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Abstract: Classic probability-based designs are widely uledspatial sampling in
environmental research. When sampling over larggons researchers may wish to
preferentially sample some sites due to ease @&sacdf such non-standard probability
designs are implemented, Horvitz-Thompson analysisides unbiased estimates for
spatial means and variances provided first andr&kooder inclusion probabilities can
be evaluated. However, even with minor departu@s fstandard designs the effect of
preferential sampling on the sampling variance lbandramatic. We find significant
increases in sampling variance as sampling beconmge and more preferential. We
conclude that some non-standard designs can resalgnificantly weaker sampling
performance and recommend they be examined by aiionlprior to implementation.
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1. Introduction

There are two broad categories of approaches alaifar surveying soil organic
carbon (SOC) across space - model-based approadioesliesign-based approaches.
The former set of approaches is very useful forpirepand prediction but is based on
strong assumptions on the distributional propeieSOC. The latter is based entirely
on how sites are chosen for sampling and can peodaobiased estimates of mean SOC
as well as unbiased estimates of sampling variaMZe. examine design-based
approaches here as they have been garnering nora@e attention in recent years.

Probability-based designs have not been implemepteda national scale within
Australia. A major challenge to establishing a or@l monitoring scheme is the large
distances one would need to travel to collect dava.many regional sampling schemes
there is anecdotal evidence that sample sitesttehé “just inside the gate, along the
fence 50m from the road” which indicates a prefeeefor sites that are easy to access.
This is a defining feature of what we term the Aaisin context and this feature can
bias the results of an otherwise well designed exm@nt when the true manner in
which sites are chosen is not incorporated intcatiadysis.

In this report we explore designs that are compeatilith the Australian context, i.e.
designs that preferentially sample sites that asy €0 access over remote sites. Using
classic statistical design methodology coupled witlodern computer simulation
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strategies we explore the effects of such prefedesampling on sampling variance.
While stratified sampling generally improves samglivariance relative to simple
random sampling, preferential sampling negateskirgefit. However, we find that the
modern technique of generalised random tessellatimatification (GRTS) sampling
can incorporate preferential sampling quite wetl. dll our examples preferential
sampling leads to increases in sampling variantédo GRTS this increase is not fatal

2. Preferential Sampling Probability Designs

We compare the performance of simple random sagl8RS), stratified random
sampling (STR) and GRTS using two spatial datasetxhran (1977) provides a
detailed summary of many classic sampling desigwsamalysis results including the
work of Horvitz and Thompson (1952) for computingoiased estimators of mean and
sampling variance using first and second orderusioh probabilities. GRTS was
developed for sampling streams and stream netw&tesyens and Olsen 2003) and can
readily handle any set of first order inclusion lpabilities. GRTS has been used
extensively in the U.S. by the Environmental Prttec Agency for water-based
monitoring (e.g. Schweiger et al 2005, Wardrop |e2G07) and can also be used for
monitoring natural resources in terrestrial appimss (Fancy, Gross and Carter 2009)
though to the best of our knowledge it has not hessd for soil carbon monitoring.

We venture away from classic designs by specifymatusion probabilities in a manner
that preferentially samples sites that are clogepads that span the space of interest.
We parameterise a linear relationship between snmfuprobability and distance to road
using a single term that ranges from 0 to 1. When= O the linear relationship is flat,
i.e. all inclusion probabilities are equal and veerd classical non-preferential sampling.
Wheno=1 the inclusion probabilities for the sites fugh&om the roads are zero. This
boundary case is not considered since a desigrdtggmoach is no longer applicable
to the whole region of interest. For values wfbetween 0 and 1 the inclusion
probabilities decrease with distance, and theahtiecrease increases with

We use the work of Hartley and Rao (1962) to sangplepecific number of sites
according to our pre-specified first order inclusigrobabilities as well as for
computing approximations for our second order isicin probabilities, simplified
further by Stehman and Overton (1994). These caruds®l to compute Horvitz-
Thompson estimators from implementations of nonddad designs.

3. Data

We use two spatial datasets to evaluate these lphitypadesigns. The first is a
simulated non-stationary, non-isotropic processnfriixed rank kriging of a spatial
random effects model (Cressie & Johannesson, 2008)lues for this process are
evaluated at 4 million pixels and we draw samplesize n=27. A grid of nine square
strata is used for STR for this dataset. The sedsra dataset of over 2.5 million
predictions of percentage SOC across a large pa@,@00 squared-km) of New South
Wales in Australia (Wheeler et al, 2010). Thesalpteons come from a Cubist-based
data-mining model of legacy %SOC data from the flisin Soil Resource Information
System (ASRIS, McKenzie et al 2005). We draw samplesize n=150 from the SOC



dataset. We define 16 strata for this dataset basmthd the major towns of the region
with each site allocated to the stratum assochattdthe closest town.

4. M ethods

We repeatedly apply the probability designs totauar datasets changing the strength of
preferential sampling through the parametelFor each design andvalue we examine
the distribution of our estimates of sampling vace. Effective sample sizes are found
by matching the median sampling variance with sarmgplariance estimates based on
non-preferential SRS. As is well known, when sangla spatial process, switching
from SRS to STR or GRTS leads to an immediate largg in effective sample size.
We wish to investigate what happens to samplingaaae and effective sample size as
a changes from 0 to just under 1 for each design.

SRS STR GRTS

0100 0100 — 0100

0.050 0.050 0.050
0.020
0.010 SRERE

0.00s5

0002 0002 o.ooz

0.0 0.oo . 0.oo

Alpha Alpha Alpha

Figure 2. Effect of preferential sampling on the samplingiamace of mean estimates for the SOC
dataset under SRS, STR and GRTS designs. Redwittga each plot indicate 1st, 2nd and 3rd quastile
of the variance estimates. The text indicates tedeapproximate effective sample sizes under non
preferential SRS designs based on smooth quaagtession.

5. Results and Discussion

Preferential sampling results in larger samplingaraces in all cases. The gains in
effective sample size one attains by switching TR ®an be all but wiped out when
preferential sampling is employed. Preferential glamg of n=27 sites under STR is
routinely found to be worse than SRS based onefaef sites. For GRTS the effect of
preferential sampling is not as dramatic. Figur@l@s our estimates of sampling
variance for many values affor each design for the SOC dataset. Each paokides
red lines based on smooth robust regression afldteeto estimate the 1st, 2nd and 3rd
quartiles as functions af. The text written over each plot indicates effextsample
sizes required to achieve similar sampling variangeler non-preferential SRS.

This research indicates that continental-scale Baghgchemes can be designed and
implemented in a manner that better reflects hoey tare used in practice. While
preferential sampling designs more accurately ceflpractical concerns, we
demonstrate that they can have dramatic inflatipediiects on sampling variance. As
such, we recommend a thorough evaluation of anypbagn approach prior to
implementation. In the examples explored here wedothat estimates of sampling



variance from GRTS are least affected by prefembrgampling. This suggests that
GRTS is a viable approach for designing spatial@eng schemes at large scales. The
success of GRTS is due partly to its use of a meighhood variance estimator (Stevens
and Olsen 2004) and partly to the fact that GRTI8Beaes much better spatial balance
compared to STR.
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