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Abstract: Classic probability-based designs are widely used for spatial sampling in 
environmental research. When sampling over large regions researchers may wish to 
preferentially sample some sites due to ease of access. If such non-standard probability 
designs are implemented, Horvitz-Thompson analysis provides unbiased estimates for 
spatial means and variances provided first and second order inclusion probabilities can 
be evaluated. However, even with minor departures from standard designs the effect of 
preferential sampling on the sampling variance can be dramatic. We find significant 
increases in sampling variance as sampling becomes more and more preferential. We 
conclude that some non-standard designs can result in significantly weaker sampling 
performance and recommend they be examined by simulation prior to implementation. 
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1. Introduction 
 
There are two broad categories of approaches available for surveying soil organic 
carbon (SOC) across space - model-based approaches and design-based approaches. 
The former set of approaches is very useful for mapping and prediction but is based on 
strong assumptions on the distributional properties of SOC. The latter is based entirely 
on how sites are chosen for sampling and can produce unbiased estimates of mean SOC 
as well as unbiased estimates of sampling variance. We examine design-based 
approaches here as they have been garnering more and more attention in recent years.  
 
Probability-based designs have not been implemented on a national scale within 
Australia. A major challenge to establishing a national monitoring scheme is the large 
distances one would need to travel to collect data. For many regional sampling schemes 
there is anecdotal evidence that sample sites tend to be “just inside the gate, along the 
fence 50m from the road” which indicates a preference for sites that are easy to access. 
This is a defining feature of what we term the Australian context and this feature can 
bias the results of an otherwise well designed experiment when the true manner in 
which sites are chosen is not incorporated into the analysis. 
 
In this report we explore designs that are compatible with the Australian context, i.e. 
designs that preferentially sample sites that are easy to access over remote sites. Using 
classic statistical design methodology coupled with modern computer simulation 
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strategies we explore the effects of such preferential sampling on sampling variance. 
While stratified sampling generally improves sampling variance relative to simple 
random sampling, preferential sampling negates this benefit. However, we find that the 
modern technique of generalised random tessellation stratification (GRTS) sampling 
can incorporate preferential sampling quite well. In all our examples preferential 
sampling leads to increases in sampling variance but for GRTS this increase is not fatal 
 
2. Preferential Sampling Probability Designs 
 
We compare the performance of simple random sampling (SRS), stratified random 
sampling (STR) and GRTS using two spatial datasets. Cochran (1977) provides a 
detailed summary of many classic sampling designs and analysis results including the 
work of Horvitz and Thompson (1952) for computing unbiased estimators of mean and 
sampling variance using first and second order inclusion probabilities. GRTS was 
developed for sampling streams and stream networks (Stevens and Olsen 2003) and can 
readily handle any set of first order inclusion probabilities. GRTS has been used 
extensively in the U.S. by the Environmental Protection Agency for water-based 
monitoring (e.g. Schweiger et al 2005, Wardrop et al 2007) and can also be used for 
monitoring natural resources in terrestrial applications (Fancy, Gross and Carter 2009) 
though to the best of our knowledge it has not been used for soil carbon monitoring. 
 
We venture away from classic designs by specifying inclusion probabilities in a manner 
that preferentially samples sites that are closer to roads that span the space of interest.  
We parameterise a linear relationship between inclusion probability and distance to road 
using a single term α that ranges from 0 to 1. When α = 0 the linear relationship is flat, 
i.e. all inclusion probabilities are equal and we have classical non-preferential sampling. 
When α=1 the inclusion probabilities for the sites furthest from the roads are zero.  This 
boundary case is not considered since a design-based approach is no longer applicable 
to the whole region of interest. For values of α between 0 and 1 the inclusion 
probabilities decrease with distance, and the rate of decrease increases with α. 
 
We use the work of Hartley and Rao (1962) to sample a specific number of sites 
according to our pre-specified first order inclusion probabilities as well as for 
computing approximations for our second order inclusion probabilities, simplified 
further by Stehman and Overton (1994). These can be used to compute Horvitz-
Thompson estimators from implementations of non-standard designs. 
 
3. Data 
 
We use two spatial datasets to evaluate these probability designs. The first is a 
simulated non-stationary, non-isotropic process from fixed rank kriging of a spatial 
random effects model (Cressie & Johannesson, 2008).  Values for this process are 
evaluated at 4 million pixels and we draw samples of size n=27. A grid of nine square 
strata is used for STR for this dataset. The second is a dataset of over 2.5 million 
predictions of percentage SOC across a large part (150,000 squared-km) of New South 
Wales in Australia (Wheeler et al, 2010). These predictions come from a Cubist-based 
data-mining model of legacy %SOC data from the Australian Soil Resource Information 
System (ASRIS, McKenzie et al 2005). We draw samples of size n=150 from the SOC 
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dataset. We define 16 strata for this dataset based around the major towns of the region 
with each site allocated to the stratum associated with the closest town. 
 
4. Methods 
 
We repeatedly apply the probability designs to our two datasets changing the strength of 
preferential sampling through the parameter α. For each design and α value we examine 
the distribution of our estimates of sampling variance. Effective sample sizes are found 
by matching the median sampling variance with sampling variance estimates based on 
non-preferential SRS. As is well known, when sampling a spatial process, switching 
from SRS to STR or GRTS leads to an immediate large jump in effective sample size. 
We wish to investigate what happens to sampling variance and effective sample size as 
α changes from 0 to just under 1 for each design. 
 

 

Figure 2: Effect of preferential sampling on the sampling variance of mean estimates for the SOC 
dataset under SRS, STR and GRTS designs. Red lines within each plot indicate 1st, 2nd and 3rd quartiles 
of the variance estimates. The text indicates selected approximate effective sample sizes under non 
preferential SRS designs based on smooth quantile regression. 
 
5. Results and Discussion 
 
Preferential sampling results in larger sampling variances in all cases.  The gains in 
effective sample size one attains by switching to STR can be all but wiped out when 
preferential sampling is employed. Preferential sampling of n=27 sites under STR is 
routinely found to be worse than SRS based on far fewer sites. For GRTS the effect of 
preferential sampling is not as dramatic. Figure 2 plots our estimates of sampling 
variance for many values of α for each design for the SOC dataset. Each panel includes 
red lines based on smooth robust regression of the data to estimate the 1st, 2nd and 3rd 
quartiles as functions of α. The text written over each plot indicates effective sample 
sizes required to achieve similar sampling variances under non-preferential SRS. 
 
This research indicates that continental-scale sampling schemes can be designed and 
implemented in a manner that better reflects how they are used in practice. While 
preferential sampling designs more accurately reflect practical concerns, we 
demonstrate that they can have dramatic inflationary effects on sampling variance. As 
such, we recommend a thorough evaluation of any sampling approach prior to 
implementation. In the examples explored here we found that estimates of sampling 
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variance from GRTS are least affected by preferential sampling. This suggests that 
GRTS is a viable approach for designing spatial sampling schemes at large scales. The 
success of GRTS is due partly to its use of a neighbourhood variance estimator (Stevens 
and Olsen 2004) and partly to the fact that GRTS achieves much better spatial balance 
compared to STR.  
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