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Abstract: We display pseudo-likelihood as a special case of a general estimation
technique based on proper scoring rules. Such a rule supplies an unbiased estimating
equation for any statistical model, and this can be extended to allow for missing
data. When the scoring rule has a simple local structure, as in many spatial models,
the need to compute problematic normalising constants is avoided. We illustrate
the approach through an analysis of data on disease in bell pepper plants.
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1 Introduction

Maximum likelihood estimation of a spatial process can be computationally de-
manding because of the need to manipulate the normalisation constant of the joint
distribution. Besag (1975) developed the method of pseudo-likelihood to sidestep
this problem. This has traditionally been considered as an approximation (of un-
known quality) to the full likelihood. However, as we describe below, the method
can be justified in its own right, as leading to an unbiased estimating equation.
Other methods, constructed from proper scoring rules , have similar justification
and properties, and supply useful alternatives.

2 Proper scoring rules

A scoring rule S(x,Q) is a loss function measuring the quality of a quoted probability
distribution Q for a random variable X , in the light of the realised outcome x of X
— see e.g. Dawid (1986). It is proper if, for any distribution P for X , the expected
score S(P,Q) := EX∼PS(X,Q) is minimised by quoting Q = P . A prominent
example is the log score, − log q(x), where q denotes the density or probability mass
function of X .

Given a proper scoring rule S and a smooth parametric statistical model P =
{Pθ} for X , let

s(x, θ) :=
∂S(x, Pθ)

∂θ
.
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Then we can estimate θ by θ̂S, the root of the estimating equation

s(x, θ) = 0. (1)

When S is the log score, this is just the likelihood equation, and θ̂S is the maxi-
mum likelihood estimate. More generally, for any differentiable scoring rule and any
smooth statistical model, Eθ{s(X, θ)} = 0, i.e. (1) is an unbiased estimating equa-
tion (Dawid and Lauritzen 2005). In particular it will typically deliver a consistent,
if not necessarily efficient, estimator in repeated sampling. We can then choose S

to increase robustness or ease of computation.
In the context of a spatial process X = (Xv : v ∈ V ), we can define a useful class

of proper scoring rules (Dawid et al. 2011) by

S(x,Q) =
∑

v

S0(xv, Qv), (2)

where Qv is the conditional distribution of Xv, given the values x\v for the variables
X\v at all sites other than V , and S0 is a proper scoring rule for the state at a single
site. In particular, if Q is Markov on a graph G, then Qv only depends on the values
xne(v) at the sites neighbouring v. This avoids the need to evaluate the normalising
constant of the full joint distribution Q.

Corresponding to (2) we have estimating equation

∑

v

s0(xv, Pθ,v) = 0 (3)

with each term in the sum having expectation 0. When S0 is the log score, (3)
gives the (negative log) pseudo-likelihood (Besag 1975). For Xv binary and S0 the
quadratic (“Brier”) score, it yields the method of ratio matching (Hyvärinen 2007).

Missing data are readily dealt with (although with some loss of efficiency). Let
Av = 1 if any value in {v} ∪ ne(v) is missing. Then so long as the data are missing
completely at random, s0(xv, Pθ,v) × Av has expectation 0, so we can just omit
incomplete terms from (3) while retaining an unbiased estimating equation.

3 Phytophthora data

Figure 1 displays the presence or absence of the pathogen Phytophthora capsici Leo-
nian in bell pepper plants on a regular 20× 20 grid (Chadoeuf et al. 1992).

We model the data as a stationary first-order Markov process with respect to the
grid, which thus follows the autologistic model (Besag 1972; Besag 1974; Gumpertz
et al. 1997):

logitπij = α + β(xi−1,j + xi+1,j) + γ(xi,j−1 + xi,j+1) (4)

where πij is the probability of Xij = 1, given all other values.
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Figure 1: Presence (1) and absence (0) of pathogen in bell pepper plants

To fit by maximum pseudo-likelihood (PL), we simply proceed as if the (Xij)
were all independent, and maximise the resulting “likelihood”. This can be done
by a standard generalized linear model analysis, readily implemented in standard
software such as R, using the binomial family and (default) logit link function.

Alternatively, and possibly more robustly, we could apply ratio matching (RM),
based on the Brier scoring rule, which leads to the least-squares recipe: min-
imise

∑
(xij − πij)

2. Again this can be implemented in standard GLM software,
treating the data as if they were normal with constant variance, and using the
logit link function (in R this is effected using the glm() command with option
family=quasi(link=logit,variance=constant).)

Note however that, although it is easy to compute the estimates, the associated
“standard errors” output by the software will be inappropriate, since they do not
take account of the dependence in the data.

4 Results

Table 1 displays the results of fitting the model (4) by pseudo-likelihood (PS) and
by ratio matching (RM). Values at sites on the boundary of the grid, which do not
have four observed neighbours, are not used as responses, though they are used as
covariate values for their neighbouring interior sites. There are thus 18 × 18 = 324
data-points used to fit the model.
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Method Intercept, α WE, β NS, γ

PL -2.4390 1.6514 0.6266

RM -2.2654 1.5864 0.5375

Table 1: Coefficients estimated by pseudo-likelihood (PS) and ratio matching (RM)

5 Concluding remarks

The PL and RM methods, as well as others derived from different proper scoring
rules, all involve solving an unbiased estimating equation. In the example studied,
the estimates from PL and RM are broadly in line. However further theoretical and
experimental work is needed to explore and compare their accuracy, efficiency and
robustness properties.
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