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Abstract: Particulate matter (PM) is one of the most critical air pollutants be-
cause of its effects on the human health and the environment. It is well known that
covariates, such as meteorological and geographical variables, have a significative
influence on PM concentration. In this work we model PM concentration, mea-
sured by the monitoring network in Piemonte, taking into account the uncertainty
of covariates that are output of a deterministic model chain, by means of a spatio-
temporal error-in-variables model. The aim is to map the PM concentration random
field all over Piemonte region considering all the uncertainty sources, i.e. the error
related to the PM measurements and the covariate simulation as well as the error
coming from the spatial prediction procedure.
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1 Introduction and motivating case study

The aim of this paper is to provide a spatio-temporal model of PM concentration,
observed by a monitoring network, as function of some significative covariates (such
as meteorological variables) given as output of a deterministic modeling system.
While it is routine to consider that PM measurements are subject to an instrumen-
tal error, it is not usual to take into account the uncertainty of numerical model
outputs. Usually such outputs are considered deterministic, thus known without
error. However, numerical models try to reproduce reality but are affected by uncer-
tainty related to initial conditions, parameters in model equations as well as model
structure (Bayarri et al., 2009). To take into account these uncertainty sources we
propose a spatio-temporal error-in-variables model (also known as measurement er-
ror model) where latent processes are introduced for modeling both the “true” PM
and covariate fields. Our proposal is an extension of the models proposed in Van
de Kassteele et al. (2006a, 2006b), where purely spatial error-in-variables models
are considered in order to “correct” the numerical model outputs for nitrogen diox-
ide and particulate matter, respectively. Thus Van de Kassteele et al. (2006a, b)
quantify the uncertainty of numerical model outputs, taking them as covariates in
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a spatial model for the same pollutant. Instead, we want to take into account the
uncertainty of exogenous covariates in air pollutant modelling.

In our case study, we consider daily particulate matter with an aerodynamic
diameter of less than 10 pum (PM;o) measured at n = 24 sites and 7' = 93 days
(from November 15, 2005 to February 15, 2006) in the Northern Italian region
Piemonte. Moreover, we select m = 10 sites for validation purposes (see blue dots
in Figure 1(a)). Because of the complex orography of the region, the pollutant
dispersion is strongly affected by meteorological and geographical conditions. To
take into account this relationship, we consider the following significative covariates
(selected through a preliminary regression analysis): altitude (in m), coordinates
(UTM, in km), daily mean wind speed (in m/s), daily mean temperature (in °K)
daily maximum mixing height (in m) and daily emission rates of primary aerosols (in
g/$). The time-varying covariates are simulated on a 4 km x 4 km regular grid by a
numerical model implemented by the environmental agency ARPA Piemonte (Bande
et al., 2007) and are available at the monitoring sites as well. These numerical
output covariates are introduced in our model with errors, whereas the constant in
time covariates are supposed to be known without error.

2 The error-in-variables model

Let y(s;,t) and xg(s;, t) denote, respectively, the measured PM;, concentration and
the simulated value of the k—th covariate at location s; and time ¢, withi =1,...,n,
t=1,...,Tand k=1,..., K. Assuming that both y(s;,t) and zx(s;, t) are affected
by an additive error, we define the following equations

y(siyt) =n(si,t) +ey(si1) (1)

Tr(Siy t) = &e(siyt) + €4, (84, 1) (2)
where 7(s;,t) and & (s;,t) are two latent variables, e,(si,t) ~ N(0,0.(s;)) and
€2, (5i,1) ~ N(0,02, (s;)) are the measurement and model errors, supposed to be
independent. Moreover, we assume that the variances o (s;) and o2, (s;) do not
depend on time and are known at each site s;.

The relation between the two latent variables is defined by the following equation:

n(si, t) = Bo + 1p2(si) + Br&(si,t) + w(si, t) + g4(si, 1), (3)

where z(s;) = (21(si), ..., 2%,(s:))" is the vector of the p constant-in-time covariates
known without error and v, = (71,...,7,) is the vector of their coefficients. More-
over, &(s;,t) = (&1(84, 1), ..., Ex (84, 1)) denotes the vector of the K “true” covariate
values and By = (1, . .., Ok) is the vector of their coefficients. The term w(s;, ) is a
spatio-temporal process assumed to be i.i.d. over time, so that the spatio-temporal
covariance function is given by

, 0 if t £ ¢
Cov(w(si,t),w(s;, 1)) :{ 52 ps(h) iftit’



where h = ||s; — ;]| is the Euclidean distance between site s; and s; and o2 is the
h

constant-in-time-and-space variance of the process. The function p,(h) = exp(—a)
depends on the parameter ¢, representing the decay rate of a spatial correlation
with spatial distance. Finally, €,(s;,t) in Eq.(3) is the equation error that takes
into account the not optimal relation between 7(s;,t) and &(s;,t); it is supposed
to be normally distributed with zero mean and common variance 02. Thus, the
parameter vector to be estimated is ® = {8, v,, Bk, ¢, 02, 02}. As regards inference,
i.e. parameter estimation and spatial prediction of PM;y concentration at a new
location sy and time t, we adopt a fully Bayesian framework via Markov chains

Monte Carlo (MCMC) methods implemented through the WinBUGS software.

3 Results and concluding remarks

An exploratory analysis of the case study data showed skewed distributions for
the considered variables. In order to make the PM;, and covariate distributions
approximately Normal, a Box-Cox transformation (Box and Cox, 1964) was applied
to the original data. Moreover, we standardized - site by site - the covariate data,
in order to remove the effects related to the different ranges.

(a) PMjy site location (b) Time series predictions

Figure 1: Locations of the 24 PM;, monitoring sites (red triangles) and 10 validation
stations (blue dots) and prediction of PM;, for 26 Borgo San Dalmazzo (top) and
28 Chivasso (bottom) station: solid red line refers to PM;, observations, black dots
to PM; predictions and grey solid lines to 95% prediction intervals.

With regards to the variances supposed known in the model, in this preliminary
study we fixed o2 (s;) = 1, Vi,k and 0}(s;) = o where o, is the variance of



PM;q data all over the sites. Considering the posterior estimates for the covariate
coefficients, as expected there is a significative negative relationship between PMj
and altitude, as well as mean wind speed, mean temperature and maximum mixing
height. The posterior mean of ¢ is 90.0423 which means that the spatial correlation
decreases slowly with distance: for example, at 50 km the correlation is 0.5739
and 0.1212 at 190 km. Figure 1(b) displays the predicted PMy, for two different
validation stations (26 Borgo San Dalmazzo and 28 Chivasso). It seems that the
predictions are close to the observed average for each of the ten sites, even though
some problems can be detected when very high or very low PM;q, concentration
levels occur in contiguous days giving rise to a higher local variability. A possible
solution to this issue can be achieved by choosing different values, one per site, of
PM;, and covariate variances, in order to take into account the possibly different
measurement error of PM;, and numerical model error of covariates in the sites.

Moreover, our ongoing research is focused on facing the so-called “change of
support problem”, which arises when the numerical model output is provided at
a different spatial resolution from the scale of the PM measurements. Thus, it is
interesting to extend the proposed spatio-temporal model in order to deal with both
point-referenced and areal data.
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