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Abstract: In this work we consider a geostatistical spatio-temporal model for
PM10 concentration (particulate matter with an aerodynamic diameter of less than
10 µm) in the North-Italian region Piemonte. The model involves a Gaussian Field
(GF) affected by a measurement error and a state process with a first order autore-
gressive dynamics and spatially correlated innovations. The main goal of this work
is to propose an estimating and mapping strategy for such a model. This proposal
is based on the work of Lindgren et al. (2011) that provides an explicit link between
GFs and Gaussian Markov random fields (GMRF) through the Stochastic Partial
Differential Equations (SPDE) approach. Thanks to the R library named INLA, the
SPDE approach can be easily implemented providing results in reasonable comput-
ing time (with respect to other MCMC algorithms). For these reasons, the SPDE
approach is proved to be a powerful strategy for modeling and mapping complex
spatio-temporal phenomena.

Keywords: spatio-temporal model, Integrated Nested Laplace Approximation,
big n problem.

1 Introduction

In the geostatistical approach, data coming from monitoring networks are assumed
to be realizations of a continuously indexed spatial process changing in time Y(s, t) =
{y(s, t) : (s, t) ∈ D ⊆ R2 × R}, also named random field. These realizations are
used to make inference about the process and to predict it at desired locations (i.e.
kriging). Generally, we deal with a Gaussian field (GF) that is completely spec-
ified by its mean and spatio-temporal covariance function Cov (y(s, t), y(s′, t′)) =
σ2C((s, t), (s′, t′)), defined for each (s, t) and (s′, t′) ∈ R2 × R. Even if the geosta-
tistical approach is very intuitive, it suffers from the so-called “big n problem” that
arises especially in case of large datasets in space and time. In particular, this com-
putational challenge arises in the Bayesian framework where matrix operations are
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computed iteratively for MCMC algorithms. A possible solution for facing this issue
consists in representing a Matérn random field - a continuously indexed GF with a
Matérn covariance function - as a discretely indexed random process, i.e. a Gaussian
Markov Random Field (GMRF, Rue et al. (2005)). This proposal is based on the
work of Lindgren et al. (2011), where an explicit link between GFs and GMRFs is
provided through the Stochastic Partial Differential Equations (SPDE) approach.
The key point is that the spatio-temporal covariance function and the dense covari-
ance matrix of a GF are substituted, respectively, by a neighbourhood structure
and by a sparse precision matrix, that together define a GMRF. The advantage of
moving from a GF to a GMRF stems from the good computational properties that
the latter enjoys. In fact, GMRFs are defined by a precision matrix with a sparse
structure that makes it possible to use computationally effective numerically meth-
ods, especially for fast matrix factorization. Moreover, when dealing with Bayesian
inference for GMRFs, it is possible to make use of the Integrated Nested Laplace
Approximation (INLA) algorithm proposed by Rue et al. (2009) as an alternative
to MCMC methods. The most outstanding advantage of INLA is computational
because it produces almost immediately accurate approximations to posterior dis-
tributions, also in case of complex models. Thus, the joint use of the SPDE approach
together with the INLA algorithm can be a powerful solution for overcoming the
computational problems of spatio-temporal GFs.

2 The spatio-temporal model and the SPDE ap-

proach

Let y(si, t) denote the PM10 concentration measured at station i = 1, . . . , d and day
t = 1, . . . , T . We assume the following measurement equation

y(si, t) = z(si, t)β + x(si, t) + ε(si, t) (1)

where z(si, t) = (z1(si, t), . . . , zp(si, t)) denotes the vector of p covariates for site si at
time t, and β = (β1, . . . , βp)

′ is the coefficient vector. Moreover, ε (si, t) ∼ N (0, σ2
ε)

is the measurement error defined by a Gaussian white-noise process, serially and
spatially uncorrelated. Finally, x(si, t) is the so-called state process, i.e. the true
unobserved level of pollution. It is supposed to be a spatio-temporal GF that changes
in time with a first order autoregressive dynamics with coefficient a and coloured
innovations, given by

x(si, t) = ax(si, t− 1) + ω(si, t) (2)

where x(si, 0) ∼ N(0, σ2
0) and |a| < 1. In particular, the zero-mean Gaussian process

