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Abstract: The purpose of this study is to develop a method for allocating
pollutant concentrations to finer spatial scales conditional on covariate information
observable in a fine grid. Spatial dependence is modeled with the conditional au-
toregressive structure. The maximum likelihood approach to inference is employed,
and the optimal predictors are developed to assess missing concentrations in a fine
grid. The method is developed for a practical application of an output from the
dispersion model CALPUFF run for Warsaw agglomeration.
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1 Introduction

Atmospheric dispersion models constitute a basic tool for air quality control. Fur-
ther usage of output from dispersion models include, among others, health impact
assessments. For improved risk assessments, it is often required to develop air quality
data in a resolution higher than the one readily available from dispersion models.

Making inference on variables at points or grid cells different from those of the
data is referred to as the change of support problem. Several approaches have been
proposed to address the problem. The geostatistical solution for realignement from
point to areal data is provided by block kriging (Gotway & Young 2002, Gelfand
2010). In the case that data are observed at areal units and inference is sought at a
new level of spatial aggregation, areal weighting offers a straightforward approach.
Some improved approaches with better covariate modeling were also proposed e.g.
in Mugglin & Carlin 1998, and Mugglin et al. 2000.

In the following we present an approach for areal to areal data realignement,
which accounts for a tendency toward spatial clustering, and is focused on applica-
tion to air quality. The idea stems from the method proposed in Chow & Lin (1971)
for time series, see also Polasek et al. (2010). Regarding an assumption on residual
covariance structure, we apply the conditional autoregressive (CAR) specification.
While the CAR structure is extensively used in epidemiology, it can be also applied
for modeling air pollution over space (Kaiser et al. 2002, McMillan et al. 2010).
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Figure 1: SO2 concentration (µg/m3) in a 1 km grid

2 Motivating data set

The study concerns air pollution concentrations (PM10, NOx and SO2 among oth-
ers) obtained from the dispersion model CALPUFF. A 1 km grid for Warsaw area
comprises 563 grid cells. Health risk studies, conducted in parallel, motivated our
search for the air pollution map in a 0.5 km resolution. The dispersion model output
represents an average pollutant concentration over each 1 km grid cell. This value,
multiplied by a cell area, reflects a pollutant level in a grid cell, and it constitutes
the value to be disaggregated.

In addition, available covariate information characterizes transportation, area
and point emission sources of the city in a 0.5 km grid.

3 The disaggregation framework

We begin with the model specification in a fine 0.5 km grid. Let Yi denote a random
variable associated with a missing value of pollutant, say SO2, level yi defined at
each cell i, i = 1, ..., n of a fine grid. Assume that random variables Yi follow a
Gaussian distribution with the mean µi and variance σ2

Y , and given these values Yi

are independent. The values µ = {µi}ni=1 represent the true process underlying SO2

level, and the (missing) observations are related to this process through a measure-
ment error of variance σ2

Y . The model for the underlying SO2 process is formulated
as a sum of regression component with available covariates, and a spatially varying
random effect. The applied CAR structure follows an assumption of similar random
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effects in adjacent cells, and it is given through the specification of full conditional
distribution functions

µi|µj,j 6=i ∼ N

(
xT
i β + ρ

∑

j 6=i

wij

wi+

(
µj − xT

j β
)
,
τ 2

wi+

)
, i, j = 1, ..., n (1)

where wij are the adjacency weights; wi+ is the number of neighbours of area i; xT
i β

is a regression component with explanatory covariates for area i and a respective vec-
tor of regression coefficients, and τ 2 is a variance parameter. The joint distribution
of the process µ is (Cressie, 1993)

µ ∼ Nn

(
Xβ, τ 2 (D − ρW )−1

)
, (2)

where X is a design matrix with vectors xi; D is an n×n diagonal matrix with wi+

on the diagonal; and W is an n×n matrix with adjacency weights wij. Equivalently,
we can write (2) as µ = Xβ + ǫ, ǫ ∼ Nn (0,N), with N = τ 2 (D − ρW )−1.

