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Abstract: Nowadays, environmental sensor networks produce a large amount
of streaming time series whose storage, manipulation and indexing is impractical.
In this work, we propose a new strategy for summarizing and describing this kind
of data based on functional data representation. It discovers trends and potential
anomalies by using an informative exploratory tool: the functional boxplot. Func-
tional boxplots are introduced for conveying location and variability information. In
addition, for detecting and illustrating variation a distance among functional box-
plots is used.
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1 Introduction

In a wide range of environmental applications, networks of sensors allow to record
huge amounts of temporally ordered data. Often, the sampling frequency is very high
and the monitored phenomenon is highly evolving. This involves that traditional
temporal data mining methods, based on computationally intensive algorithms and
requiring the storing of the whole dataset, become ineffective. Especially there is a
remarkable delay between the recording of the data and the analysis results which
can impact on decisional processes.

In order to deal with this issue, it is necessary to move from the traditional
temporal data mining to the data mining of streaming time series which focuses on
processing the incoming data on-line without requiring their storage.

Usually, algorithms for data streams mining update, in incremental and on-
line way, the knowledge about data by means of synopses. These provide suitable
summaries which are substantially smaller than their base dataset and allow to
discard the data once they have been processed. In literature, several summarization
techniques for streaming time series have been proposed (a wide review is available
in (Mitsa T., 2010)). Some of these transform a streaming time series into a new
one of reduced dimensionality, others use sampling, sketches, histograms.

In this paper we introduce an intuitive tool for visualizing and summarizing
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the behavior of multiple streaming time series, the Functional Box Plot (FBP).
Originally defined for functional data, it is considered as a variable and used as
synthesis of batches of the incoming multiple streaming time series. The monitoring
of the evolution of the data has been performed through the comparison of the FBP
variables using an appropriate distance measure, rather than analyzing the incoming
recordings.

2 The three steps strategy

Let yi(t), i = 1, . . . , n, t ∈ [1,∞] a set of streaming time series made by real valued
ordered observations of a variable Y (t) in n sites, on a discrete time grid.

Our aim is to summarize and describe their changes in a streaming fashion by
means of a comparison of functional boxplot variables. Functional boxplots are
an informative explorative tool for functional data. We use them as variables of
synthesis for the set of n streaming time series splitted in non overlapping windows
and opportunely approximated by functional data. With this scope a three steps
strategy is proposed.

The first step consists in splitting the incoming parallel streaming time series
into a set of non overlapping windows Wj, j = 1, . . . ,∞, that are compact subsets
of T having size w ∈ < and such that Wj

⋂
Wj+1 = ∅. The defined windows frame

for each yi(t) a subset y
wj

i (t) t ∈ Wj of ordered values of yi(t), called subsequence.
Following the FDA approach, we consider each subsequence yi

wj(t) of yi(t) the
raw data which includes noise information (Ramsay, J.E., Silverman, B.W., 2005).
Then we determinate a true functional form f

wj

i (t), we call functional subsequence,
which describes the trend of the flowing data, by using smoothing spline functions.
For each Wj we have that all the subsequences y

wj

i (t) i = 1, . . . , n follow the model:

y
wj

i (t) = f
wj

i (t) + ε
wj

i (t), t ∈ Wj i = 1, . . . , n (1)

where ε
wj

i (t) are residuals with independent zero mean and f
wj

i (·) is the mean func-
tion which summarizes the main structure of y

wj

i (t).
In a second step since we need to have a summary of the batched streaming

time series, we compute functional boxplot variables for each batch. Functional
boxplot(box-and-whisker diagram or plot) is an informative graphically tool for de-
picting functional data through their five-functions summaries. We consider them
as a kind of quantitative variables in the functional setting.

In functional data analysis two different definition of boxplot exist. A first one
makes use of the first two robust principal component scores, Tukey data depth and
highest density regions (Hyndman R.J., Shang, H.L., 2010); a second one is based on
center outward ordering induced by band depth for functional data (Sun Y., Genton
G., 2011). We makes use of the second boxplot definition, that is a natural extension
to the classical boxplot. It is defined starting by a concept which allows to order
curves from center outward: the band depth BD (Lopéz-Pintado and Romo 2009).
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Let f
wj

i (t), i = 1, . . . n be the collection of functional subsequences in a window Wj,
G(f

wj

i ) =
{

(t, f
wj

i (t)) : t ∈ Wj

}
be the graph of the function f

wj

i (t), and

B
(
f
wj

i1
, . . . , f

wj

ik

)
= {
(
t, g

wj

i (t)
)
|t ∈ Wj, min

r=1,...,k
f
wj

ir (t) ≤ g
wj

i (t) ≤ max
r=1,...,k

f
wj

ir (t)} (2)

be the band in R2 delimited by the k different curves
(
f
wj

i1
, f

wj

i2
, . . . , f

wj

ik

)
, obtained

by computing the minimum and the maximum values for all t. Let BD
(m)
n be the

portion of bands obtained by m = 1, . . . ,M different curves containing the whole
graph of f

wj

i (t) expressed by

BD(m)
n (f

wj

i ) =

(
n

m

)−1 ∑
1≤i1≤i2≤...≤im≤n

I
{
G
(
f
wj

i

)
⊂ B

(
f
wj

i1
, f

wj

i2
, . . . , f

wj

im

)}
m ≥ 2

(3)
where I {·} denote the indicator function.

