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Abstract

A problem of goodness-of-fit test for ergodic diffusion processes
is presented. In the null hypothesis the drift of the diffusion is sup-
posed to be in a parametric form with unknown shift parameter. Two
Cramer-Von Mises type test statistics are studied. The first one is
based on local time estimator of the invariant density, the second one
is based on the empirical distribution function. The unknown param-
eter is estimated via the maximum likelihood estimator. It is shown
that both the limit distributions of the two test statistics do not de-
pend on the unknown parameter, so the distributions of the tests are
asymptotically parameter free. Some considerations on the consistency
of the proposed tests and some simulation studies are also given.
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1 Introduction

We consider the problem of goodness of fit test for the model of ergodic
diffusion process when this process under the null hypothesis belongs to a
given parametric family. We study the Cramer-von Mises type statistics
in two different cases. The first one is based on local time estimator and
the second one is based on empirical distribution function estimator. We
show that the Cramer-von Mises type statistics converge in both cases to
some limits which do not depend on the unknown parameter, so the test is
asymptotically parameter free (APF).

Let us remind the similar statement of the problem in the well known case
of the observations of independent identically distributed random variables
X" = (Xi,...,X,). Suppose that the distribution of X; under hypothesis
is F(¥,2) = F(x —7), where ¥ is some unknown parameter. Then the
Cramer-von Mises type test is

~ . ~ 2 A~
U (X") = Tpp2sey, wl = n/ [Fn (x) — F (x — 15‘”)} drF <x — ﬂn)
where the statistic w? under hypothesis converges in distribution to a random
variable w? which does not depend on . Therefore the threshold e. can
calculated as solution of the equation

P{w2 >ea} =c.

The details concerning this result can be found in Darling [3]. For more
general problems see the works of Kac, Kiefer & Wolfowitz [8|, Durbin [4] or
Martynov [12], [13].

A similar problem exists for the continuous time stochastic processes,
which are widely used as mathematic models in many fields. The goodness
of fit tests (GoF) are studied by many authors. For example Kutoyants [9]
discusses some possibilities of the construction of such tests. In particular,
he considers the Kolmogorov-Smirnov statistics and the Cramer-von Mises
Statistics based on the continuous observation. Note that the Kolmogorov-
Smirnov statistics for ergodic diffusion process was studied in Fournie [6] and
in Fournie and Kutoyants [7]. However, due to the structure of the covariance
of the limit process, the Kolmogorov-Smirnov statistics is not asymptotically
distribution free in diffusion process models. More recently Kutoyants [10]
has proposed a modification of the Kolmogorov-Smirnov statistics for diffu-
sion models that became asymptotically distribution free. See also Dachian
and Kutoyants [2] where they propose some GoF tests for diffusion and in-
homogeneous Poisson processes with simple basic hypothesis. It was shown
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that these tests are asymptotically distribution free. In the case of Ornstein-
Uhlenbeck process Kutoyants showed that the Cramer-von Mizes type tests
are asymptotically parameter free [11]. Another test was studied by Negri
and Nishiyama [15].

2 Main Results

Suppose that we observe an ergodic diffusion process, solution to the following
stochastic differential equation

dX; = S(Xy)dt +dW,;, Xo, 0<t<T. (2.1)
We want to test the following null hypothesis
Ho S(x)=S8.(x—1v), V€O,

where S, (+) is some known function and the shift parameter ¢ is unknown.
We suppose that 0 € © = («, 3). Let us introduce the family

S(©) ={S.(x—1), V€0 =(ap)}.
The alternative is defined as
Hy S() € S(09),

where S(©) = {S (z — ),V € [a, 5]}

We suppose that the trend coefficients S (-) of the observed diffusion pro-
cess under both hypotheses satisfy the conditions:

ES. The function S(-) is locally bounded and for some C > 0,

zS(z) < C(1 + 2?).

and

Ag. The function S(-) satisfies
lim sgn(x)S(z) < 0. (2.2)

|| —o0

Remind that under the condition £S, the equation (2.1) has a unique
weak solution (See [5]). Moreover under the condition A, the diffusion
process is recurrent and its invariant density f(x,1) under hypothesis H
can be given explicitly (See [9], Theorem 1.16):

G(lﬁ) exp {2/; Sily — ﬂ)dy} :

3

f($,19) =
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Denote by & a random variable (r.v.) having this density and the cor-
responding mathematic expectation by Ey. To simplify the notations, for
the case ¢ = 0, we denote the density function as f(z) = f(x,0), and the
corresponding distribution function as F(x); correspondingly the r.v. is &,
and the mathematical expectation is Eg. Denote P as the class of functions
having polynomial majorants i.e.

P ={h(): nx)] < O+ [z")},
with some p > 0. Let h/(z) the derivative of h(z) w.r.t. .

Let us fix some ¢ € (0,1), and denote by K. the class of tests i1 of
asymptotic size ¢, i.e.
EO@ZJT =c+ 0(1)

Our object is to construct this kind of tests.