ω(si, t) is supposed to be i.i.d. over time and is characterized by the following
spatio-temporal covariance function Cov (ω (si, t) , ω (sj, t

′)) = σ2
ωC(h) for t = t′

and i 6= j. The purely spatial correlation function C(h) depends on the location
si and sj only through the Euclidean spatial distance h = ||si − sj|| ∈ R; thus,
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the process is supposed to be second-order stationary and isotropic. The spatial
correlation function C(h) is defined in the Matérn class and is given by C(h) =

1
Γ(ν)2ν−1 (κh)ν Kν (κh), with Kν denoting the modified Bessel function of second kind
and order ν > 0. The parameter ν measures the degree of smoothness of the
process. Instead, κ > 0 is a scale parameter whose inverse 1/κ can be interpreted
as the range, i.e. the distance at which the spatial correlation becomes almost
null. Collecting all the observations measured at time t in a vector denoted by
yt = (y(s1, t), . . . , y(sd, t))

′, it follows that (1) and (2) can be written as

yt = ztβ + xt + εt, εt ∼ N(0, σ2
εId) (3)

xt = axt−1 + ωt, ωt ∼ N(0,Σ = σ2
ωΣ̃) (4)

where zt = (z(s1, t)
′, . . . ,z(sd, t)

′)′ and xt = (x(s1, t), . . . , x(sd, t))
′ with x0 ∼

N(0, σ2
0Id). Moreover, the d-dimensional correlation matrix Σ̃ is defined as Σ̃ =

C (‖si − sj‖)i,j=1,...,d, and the correlation function C (.) is parameterized by κ and ν.
The aim of the SPDE approach is to find a GMRF, with local neighbourhood

and sparse precision matrix Q, that best represents the Matérn field ω(s, t). As
described in Lindgren et al. (2011), this results in expressing the Matérn field as
a linear combination of basis functions defined on a triangulation of the domain
D using n vertices. It follows that, for each time point t the term ωt introduced
in Eq.(4) is represented through the GMRF ω̃t ∼ N(0,Q−1

S ), whose n-dimensional
precision matrix QS comes from the SPDE representation and is computed using
Eq.(10) of Lindgren et al. (2011). In particular, this defines an explicit mapping
from the parameters of the GF covariance function (κ and ν) to the elements of the
precision matrix QS of the GMRF.

Parameter estimation and mapping are carried out in a full Bayesian framework
using the INLA algorithm which is an alternative to MCMC for getting the approxi-
mated posterior marginals for the latent variables (all over the triangulated domain)
as well as for the hyperparameters (see Rue et al., 2009).

3 Data and results

In the case study on the North-Italian region Piemonte, we analyze log-transformed
daily PM10 concentration (in µg/m3) measured from October 2005 to March 2006
(for a total of T = 182 days) by d = 24 monitoring stations. In addition, we consider
the following covariates proved to have a significative effect on pollutant dispersion:
daily maximum mixing height (HMIX, in m), daily mean wind speed (WS, m/s),
daily emission rates of primary aerosols (EMI, in g/s), daily mean temperature
(TEMP, in K), altitude (A, in m) and coordinates (UTMX and UTMY, in km).
For a complete description and preliminary analysis of the data we refer to Cameletti
et al. (2010). We perform the analysis using the R library named INLA (www.r-inla.
org) considering n = 600 triangle vertices and ν = 1. Figure 1 displays the posterior
mean of PM10 (on the logarithmic scale) for January 29th, 2006 together with an
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uncertainty measure (standard deviation). As expected, higher levels of particulate
matter pollution are detected in the metropolitan areas of the region located near
the main cities (Torino, Vercelli and Novara) and moving eastwards toward Milan.

Figure 1: Map of the PM10 posterior mean on the logarithmic scale (left) and
standard deviation (right) for January 29th, 2006.

4 Concluding remarks

In this work we present a modeling strategy - based on the SPDE approach - for
a geostatistical spatio-temporal model, and show the results for a case study on
air quality in Piemonte. Our ongoing research is focused on the change of support
problem in order to include covariates with different spatial support in our modeling
framework.
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