in g/s),
altitude (A, in m) and coordinates (UTMX and UTMY, in km). Note that the time-
varying variables are obtained from a nested system of deterministic computer-based
models implemented by the environmental agency ARPA Piemonte. For a complete
description and preliminary analysis of the data we refer to Cameletti et al. (2010).

2 Theoretical Framework

Let D ⊂ R2, and assume that at each location s ∈ D we observe a temporal
process Xs(t) = Gs(t, Zs(t)), where Gs is an unknown transformation, Zs is a stan-
dardized stationary Gaussian process with γs(l) := cov(Zs(t), Zs(t + l)), such that�∞

l=−∞ |γs(l)| <∞. For fixed x0 ∈ R, define the exceedance probability

Px0(t, s) = P (Xs(t) ≥ x0). (1)

Clearly Px0(t, s) takes values in [0, 1] and is non-increasing in x0. The problem of
interest is to predict Px0(t, s

∗) at location s∗ ∈ D where there are no observations
and at any time t, based on observations of the process Xs(t) at n time points and
m spatial locations.

In the first step we use the methodology proposed in Draghicescu and Ignaccolo
(2009). For each site s, we model the temporal risks non-parametrically, by using
the Nadaraya-Watson kernel estimator

P̂x0(t, s) =

�n
i=1 K

�
ti−t
bt

�
1{Xs(ti)≥x0}�n

i=1 K
�

ti−t
bt

� , (2)

where K is a kernel function. The temporal bandwidth bt should not depend on
the threshold x0, in order for the resulting estimator to be non-increasing. In what
follows, the threshold x0 is considered fixed and, to keep notation simple, we write
b instead of bt. In the second step, we use universal kriging with exogenous variables
to predict the exceedance probability field at a location s∗ ∈ D where there are
no observations. Since linear interpolation does not guarantee that the resulting
exceedance probability estimator takes values in the interval [0, 1], we first apply
a 1 : 1 transformation and consider Q̂x0(t, s) = Φ−1(P̂x0(t, s)) which is defined on
R, where Φ(·) is the standard Normal cumulative distribution function. After per-
forming kriging on the transformed field Q̂x0(t, s), we obtain the desired exceedance
probability maps by inversion: P̂x0(t, s) = Φ(Q̂x0(t, s)). For fixed time point t and
location si, we consider the model

Q̂x0(t, si) = βE(t, si) + w(t, si), (3)
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where E(t, si) is a vector of exogenous variables at time t and location si, β is the
vector of “slopes”, and w(t, s) is a zero-mean second-order stationary spatial process
for any s ∈ D ⊂ R2. Time point t is fixed, and the spatial covariance is denoted
by C(t, ||si− sj||) := Cov

�
w(t, si), w(t, sj)

�
. We then use the Matèrn class to model

this covariance function: C(t, ||si − sj||) = σt
2νt−1Γ(νt)

�
2
√

νt||si−sj ||
ρt

�νt

Kνt

�
2
√

νt||si−sj ||
ρt

�
.

The parameter νt > 0 characterizes the smoothness of the process, σt denotes the
variance, and ρt measures how quickly the correlation decays with distance. For each
t, the parameters of the Matèrn covariance are estimated by weighted least squares.
The best linear unbiased predictor of the transformed field at location s0 ∈ D is
obtained via universal kriging (Gaetan and Guyon 2010, p. 44) as

Q̂∗
x0

(t, s0) = β̂E(t, s0) + w∗(t, s0). (4)

Here β̂ is the generalized least squares estimate of the trend coefficients and w∗(t, s0) =�m
i=1 λiŵ(t, si) is the simple kriging predictor, with ŵ(t, si) = Q̂x0(t, si)− β̂E(t, si).

The weights λi, 1 ≤ i ≤ m are completely determined by the covariance function
parameters νt, ρt, and σt. The standard error of Q̂∗

x0
(t, s0) can be also expressed in

terms of the interpolation parameters λi. However, this standard error may not be
completely accurate since the Matèrn parameters are estimated from the same data
thus adding uncertainty, and the error induced by the first step of our procedure
is not considered. For these reasons, we use block bootstrap (Buhlmann, 2002) to
take into account all the uncertainty sources.

3 Results

In this case study on the North Italian region Piemonte we used data at m = 24 sites
and n = 182 days. The PM10 threshold was set to x0 = 50 µg/m3. The computations
were done in R, using the gstat package (Pebesma, 2004). Regarding the bootstrap,
we sampled with replacement k = 13 blocks of length l = 14 from the (n − l + 1)
possible overlapping blocks. We chose l = 14 empirically. A temporal window of two
weeks captures the meteorological and air pollution patterns well. Also, by trying
other values we did not get significantly different results. In future research we plan
to generalize the methodology of Li et al. (2007) to more complex dependencies.
The block sampling was then repeated B times, yielding the B bootstrap samples.
Bootstrap replicated exceedance probability maps were obtained by performing the
first and second steps on each bootstrap sample. In the spatial interpolation step
we used a 56× 72 regular grid covering Piemonte. Based on the distribution of the
B bootstrap replications, we obtained the quantile maps together with the standard
errors of the exceedance probability predictions. In our computations we used B =
500 bootstrap replications. Maps of the 10th, 50th and 90th percentiles of the
exceedance probability bootstrap distribution for March 5, 2006 are showed in Figure
1, identifying increased risks around the metropolitan area of Torino.
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Figure 1: Maps of the bootstrap predicted 50 µg/m3 PM10 exceedance probabilities
on March 5th, 2006: 10th (left), 50th (center) and 90th percentile (right).

4 Discussion

This work is a continuation of Draghicescu and Ignaccolo (2009), where preliminary
exceedance probability maps were obtained based on a two-step procedure. Seasonal
(winter and summer) maps were quite good, however, the daily exceedance proba-
bility maps did not seem to reflect the true air pollution spatial patterns well. By
introducing exogenous variables we were now able to obtain more reasonable spatial
patterns for air pollution risks in Piemonte. In addition, we obtained confidence
regions by estimating uncertainty in our predictions through bootstrap. It seems
though that the standard errors might be too large, possibly because the shuffling in
the block bootstrap did not respect the temporal evolution of the process. Our ongo-
ing research is focused on improving these confidence bands by considering seasonal
time series bootstrap.
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