The model for the CALPUFF output data observed in a 1 km grid is obtained
by multiplication of µ with an N × n aggregation matrix C, where N is a number
of observations in a 1 km grid

Cµ = CXβ +Cǫ, Cǫ ∼ NN

(
0,CNCT

)
. (3)

The matrix C consists of 0’s and 1’s, indicating which cells have to be aligned
together. The random variable λ = Cµ is treated as the mean process for variables
Z = {Zi}Ni=1 associated with observations z = {zi}Ni=1 of the aggregated model

Z|λ ∼ NN

(
λ, σ2

ZIN

)
. (4)

Also at this level, the underlying process λ is related to Z through a measurement
error with variance σ2

Z .
The parameters β, σ2

Z , τ
2 and ρ are estimated with the maximum likelihood

method based on the joint unconditional distribution

Z ∼ NN

(
CXβ,M +CNCT

)
,

where M = σ2
ZIN . The analytical derivation is limited to the regression coefficients

β, and further maximisation of the profile log likelihood is performed numerically.
The standard errors of estimators are calculated with the expected Fisher informa-
tion matrix.

Regarding the missing values in a fine 0.5 km grid, the underlying SO2 process
is of our primary interest. The predictors optimal in terms of the minimum mean
squared error are given by E (µ|z). The joint distribution of (µ,Z) is

[
µ

Z

]
∼ Nn+N

([
Xβ

CXβ

]
,

[
N NCT

CN M +CNCT

])
. (5)
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The distribution (5) allows for full inference, yielding both the predictor and its
error

̂E (µ|z) = Xβ̂ + N̂C
T
(
M̂ +CN̂C

T
)−1 [

z −CXβ̂
]

̂V ar (µ|z) = N̂ − N̂C
T
(
M̂ +CN̂C

T
)−1

CN̂ .

Note that in the predictor ̂E (µ|z), a naive regression forecast is corrected with a
residual on the aggregated level distributed over respective grid cells.

4 Concluding remarks

To conclude, the change of support problem in our study is addressed by defining
the underlying air pollution process to be an aggregation for respective grid cells.
The joint distribution (5) allows to view the approach in analogy to block kriging
(Gelfand 2010, p.524).

The application part of the study is under development.

References

Chow G. C., Lin A. (1971) Best linear unbiased interpolation, distribution, and extrapolation of
time series by related series, The Review of Economics and Statistics, 53, 372-375.

Cressie N.A.C. (1993) Statistics for Spatial Data, Wiley, New York.

Gelfand A.E. (2010) Misaligned Spatial Data: The Change of Support Problem, in: Handbook of

Spatial Statistics, Gelfand A. E., Diggle P. J., Fuentes M., Guttorp P. (Eds.), Chapman &
Hall/CRC, 517-539.

Gotway C.A., Young L.J. (2002) Combining incompatible spatial data, Journal of the American

Statistical Association, 97, 632-648.

Kaiser M. S., Daniels M. J., Furakawa K., Dixon P. (2002) Analysis of particulate matter air
pollution using Markov random field models of spatial dependence, Environmetrics, 13,
615-628.

McMillan N.J., Holland D.M., Morara M., Feng J. (2010) Combining numerical model output
and particulate data using Bayesian space-time modeling, Environmetrics, 21, 48-65.

Mugglin A.S., Carlin B.P. (1998) Hierarchical modeling in geographical information systems:
Population interpolation over incompatible zones, Journal of Agricultural, Biological and

Environmental Statistics, 3,111-130.

Mugglin A.S., Carlin B.P., Gelfand A.E. (2000) Fully model-based approaches for spatially mis-
aligned data, Journal of the American Statistical Association, 95, 877-887.

Polasek W., Llano C., Sellner R. (2010) Bayesian methods for completing data in spatial models,
Review of Economic Analysis, 2, 194-214.

4


