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Abstract: Over the past several decades, there have been significant reductions
in rainfall across southwest Western Australia. In the present work, the spatial and
temporal structure of these reductions are investigated using generalized additive
models. This involves smoothing over both space and time, to allow spatio-temporal
interactions, as well as allowing for spatial correlation to ensure that standard errors
are constructed appropriately for inference. The proposed method is computation-
ally convenient as models are fitted as though different spatial locations are indepen-
dent, and inference is subsequently adjusted for inter-site dependence. The results
quantify precisely the spatially-varying nature of the decreasing rainfall trends.
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1 Introduction

Several decades of below average rainfall combined with a noticeable shift toward
drier winter conditions, has focused attention on water resource availability and
agricultural management in southwest Western Australia (SWWA) (Bates et al.,
2008). The aim of this analysis is to characterize spatio-temporal trends in rain-
fall intensity and occurrence across SWWA. This is achieved by fitting generalized
additive models (GAM) to data from selected locations in the study area. A key
issue here is to take due account of potential spatial and temporal correlations in
the data. Our approach to this is to treat the data as independent during fitting
and subsequently to adjust standard errors for the dependence. This provides a
computationally convenient means of addressing the problem.
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Figure 1: Map of SWWA indicating the stations used in the analysis

2 Materials and Methods

Daily rainfall readings in millimetres, from 60 weather stations (see Figure 1) for the
period 1940-2010 have been used, although not all sites were operational throughout
this period and some had missing observations. We consider the data for the winter
months only, from May to July, which accounts for most of the region’s annual
rainfall. The daily rainfall data is aggregated in two ways, the proportion of wet
days and total rainfall on wet days, for each site and year.

Prior to fitting the model, the daily rainfall data were subject to data quality
checks. Issues such as inconsistencies in the data related to observer practice across
the different sites, differences in the resolution of the observation recordings, and
thresholding the data prior to analysis to ensure consistency have all been considered.
These problems are typical in the rainfall modelling literature, the interested reader
is referred to the results discussed in Yang et al. (2006) and Chandler et al. (2011).
We shall not go into these details here.

Rainfall, particularly at the daily time scale, typically displays some form of
temporal dependence, however at annual timescales they are relatively independent.
Here, the winter rainfall is aggregated at an annual level, it seems reasonable to
proceed in the first instance as though observations are independent between years.
Since interest lies in characterizing temporal trends which may have a complex
structure and may be spatially-varying, we adopt a nonparametric approach and
represent the spatio-temporal trend surface as a smooth three-dimensional function
of space and time:

Elyi] = f(longitude;, latitude;, time,),



where y;; is the aggregated annual winter rainfall at location i = 1,...,60 and year
t=1,...,71 and is assumed to be normally distributed. To account for different
number of observations per year at each station, when fitting our model each ob-
servation is weighted by the number of contributing daily values. Our method uses
the spline framework for nonparametric function estimation. To model smooths of
several variables, when the variables are on different scales (the units of time (years)
and space (km) are different), tensor product scale invariant smooths are required.
Separate smoothing penalties are calculated for the three covariates so that the de-
gree of smoothness is not necessarily the same for each covariate. All statistical
analyses were done using the mgev package (Wood, 2006) in the R software (R
Development Core Team, 2010).

A key issue with this study is the spatially correlated nature of the data. Suppos-
ing that some assumption of spatial stationarity holds, the residuals from the fitted
model were used to estimate the spatial correlation parameters obtained from the
chosen variogram or correlation model, for the construction of the spatial correla-
tion matrix. Specification of a covariance structure based on the spatial correlation
of residuals ensures that the results are adjusted for spatial correlation. Because
the focus of our approach is on estimating the mean function, not the correlation
function, a very precise estimate of the latter is not required, and simple variogram
models like the exponential will often suffice. The fitted function can be written as a
linear smoother, ¥ = Sy where S is the smoothing matrix. For spatially correlated
observations, the true variance matrix is not diagonal. The model based variance
matrix, V (y), is replaced by the robust variance matrix, Var(y) = AY?RAY? where
A is a diagonal matrix, with the variance function V(u), along diagonal elements
and R is the spatial correlation matrix. Once the variance-covariance matrix is cal-
culated, standard errors are then constructed in the usual way, as the square-roots
of the elements on the main diagonal.

3 Results

After addressing spatial correlations, new 95% uncertainty bands were obtained
which are now slightly wider than the unadjusted ones (see Figure 2). Interestingly,
the width of the bands for the selected four sites differ significantly. This could
be due the sparseness of data points at particular locations within SWWA which
makes it difficult to characterize precipitation trends reliably. These declines were
most pronounced in north and east of the study region, less so along the south coast.

4 Concluding remarks

To sum up, the used GAM framework enables us to appropriately incorporate all
relevant covariates of space and time. In addition, accounting for the spatial depen-
dence structure by assuming no correlation when fitting models and then adjusting
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Figure 2: Fitted smooth curves (solid line) with unadjusted (dotted line) and ad-
justed (dashed line) 95% uncertainty bands for four selected sites in the SWWA
region

the standard errors of estimates enable valid inferences that is robust. The results
quantify precisely the spatially-varying nature of the decreasing rainfall trends.
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