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Abstract: The possibility of applying mathematical tools of point—process
statistics to the ECMWEF Ensemble Prediction System (EPS) is exploited in this
work, in order to provide a different way to reduce ensemble information. The first
two empirical orthogonal functions enable to represent 5-day ensemble forecasts as
point processes in a plane. These planar representations are hence compared to a
sample of Gaussian random point patterns, obtained by a Montecarlo method. The
estimations of the nearest—neighbour distribution function and of the reduced second
order momentum function for point processes relative to the ensemble predictions
are in good agreement with the corresponding estimations of Gaussian random point
processes.
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1 Introduction

Ensemble predictions appear to be the only feasible method to predict the evolution
of the atmospheric probability distribution function beyond the range in which error
growth can be prescribed by linearized dynamics (Molteni et al., 1996).

However, the large amount of information contained in the ECMWEF Ensemble
Prediction System (EPS) can be hardly managed in the whole, and two different
strategies, clustering and tubing, are adopted for reducing the 51 EPS members to
few alternative scenarios. For clustering, “similar” EPS forecasts are collected in
clusters, whose probabilities of occurrence are provided by the cluster sizes (Molteni
et al., 2001). As concerns the tubing technique, this consists in an averaging of
all ensemble members close to the ensemble mean, while the excluded members are
grouped together in a number of tubes. Each tube is represented by its most extreme
member belonging to it.

One of the principal shortcomings of the clustering technique is the empirical
distribution of the ensemble members. Although tubing allows a better visualiza-
tion of the most different scenarios in the ensemble than clustering, tubes do not
provide probabilities of occurrence. In order to provide a different way to condense
information, which tries to overcome these shortcomings of clustering and tubing
techniques, it is here exploited the possibility to represent ensemble forecasts as a
finite set of random points distributed in a plane. In particular, it is tested the



hypothesis according to which these ensemble point processes can be treated statis-
tically equivalent to Gaussian random point processes.

2 Materials and Methods

2.1 The Principal Component Analysis

The Principal Component Analysis (PCA) enables to transform a data set, charac-
terized by a large number of variables in a new one, where the number of variables
is highly reduced. The new variables are calculated as the eigenvectors of the co-
variance matrix and they are orthogonal among them (Preisendorfer, 1988).

For each day of the whole meteorological winter season 2006-2007, starting from
the 1st December 2006 to the 28th February 2007, it has been computed the co-
variance matrix of the 51 ECMWEF EPS 5-day forecasts at 12 UTC of the 500 hPa
geopotential height. The geopotential height is a meteorological field, here defined
over a regular grid at 1 degree of resolution and covering the European area (33N-—
74N; 27W-45E). Then, for each one of the 51 ensemble members the PCA technique
has been applied, and the first two normalized principal components have been con-
sidered. The explained variance by these first two principal components ranges from
46% to 69% of the total variance.

Eventually, in order to represent the ensemble forecasts as a a random point—
process (hereafter called EPS point—process), for each one of the 90 winter days the
51 ensemble members are represented as single points lying over the plane formed
by the first two PCA eigenvectors, whose coordinates are provided by the first two
principal components of the ECMWEF EPS members.

2.2 The point—process statistics

The Gaussian random point—process is here taken as reference model. In particular,
for each winter day 199 bidimensional Gaussian random point—processes with 51
points, zero mean and variance equal to 1, have been simulated by a Montecarlo
method. Hence, for the corresponding EPS point—process and for these 199 simula-
tions the nearest—neighbour distribution function D(r) has been defined computing
the distance from the analysis point (the ”observed” 500 hPa geopotential height
reduced to the first two principal components), chosen as the arbitrary event, to
its nearest event belonging to each one of the 200 random patterns. Analogously,
the derivative L of the reduced second order momentum, K function, is computed
counting for each point pattern the number of events within a distance r from the
analysis point.

The nearest—neighbour distribution function D(r) describes the probability that
distance from a randomly chosen event to its nearest event is less than or equal to
r > 0. This function can be heuristically estimated from the observed pattern:
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where d; denotes the distance of the event from the nearest boundary of the
closed set A and r; 4 is the distance from the nearest event in A (Cressie, 1991).

The K function uses information in the pattern over a wide range of scales than
the nearest—neighbour distribution function. Its definition is related to the number
of extra events within distance r from an arbitrary event. Estimating of K from
an observed pattern in a bounded A C R? is complicated by edge effects. Here the
Ripley’s edge—corrected estimator is considered (Cressie, 1991):
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The estimator K is approximately unbiased provided that the n events are ap-
proximately independent. Estimates of the derivative of the K function, L(r), are
computed by the formula (Stoyan et al., 1987):
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Figure 1: EPS against Gaussian Point-Processes: nearest-neighbour distribution
function Q—Q plot (left panel), and the derivative of the K function (right panel).

3 Results and Concluding remarks

The possibility of applying mathematical tools of point—process statistics to the
ECMWEF Ensemble Prediction System has been exploited in this work, in order to



look for a different way to condense the large amount of ensemble information. It has
been proved the first two empirical orthogonal functions enable to represent about,
or more, 50% of the ensemble spread. Therefore the ensemble forecasts have been
represented as point processes in the plane of the first two PCA eigenvectors and
compared to Gaussian random point processes, obtained by a Montecarlo method
and considered as reference models.

In figure 1, it is reported on the left side the Q-Q plot, where the quantiles of the
median of the 199 nearest-neighbour functions relative to 90 Gaussian random point
processes are in the abscise axis. In the ordinate axis there are the quantiles of the
nearest-neighbour function relative to the 90 ensemble point processes (continuous
red line), the median (dashed blue line), the minimum and maximum (dashed black
lines) of the 199 nearest—neighbour functions. On the right side, it is instead reported
the derivative of the K function relative to the 90 ensemble point processes minus the
median of the 199 simulations (continuous red lines). Analogously, the confidence
interval is represented by the minimum and maximum of the 199 simulations, again
subtracted by the median (dashed black lines).

The good agreement between ensemble and Gaussian random point processes,
in terms of the nearest—neighbour distribution function and of the reduced second
order momentum function estimations, coming out of the present work, could render
plausible to consider the probability distribution function of ensemble members as
asymptotically normal.
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