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1 Introduction
Statistical downscaling models (SDMs) seek to bridge the gap between large-scale vari-
ables simulated from General Circulation Models (GCMs) and small scale variables with
high spatial variability such as precipitation. In this paper, we propose to model the
distribution of precipitation conditional on large-scale atmospheric information with con-
ditional mixture models (CMMs). CMMs are mixture models whose parameters are com-
puted by a neural network based on large-scale atmospheric predictors. We consider three
types of CMMs which differ in the type of continuous densities (Gaussian, Log-Normal
or hybrid Pareto) they use as mixture components. We evaluate the three CMMs against
the two-component mixture from Williams [3] at downscaling precipitation at three rain
gauge stations in the French mediterranean area.

2 Materials and Methods
CMMs combine a discrete component for the ”no rain” events and a continuous component
for rainfall intensity and can be written as :

φ(y;ψ) = (1 − α)δ(y)︸ ︷︷ ︸
no rain

+αφ0(y;ψ0)︸ ︷︷ ︸
rain>0

, (1)

where α is the rain probability, δ(·) is the Dirac function, φ0(·;ψ0) is the density for
rainfall intensity with parameter ψ0 and ψ = (α, ψ0). In [3], φ0(·;ψ0) is the Gamma
density. We propose to use mixtures instead. We can take into account the dependence
of the distribution of precipitation on large-scale atmospheric variables by considering
the parameters of the mixture as functions of these variables. A convenient way to im-
plement these functions is by means of a neural network (NN) [1]. The NN parameters
are calibrated by minimizing the negative log-likelihood of the conditional mixture over
the training set. We selected the hyper-parameters (the number of hidden units and
the number of components) via the cross-validation method, see [1]. We evaluate three
CMMs which differ in the type of mixture components and compare them with the two-
component mixture from Williams [3]. We took Gaussian, Log-Normal or hybrid Pareto
([2]) as mixture components.

The local-scale data are precipitation from three rain gauge stations, Orange, Sète and
Le Massegros which are located in the Cévennes-Vivarais, in the French Mediterranean
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area. Because of the Mediterranean influence and of the mountainous back country,
the Cévennes-Vivarais region is well known for intense rain events, especially in the fall.
We have daily rainfall measurements over 46 years (01/01/1959 -12/31/2004) from the
European Climate Assessment & Dataset (ECA&D). The set of predictors includes the
NCEP/NCAR (National Centers for Environmental Prediction/National Center for At-
mospheric Research) reanalysis sea level pressure (SLP) fields on a 6 by 6 grid cell regions
surrounding the stations. We also include as predictors three date variables representing
the year, the month and the week of an observation. Principal component analysis is
applied to reduce the dimensionality and remove the redundancy among the predictors.
We extract the four principal components in order to keep 90% of the variance of the
data.

The 46-year data set is split into a training set of 25 years (01/01/59 - 12/31/83) and
a test set of 21 years (01/01/84 - 12/31/04). The training set is first used to select the
hyper-parameters with the 5-fold cross-validation method. Then, each model is trained
anew on the whole training set with the selected hyper-parameters. The test set serves
exclusively for comparison and evaluation of the SDMs.

3 Results
The hybrid Pareto CMM being the most complex model, we first compare the other three
SDMs in terms of relative log-likelihood with the hybrid Pareto CMM on the test set.
Table 1 shows the relative log-likelihood on the test set along with standard errors for the
three competing SDMs on the three rain gauge stations. In bold font are the cases where
the hybrid Pareto CMM performed significantly better. We see that the hybrid Pareto
CMM outperforms the Gaussian CMM and the Gamma benchmark on all three stations.
However, we cannot really distinguish the hybrid Pareto CMM from the Log-Normal
CMM based on this criterion.

Gaussian Log-Normal Williams
Orange 0.02146 (0.003139) 0.0022512 (0.001910) 0.02275 (0.002866)

Sète 0.01595 (0.003034) -0.003530 (0.001647) 0.01847 (0.002690)
Le Massegros 0.01948 (0.006671) -0.004606 (0.002121) 0.02068 (0.003005)

Table 1: Relative log-likelihood (std. err.) on the test set between the hybrid Pareto CMM
and the other SDMs (Gaussian and Log-Normal CMMs and Williams’ model). Positive
numbers indicate that the hybrid Pareto CMM performed better. Significant differences are
in bold font.

We randomly generated data for each SDM corresponding to the predictor values
on the test set. This was repeated a thousand times. Fig. 1 illustrates the QQ-plots for
Orange, on logarithmic scale, between the observations and the simulations for the hybrid
Pareto CMM, left panel, and for Williams’ model (right panel). Models which are in
accordance with the data should be close to the diagonal line. We see that Williams’ model
is less apt at modelling both the central part (over-estimation) and the upper part (under-
estimation) of the distribution. In Fig. 2, we first analyze the seasonal cycles of the rain
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probability (left panel) and of the 99% quantile (right panel) of the hybrid Pareto CMM
on the Orange test set. We can identify from Fig. 2 two seasonal modes, around March
(03) and October (10), which translates into higher probabilities and amounts of rain
around these two months, while summer (i.e., around July) presents lower probabilities
and amounts of rain. This is globally in agreement with the observations over the test
set, showing the same features. In Fig. 3, we finally look at the conditional densities
of the hybrid Pareto CMM associated with different atmospheric conditions, that is for
different predictors, for the rain event at the Orange station with the highest volume of
rain (322 mm in 09/08/2002-09/09/2002) in the test set. The left panel of Fig. 3 shows
the central part of the conditional densities while the right panel represents the upper
tails in logarithmic scale. Each curve corresponds to a different day which is connected
in the legend with the amount of rain observed on that day in chronological order (from
top to bottom). From Fig. 3, we see that the conditional density is very responsive to
changes in atmospheric conditions and that globally, days with heavy rains correspond to
heavy tailed densities and days with no rain to almost flat densities.
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Figure 1: QQ-plots on logarithmic scale of the simulated precipitation versus observations
> 1mm on the Orange test set for the hybrid Pareto CMM (left panel), and Williams
model (right panel). The horizontal lines are the empirical unconditional quantiles from
observations of the test set.

4 Concluding remarks
To our knowledge, CMMs are used for the first time in a downscaling context and open
interesting ways to study the interactions between large- and small-scale climate variables.
CMMs extend the two-component mixture proposed initially by Williams [3] which has a
discrete component like CMMs to model rainfall occurrence but relies on a single density,
the Gamma, for rainfall intensity.

We draw the following conclusions from our analyses on the three stations in the French
mediterranean area: 1) CMMs have clear advantages over Williams model in terms of flex-
ibility to represent both the central and the extremal part of rainfall intensity distribution
and 2) the choice of component in CMMs depends on the data. In our case, Gaussian
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Figure 2: Daily seasonal cycles of the rain occurrence probability (left panel) and of the
99% quantile (right panel) from the observations (black line) together with an empirical
90% confidence interval (grey band) and median (white line) from the hybrid Pareto CMM
for the Orange station test data.
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Figure 3: Conditional densities for the hybrid Pareto CMM day by day for a period with
the highest volume of rain in the test Orange data. Each daily density is represented with a
different color which is represented in the legend in chronological order, from top to bottom,
with the amount of rainfall observed.

components are not well suited. Log-Normal CMMs offer a good performance and are
more straightforward to implement than hybrid Pareto CMMs. However, the assumption
of heavy tails of the hybrid Pareto CMM seems more realistic for the precipitation data
considered in this work.
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