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Abstract:This paper presents a hierarchical Bayesian Poisson lognormal model
for malaria incidence in Sucre state, Venezuela, during the period 1990 — 2002. The
logarithm of the relative risk of the disease for each county or municipality is ex-
pressed as an additive model that includes a multiple regression with social-economic
and climatic covariates; a random effect that captures the spatial heterogeneity in
the study region and a CAR (Conditionally Autoregressive) component, that recog-
nizes the effect of nearby municipalities in the transmission of the disease each year.
For most years the selected model captures well the spatial structure between the
relative risks from the nearby municipalities. When a poor model fit is obtained, a
t-Student model for the spatial heterogeneity parameter improves model fitting re-
sults. From the 15 municipalities in Sucre state during the study period 1990 — 2002,
7 of them presented high relative risks (greater than 1) in most years. These areas
are mostly agricultural areas with poor living conditions.
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1 Introduction

Malaria is a parasitic infectious tropical disease that causes high mortality rates in
the tropical belt. In Venezuela, Sucre state is considered the third state with the
highest malaria incidence. The Standardized Mortality Ratio (SMR), is the ratio
between the number of observed disease cases (y;) and the expected number of cases
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in the region(E;), this is, (Banerjee, 2003)

SMR, =W, = %0 =1, .k (1)
E;
where £ is the number of subregions (in our case the number of municipalities is 15)
B
and E; = p*.n; = Z}jlzf .n;, being p* the total proportion of disease incidence.
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This incidence rate \TIZ is a raw estimate of the relative risk of disease infestation
in the municipality 7. A value grater than 1 indicates a disease incidence greater than
expected for a region; therefore this constitutes an alarm for public health authori-
ties, (Banerjee, 2003) and (Lawson, 2003). The objective of this work is to propose
a model including temporal and spatial components, to explain the dynamics of the
disease and to allow simultaneously to identify the explanatory social-economic and
climatic variables related with the disease incidence in Sucre state.

2 Materials and Methods

2.1 Study region and Data

The study region is located in the northeastern region of Venezuela in Sucre state.
This state has 15 municipalities with an area of 11, 800km?. Total cases of malaria
were available for 13 years during the period 1990 — 2002. Interpolated monthly
precipitation was available for the whole state using a Bayesian Kriging approach (Le
and Zidek, 2007). Several social-economic variables measuring basic needs coverage,
unemployment rate, housing characteristics and public services were available from
the National Institute of Statistics (INE). After a dimensional reduction technique
based on principal component analysis (PCA), the following covariates were used
from the PCA results: X;: Percentage of households with fair building quality and
lack of public services (electricity, sewerage, drinking water); X,: Percentage of
poor households with intermediate building quality; Xj5: Sewerage and drinking
availability; Xj: Percentage of population in agricultural activities. Additionally,
the maximum monthly precipitation during the year, X5, was also included. Each
variable was stored in a matrix of dimension of 15 x 13.

2.2 Spatio-temporal model

Let Y}; the number of malaria cases in municipality ¢ and year t. A Poisson model is
usually assumed for these quantities, where the mean rate is \;y = Ej;; V;;. Therefore,

Yiy ~ Poisson(\y) (2)

with ¢t = (1,...,T), being T the number of years; in this case T' = 13.



The proposed model for ¥, is:

Wip = exp(ay + B, Xig + vig + big) (3)
where vy ~ N (0, %) is a parameter representing the local spatial heterogene-

ity of the data and bylb_; ~ N (I_j

(CAR) component representing the spatial dependence among the neighboring coun-
ties in the transmission of the disease. For model 3, we have the vectors a; =
(1,0, .sar), Be = (B, B2y s Br)y The = (This Th2y o, Thr), Tor = (Tors T2, -0 ToT),
bit = (big, bory ooy bgt) 5 Vie = (V1g, Voy, .., Ugy) and Xy, is the covariates matrix.

As an alternative model, the spatial heterogeneity parameter v;; can also be
assumed to have a t — Student distribution. The complete conditional posterior
probability distributions were calculated for parameters ay, 5;, by, Vit, Tot,The-

The prior distributions for the parameters oy, 5;, vit, bir, The, e of model 3,
were assumed as follows: a; and (; are assumed Uniformly distributed; by |b_; ~

) is the Conditional Auto-Regressive

L1
W Tmi

N (Bit, ﬁ), e ~ Gamma(ay,dy) and 7, ~ Gamma(a.,d.), where parameters
ap = a. = 0.5, d;, = d. = 0.0005; b_;; is the parameter vector without considering
the municipality ¢ at time ¢; and m;; are the neighbors to municipality ¢ at time ¢;
although the number of municipalities does not change with time, we use the above
notation.

3 Results

A computer code in WinBUGS was implemented for Bayesian inference using MCMC
methods. Fourteen thousand samples from the parameter posterior distributions
were obtained and 4,000 samples were used for burnin. Several models were pro-
posed by using different sets of covariates and the lognormal models with and with-
out the CAR component (b;;) were also compared. The Deviance Information Cri-
teria (DIC) (Spielgelhalter et al., 2002), and the Minimum Posterior Expected Loss
Criteria (D) (Gelfand and Ghosh, 1998) were used for model selection. The DIC
criteria did not show important variations among models. The D critera was more
sensitive to model variations and suggested that a model with a CAR component and
variables X7, X5, X, and X5 was more appropriate, since this model presented the
lowest D value. Model residuals for the selected model were tested for independence
by calculating the Moran’s I posterior probability interval for all years.

Posterior predictive model checks were carried out by simulating 2, 000 replicates
from the posterior predictive distribution for each municipality and each year. The
posterior predictive p-value p(y;, 7 < y%*) was calculated to compare the observed
vs. simulated values. If the p-value is close to 0 or 1, it means that the observed
values are very unlike to be seen from the simulated values.
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Figure 1: Posterior predictive check for the county Cruz Salmeron Acosta, year 1997
and calculated p-value, by using a normal model (a) and a ¢ — Student model (b)
for the spatial heterogeneity parameter vy

Model checks were satisfactory for most years and all municipalities, except for
year 1997 with a good model fit only in 8 of 15 municipalities. To improve model
fitting it was assumed v[i] ~ t — Student(1,&,2) where £ ~ Gamma(0.5,0.005)
for each municipality during year 1997. Figure 1 shows a comparison of the two
posterior predictive p-values, with the normal distribution (p — value = 0) and the
t — Student distribution (p — value = 0.635).

From the 15 municipalities in Sucre state during the study period 1990 — 2002,
7 of them presented relative risks greater than 1 in most years. These areas are
mostly agricultural areas with poor living conditions.
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