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Abstract: The high resolution Air Dispersion Modelling System (ADSM)-Urban 
represents an advanced model to simulate the local traffic and non traffic related 
contribution of PM10. The aim of our study is to provide a Bayesian framework to 
improve exposure estimates of PM10 combining observed data from monitoring sites 
with ADMS-Urban numerical model output. To illustrate our approach we use PM10 
daily averaged values for 46 monitoring sites in London, over the period 2002-2003 and 
output from ADMS-Urban. Different spatio-temporal structures are investigated and 
compared in performance. We demonstrate that adding covariates on environmental 
characteristics of sites and meteorological changes over time improve the precision and 
accuracy of the concentration estimates. 
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1. Introduction 
 
In the last decade urban air pollution has become a relevant topic of epidemiological 
and environmental research. The concern over its adverse health effects has led to 
considerable efforts on the development of numerical model to estimate exposures for 
these complex mixtures. The high resolution Air Dispersion Modelling System 
(ADSM)-Urban represents an advanced semi-Gaussian model, widely used to assess 
and simulate the dispersion into the atmosphere of some important pollutants, such as 
particulate matter ≤ 10 µm in aerodynamic diameter (PM10), released from industrial, 
domestic and road traffic sources (Carruthers et al. 2000). 
The aim of our study is to provide a Bayesian spatio-temporal framework to improve 
exposure estimates of PM10 combining particulate matter data from monitoring sites 
with ADMS-Urban model output. Several modelling strategies have been suggested in 
the Bayesian literature to combine observed data and model output (e.g. Fuentes and 
Raftery 2005; Sahu et al. 2009; Mc Millan et al. 2010; Berrocal et al. 2010). Our models 
are framed in a downscaler perspective (Berrocal et al. 2010), assuming that PM10 is 
characterised by a spatial and temporal component; we extend this approach 
incorporating additional relevant spatial or temporal covariates: long-range transport of 
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PM10, site type, day of the week and temperature. The performance of our modelling 
approach is assessed using: 1) indexes of model fit and 2) a cross-validation 
perspective. 
 
 
2. Materials and Methods 
 
Data description and study area  
The dataset consists of PM10 daily averaged concentrations (µg/m3) that were observed 
at 46 monitoring sites in London, over the period 2002-2003. The monitoring stations 
present different environmental conditions, some are in suburban or urban locations (no. 
22), and others are located near road (no. 20) or highly busy kerb site (no. 4). The mean 
distance between the sites is 17813.3 meters (range: 358.4-45297.3 meters). The 
proportion of missing data is 8.8%, varying across the monitoring sites from 0.7% to 
28.4%. The missing values are assumed to be missing at random and being in a 
Bayesian perspective, they are imputed through the posterior predictive distribution. 
The second main source of information is the modelled output for local traffic and non 
traffic from ADMS-Urban, based on grid cells. It has a limit of 1500 on the number of 
source road links that can be modelled; monitoring sites were therefore buffered to a 
distance of 300 metres, and all road sources within that range selected for modelling. 
Emissions from other sources for each 1 km grid cell were also modelled. 
To take into account the contribute of a long-range component of PM10, we included the 
monitoring station at the rural site of Harwell (~60 Km west of London). Harwell 
represents a good indicator for long-range transport of air masses: it is surrounded by 
predominantly agricultural land, and the nearest road is located at 140 metres from the 
station. In addition, we included in the analysis: the type of site (sub-urban or urban, 
road and kerb sites), the day of the week (Monday-Friday, Saturday and Sunday or 
Holiday) and the temperature at the Heathrow meteorological station, measured at 1.25 
m above ground level (with linear and quadratic effect).  
We performed a preliminary exploratory analysis which showed spatio-temporal 
variation in the concentration levels of PM10. Figure 1 shows the mean concentration 
levels: a) by site (quartiles of PM10 values distribution) and b) by day for each month 
(year 2002). The analysis of autocorrelation correlogram of time series (not shown) 
suggests serial dependencies. 
 
a b 

 

 

 
 