Thus the band depth BDn,M(f
wj

i (t))of any of these function f
wj

i (t) is defined as

BDn,M(f
wj

i ) =
M∑

m=2

BD(m)
n

(
f
wj

i (t)
)

M ≥ 2 (4)

Especially let f
wj

[i] (t) denote the sample of functional subsequence associated to

the ith largest band depth value, the set f
wj

[1] (t) . . . , f
wj

[n] (t) are order statistics, with

f
wj

[1] (t) the median curve, that is the most central curve (the deepest), and f
wj

[n] (t) is
the most outlying curve. Moreover the central region of the boxplot is defined as

C0.5 =

{
(t, fwj(t)) : min

r=1,...,[n/2]
f
wj

[r] (t) ≤ fwj(t) ≤ max
r=1,...,[n/2]

f
wj

[r] (t)

}
(5)

where [n/2] is the small integer not less than n/2. The border of the 50% central
region is defined as the envelope representing the box of the classical boxplot.

Based on the center outwards ordering induced by band depth for functional
data, the descriptive statistics of such functional boxplots FBP are: the upper
f
wj

[u] (t) and lower f
wj

[l] (t) curves (boundaries) of the central region, the median curve

f
wj

[1] (t) and the non-outlying minimum f
wj

[bmin]
(t) and maximum boundaries f

wj

[bmax]
(t).

For each window we have a FBP variable that is considered as a variable com-
pound of five sub functions with the following structure:{

f
wj

[u] (t), f
wj

[l] (t), f
wj

[1] (t), f
wj

[bmin]
(t), f

wj

[bmax]
(t)
}

(6)

The third and latest step, consists in monitoring the evolution of the multiple data
streams by comparing functional boxplot variables. With this aim we introduce
a distance measure between a pair of FBP variables. It is a Manhattan distance
which extends the distance for classical boxplot introduced in Arroio J., Mat C.,
Roque A. (2006) to functional boxplot variables. It is computed by considering that

3



each couple of correspondent functions is compared on the same time interval W by
means of a transformation of the functions domain. Thus, the Manhattan distance
between a pair of functional boxplot FBP1, FBP2 opportunely shifted is:

d(FBP1, FBP2) =

∣∣∣∣∫
t∈W

(f
′w1

[u] (t)− f ′w2

[u] (t))dt

∣∣∣∣+

∣∣∣∣∫
t∈W

(f
′w1

[l] (t)− f ′w2

[l] (t))dt

∣∣∣∣+

+

∣∣∣∣∫
t∈W

(f
′w1

[1] (t)− f ′w2

[1] (t)dt)

∣∣∣∣+

∣∣∣∣∫
t∈W

(f
′w1

[bmin]
(t)− f ′w2

[bmin]
(t))dt

∣∣∣∣+

+

∣∣∣∣∫
t∈W

(f
′w1

[bmax]
(t)− f ′w2

[bmax]
(t))dt

∣∣∣∣
where f

′wj

[u] (t), f
′wj

[l] (t), f
′wj

[1] (t), f
′wj

[bmin]
(t), f

′wj

[bmax]
(t) are the descriptive functions of the

shifted FBP. The synthesis obtained by the FBP allows to have a description of
batched streaming time series that can be compared on different time interval, thus
this distance can be applied also on different and non consecutive time windows.

3 Concluding remarks

In this paper we have introduced a new strategy for summarizing multiple stream-
ing time series and for monitoring their evolution. Unlike approaches existent in
streaming time series literature, we have introduced a tool able also to provide an
intuitive graphic summarization of data.

We have performed several tests on climate data in order to assess the effective-
ness of the method. Preliminary results are encouraging.

References

Arroyo J., Mat C., Roque A. (2006) Hierarchical clustering for boxplot variables,
Studies in Classification, Data Analysis, and Knowledge Organization, Part
II, 59-66.

Hyndman R.J., Shang, H.L. (2010) Rainbow plots, bagplots and boxplots for func-
tional data, Journal of Computational and Graphical Statistics, 19(1), 29-45.

Lopez-Pintado S., Romo, J. (2009). On the Concept of Depth for Functional Data.
Journal of the American Statistical Association, 104, 718-734.

Mitsa T. (2010) Temporal Data Mining. Data Mining and Knowledge Discovery
Series. Chapman & Hall/CRC

Ramsay, J.E., Silverman, B.W. (2005) Functional Data Analysis (Second ed.).Springer.

Sun Y., Genton M.G. (2011) Functional boxplots. Journal of Computational and
Graphical Statistics. To appear.

4


