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Abstract: The high resolution Air Dispersion Modelling Sgst (ADSM)-Urban
represents an advanced model to simulate the koatic and non traffic related
contribution of PMo. The aim of our study is to provide a Bayesiarmiaork to
improve exposure estimates of RMombining observed data from monitoring sites
with ADMS-Urban numerical model output. To illugaour approach we use RPM
daily averaged values for 46 monitoring sites imdlon, over the period 2002-2003 and
output from ADMS-Urban. Different spatio-tempordfustures are investigated and
compared in performance. We demonstrate that addavgriates on environmental
characteristics of sites and meteorological chaoges time improve the precision and
accuracy of the concentration estimates.
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1. Introduction

In the last decade urban air pollution has becomelewvant topic of epidemiological
and environmental research. The concern over it®rad health effects has led to
considerable efforts on the development of numknuadel to estimate exposures for
these complex mixtures. The high resolution Air geision Modelling System
(ADSM)-Urban represents an advanced semi-Gauss@elnwidely used to assess
and simulate the dispersion into the atmosphersonfe important pollutants, such as
particulate mattex 10 um in aerodynamic diameter (RY| released from industrial,
domestic and road traffic sources (Carruthers.&Qf0).

The aim of our study is to provide a Bayesian spemporal framework to improve
exposure estimates of RpMcombining particulate matter data from monitorsites
with ADMS-Urban model output. Several modellingastigies have been suggested in
the Bayesian literature to combine observed datamaodel output (e.g. Fuentes and
Raftery 2005; Sahu et al. 2009; Mc Millan et all@0Berrocal et al. 2010). Our models
are framed in alownscaler perspective (Berrocal et al. 2010), assuming Eidi is
characterised by a spatial and temporal componem; extend this approach
incorporating additional relevant spatial or tengd@ovariates: long-range transport of



PMyq, site type, day of the week and temperature. Tdréopnance of our modelling
approach is assessed using: 1) indexes of modebri 2) a cross-validation
perspective.

2. Materials and M ethods

Data description and study area

The dataset consists of Rjtaily averaged concentrationsg(m®) that were observed
at 46 monitoring sites in London, over the peri@d®2-2003. The monitoring stations
present different environmental conditions, soneeiaisuburban or urban locations (no.
22), and others are located near road (no. 20jgbhhbusy kerb site (no. 4). The mean
distance between the sites is 17813.3 meters (raBg@4-45297.3 meters). The
proportion of missing data is 8.8%, varying acrtss monitoring sites from 0.7% to
28.4%. The missing values are assumed to be misginggndom and being in a
Bayesian perspective, they are imputed througlpdiséerior predictive distribution.

The second main source of information is the medediutput for local traffic and non
traffic from ADMS-Urban, based on grid cells. Itsha limit of 1500 on the number of
source road links that can be modelled; monitositgs were therefore buffered to a
distance of 300 metres, and all road sources withah range selected for modelling.
Emissions from other sources for each 1 km gritlwete also modelled.

To take into account the contribute of a long-racg®ponent of Plyh, we included the
monitoring station at the rural site of Harwell 0~&m west of London). Harwell
represents a good indicator for long-range trarispioair masses: it is surrounded by
predominantly agricultural land, and the neareatlris located at 140 metres from the
station. In addition, we included in the analydise type of site (sub-urban or urban,
road and kerb sites), the day of the week (Mond&aly, Saturday and Sunday or
Holiday) and the temperature at the Heathrow metegical station, measured at 1.25
m above ground level (with linear and quadratieeti.

We performed a preliminary exploratory analysis chhishowed spatio-temporal
variation in the concentration levels of PMFigure 1 shows the mean concentration
levels: a) by site (quartiles of Rilvalues distribution) and b) by day for each month
(year 2002). The analysis of autocorrelation cogedm of time series (not shown)
suggests serial dependencies.
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Figure 1: PM;o concentrationsa) Plot of mean values by site (U=Urban/Suburban;
R=Road; K=Kerb); b) Box plot of daily mean valugsrbonth (year 2002)



Bayesian Hierarchical Models

Let Y, denote the response variable (log-transéal PM, data) at locatiore  and tinte
The response is modelled as a space-time procéssdalby Y, ~ N(y,,0?).