Figure 1: PM10 concentrations: a) Plot of mean values by site (U=Urban/Suburban; 
R=Road; K=Kerb); b) Box plot of daily mean values by month (year 2002) 
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Bayesian Hierarchical Models 
Let       denote the response variable (log-transformed PM10 data) at location     and time   
The response is modelled as a space-time process defined by                        
We consider the following possible models for      
Model 1 -  
Basic model. Approximately half of the PM10 can be considered secondary or natural, 
being made up of PM formed from gaseous precursors or sea salt, thus this analysis 
includes only the long-range component (PM10 observed at rural site of Harwell) that is 
assumed to follow a second-order random walk non-stationary in time model. 
Model 2 -  
Multivariate model that includes, as well as the background component, the output from 
numerical ADMS-Urban model and its coefficients are assumed to vary spatially 
through a Bayesian Kriging. We specified a Uniform prior distribution for the 
correlation decay parameter with range chosen based on prior beliefs about the 
maximum and minimum correlation at the largest and smallest distances of the PM10 
values. Prior range for correlation at minimum distance was between 0.10 and 0.99; 
prior range for correlation at maximum distance was between 0 and 0.30. 
Model 3 -  
Multivariate model that incorporates spatial and temporal dimension of the data, as well 
as the spatio-temporal covariates (site type, day of the week, temperature).   
We assumed a separate variance for each site     with a moderately informative inverted 
gamma prior. We adopted vague normal priors for the intercept coefficient α and the 
regression coefficients  
To validate our models, we randomly partitioned the monitoring network in four 
subsets. For each subset, a single subsample is retained as the validation data for testing 
the model, and the remaining subsamples are used as training data.  
The deviance information criterion (DIC; Spiegelhalter et al. 2002), is used to analyse 
the model fit. In order to compare the performance of the models, we adopted the 
empirical coverage of 95% credible intervals (95%CI), the average length of 95%CI, 
the mean square error (MSE), the adjusted R2 and the mean fractional bias (MFB).  
We present the results obtained from one subset; they are consistent for the other 
subsets. 

 
 

3. Results 
 
The model comparisons via DIC show large differences among the models: the third 
one, which considers the spatio-temporal structure as well as the additional covariates, 
had a smaller DIC (-3506.7) than the first two (DIC respectively equal to 19388.6 and 
15574.1). Cross-validation summary statistics are showed in Table 1. 
 

Model Coverage 
95%CI 

Average 
length 95%CI 

MSE Adjusted 
R2 

MFB 

1 95.42 43.15 116.89 0.47 0.10 
2 95.66 43.37 106.86 0.47 0.12 
3 96.67 32.09 53.81 0.73 0.05 

 
Table 1: Summary statistics for cross-validation prediction 
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Table 2 presents the posterior distribution of model parameters for Model 3. The effect 
of the monitoring site type shows that PM10 level is significantly higher for road and 
kerb sites than for suburban/urban sites. Level of PM10 are lower on Saturdays 
(significant) while Sunday or Holidays are not significantly different from weekdays. 
High temperatures are associated with high concentration of PM10. Finally, the 
relationship between observed values and modelled output from ADMS-Urban shows 
spatial variation (Figure 2).  
The posterior median of daily temporal effect (parameter β1t) associated with long-range 
component (not shown) presents a range of values from -1.36 to 1.39 (95%CI).  
 

Parameters  Median  2.5%  97.5%  
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α  2.787  2.723  2.837  
β

3 
(Road site)  0.150  0.143  0.158  

β
3 

(Kerb site) 0.220  0.205  0.233  
β

4 
(Saturday)  -0.219  -0.271  -0.172  

β
4 

(Sunday or Holiday)  0.070  -0.006  0.147  
β

5 
(Temperature)  0.122  0.112  0.147  

β
6 

(Temperature
2
)  0.021  0.019  0.026  

Table 2: Posterior distribution of model 
parameters (on log-scale)  

Figure 2: Posterior distribution 
of β2 parameter (on log-scale) 

 
 
4. Concluding remarks 
 
Our Bayesian approach provides a natural way to combine data from different sources 
taking into account their uncertainties. We found that adding “spatial” covariates (e.g. 
site type) and “temporal” ones (day of the week, temperature) increases the precision 
and accuracy of the estimated values of PM10. 
 
 
References 
 
Berrocal V. J., Gelfand A. E., Holland D. M. (2009) A Spatio-Temporal Downscaler for Output 

from Numerical Models, Journal of Agricultural, Biological, and Environmental Statistics, 
15, 176-197. 

Carruthers D.J., Edmunds H.A., Lester A.E., McHugh C.A., Singles R.J. (2000) Use and 
validation of ADMS-Urban in contrasting urban and industrial locations, International 
Journal of Environment and Pollution, 14 (1–6), 364–374. 

Fuentes M., Raftery, A. E. (2005) Model evaluation and spatial interpolation by Bayesian 
combination of observations with outputs from numerical models, Biometrics, 61 36–45. 

McMillan N., Holland D. M., Morara M., Feng J. (2010) Combining Numerical Model Output 
and Particulate Data Using Bayesian Space-Time Modeling, Environmetrics, 21, 48-65. 

Sahu S. K., Yip S., Holland D. M. (2009) Improved space–time forecasting of next day ozone 
concentrations in the eastern US, Atmospheric Environment, 43, 494-501. 

Spiegelhalter D., Best N., Carlin B., van der Linde A. (2002) Bayesian measures of model 
complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-639. 