We consider the following possible models fops

Model 1- u, =a+ g rural,

Basic model. Approximately half of the RMcan be considered secondary or natural,
being made up of PM formed from gaseous precurgorea salt, thus this analysis
includes only the long-range component @Rlbserved at rural site of Harwell) that is
assumed to follow a second-order random walk natiestary in time model.

Model 2 - py =a+ B rural, + B, .adms,

Multivariate model that includes, as well as thekggound component, the output from
numerical ADMS-Urban model and its coefficients agssumed to vary spatially
through a Bayesian Kriging. We specified a Unifopnior distribution for the
correlation decay parameter with range chosen basedrior beliefs about the
maximum and minimum correlation at the largest amdhllest distances of the M
values. Prior range for correlation at minimum a@ste was between 0.10 and 0.99;
prior range for correlation at maximum distance Wwesveen 0 and 0.30.

Model 3- 4, =a +B,rural, +f,.adms, +SBype, + B,dow + Bitemp, + Stemp
Multivariate model that incorporates spatial andperal dimension of the data, as well
as the spatio-temporal covariates (site type, dalyeoweek, temperature).

We assumed a separate variance for eaclv&iteth awnoderately informative inverted
gamma prior. We adopted vague normal priors foritiercept coefficientr and the
regression coefficientsS;, B,, Bs, Bs-

To validate our models, we randomly partitioned thenitoring network in four
subsets. For each subset, a single subsamplaisegtas the validation data for testing
the model, and the remaining subsamples are usedi@ag data.

The deviance information criterion (DIC; Spiegetbalet al. 2002), is used to analyse
the model fit. In order to compare the performantedhe models, we adopted the
empirical coverage of 95% credible intervals (95%@ie average length of 95%ClI,
the mean square error (MSE), the adjustédril the mean fractional bias (MFB).

We present the results obtained from one subset; #ne consistent for the other
subsets.

3. Results

The model comparisons via DIC show large differenamong the models: the third
one, which considers the spatio-temporal struchsrevell as the additional covariates,
had a smaller DIC (-3506.7) than the first two (DKSpectively equal to 19388.6 and
15574.1). Cross-validation summary statistics amnved in Table 1.

Coverage Average Adjusted
Model | "lo length woncl | MSE R MFB
1 95.42 43.15 116.89 0.47 0.10
2 95.66 43.37 106.86 0.47 0.12
3 96.67 32.09 53.81 0.73 0.05

Table 1. Summary statistics for cross-validation predictio




Table 2 presents the posterior distribution of m@adeameters for Model 3. The effect
of the monitoring site type shows that RMevel is significantly higher for road and
kerb sites than for suburban/urban sites. LevelPdfo are lower on Saturdays
(significant) while Sunday or Holidays are not sigantly different from weekdays.
High temperatures are associated with high conagor of PMo. Finally, the
relationship between observed values and modellgpub from ADMS-Urban shows
spatial variation (Figure 2).

The posterior median of daily temporal effect (jpaeterf:;) associated with long-range
component (not shown) presents a range of valoes {1.36 to 1.39 (95%Cl).

Parameters Median | 25% | 97.5%
o 2.787 | 2723 2.837 | _| S
B, (Road site) 0150 | 0.143] 0.158 | | ﬂiwﬂl Tl hfﬂHHH
B, (Kerb site) 0.220 | 0.205| 0.233 | § 1 :
B, (Saturday) -0.219 | -0.271] -0.172|
p,(Sunday or Holiday) | 0.070 | -0.006 0.147 |
B (Temperature) 0.122 | 0.112| 0.147 .
B, (Temperaturg 0.021 | 0.019| 0.026
Table 2: Posterior distribution of model Figure 2: Posterior distribution
parameters (on log-scale) of B, parameter (on log-scale)

4. Concluding remarks

Our Bayesian approach provides a natural way tobamendata from different sources
taking into account their uncertainties. We fouhdttadding “spatial” covariates (e.g.
site type) and “temporal” ones (day of the weekpderature) increases the precision
and accuracy of the estimated values ofi M
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