To verify the hypothesis Hy, we propose two tests. The first one is based
on the local time estimator (LTE) fr(x) of the invariant density, which can
be written as

; 1 e
fr() = 70X = al = [Xo —al) - 7. | sn(X,— 2)aX.
0

The unknown parameter is estimated via the maximum likelihood estimator
(MLE) 97, which is defined as the solution of the equation

L(@T, XT) = sup L(6, XT),
)

where L(9, XT) is the log-likelihood ratio

T T
L(ﬂ,XT):/ S*(Xt—ﬁ)dXt—%/ S.(X; — 9)3dt.
0 0

We give the following regularity conditions A to have the consistency and
the asymptotical normality of the MLE:

Condition A.
Ay. The function S.(-) is continuously differentiable, the derivative S.(-) €
P and is uniformly continuous in the following sense:

SL(&) = SL(& +7)|* = 0.

lim sup Eg
v=0r<p
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As. The Fisher information
I =E(S.(&)* > 0. (2.3)
Moreover, for any v >0

inf Eo(S.(&) — Su(& +7))7 > 0.

|T|>v

Denote the statistic based on the LTE as follows
0, N2
=T [ (frla) = fla = i) da,

we will prove that under hypothesis Hy, it converges in distribution to

- o > ]I{y>x} - F(y) _ 1 ! " i z
i- [ ( /- <2f($)—f(y) AN >> dw<y>> .
(2.4)

with W(y) = Wi(y), y € RT, W(y) = Wa(—y), y € R™, where W, and
Wy are independent Wiener processes. The Cramer-von Mises type test is
defined as

Yr = Ws54.3,

where d. is the 1 — ¢ quantile of the distribution of §, that is the solution of
the following equation

P(é > d5> - (2.5)

The main result for the Cramer von Mises test based on local time esti-
mator is the following:

Theorem 2.1. Let the conditions £ES, Ay and A be fulfilled, then the test
Yr = Ni5,54.3 belongs to K.

The theorem is proved in Section 3.
Note that neither 0 nor d. depends on the unknown parameter. This
allows us to conclude that the test is APF.

The second test is based on the same MLE and the empirical distribution
function (EDF):

R 1 [T
FT(.T) = T/O ]I{Xt<ac}dt-

The corresponding statistic is

Ap = T/OO (Pr(a) ~ F(az - &T))2 dz,

—00
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which converges in distribution to

A /00 (/‘X’ <2F(ym“) — Fy)F(z) _ %Si(y)mf(x)> dW(?J)) da.

—oo \ Voo f)
(2.6)
Thus we propose the Cramer-von Mises type test
U = Tiar>e.}s
where c. is the solution of the equation
P(A > c€> =€. (2.7)

The main result for the Cramer von Mises test based on empirical distri-
bution function estimator is the following:

Theorem 2.2. Under conditions £ES, Ay and A, the test Vr = Tja,>cy
belongs to K..

The theorem is proved In Section 4.

3 Proof of Theorem 2.1

In this section, we study the test ¢p = ly5,54.y, Where
0 N2
o = T/ <fT(x) ~ flr— 19T)> da.

Under the basic hypothesis Hy, the density of the invariant law can be
presented as follows:

exp{2 [ S.(y — ¥)dy}
[ exp{2 [ S.(z — ¥)dz}dy
exp{2 [; " S.(y)dy}
S exp{2 [177 Su(2)dz}dy
= flx—=19).

Note that the distribution function of the process satisfies

f(x,9)

U)

F(z,9) = / "y —9)dy = / )y = Fe - 0).

6
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In addition, for any integrable function h,

Eyh(y — ) = /_Oo h(z — 9)f(z — 9)dz

oo

- /_ T h@) f@)dz = Boh(&). (3.1)

oo

Note that the Fisher information in our case does not depend on the unknown
parameter v:
I =Ey,5.(Es, — V0)* = EoS. (&) > 0.

where 9 is the true value of the unknown parameter.
From the condition Ay, it follows that there exist some constants A > 0
and v > 0 such that for all |z| > A,

sgn(x)S,(x) < —. (3.2)

It can be shown that for x > A,

flz) = G(;*)exp{z (/OA+/A) S*(y)dy} < Qe

Similar result can be deduced for z < —A, so we have

f(z) < Ce @l for |z > A. (3.3)

Let the conditions Ay and A be fulfilled, then the MLE 97 is consistent,
i.e., for any v > 0, R
lim Py, {|0r — J| > v} =0;
T—o00

it is asymptotically normal
Ly ANT (7 — o)} = N(0,T7"); (3.4)

and the moments converge i.e., for p > 0

lim Ey, ﬁ(ﬁT —o)| =Eolal”,

T—o00

‘p
where @ ~ AN(0,171). The proof can be found in [9],Theorem 2.8. We can

define
i=1 / S (y)v/T )W (1),
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and denoted Gy = VT (1§T — ), the asymptotical normality (3.4) can be
written as

Eﬁo {ﬂT} = L {ﬂ} . (35)

We define np(z) = VT (fT(:c) — f(z — 190)). In [9] Theorem 4.11, we can
find the following representation

nr(r) = \/T(]?T<5U) — f(z — 1))
fla—0) [ (Lysay — Fly — o)
VT /Xo ( fly — o) ) v

_Qf(x\/%ﬁo) /OT (]I{Xt>;}()—(t1i(f92)— 190)) dWw,.  (3.6)

|
B

Let us put
11{y>9c} - F(y)

Then nr(z) can be written as

1 [
M(y 190, xr — 190)(1

TIT(I) - \/— o
/ M 190,33’ — ﬂo)th (37)

We can state

Lemma 3.1. Let the condition Ay be fulfilled, then

o0 o 2
/ E, ( M(y,x)dy) dz < 0.
0

—00

Proof. Applying the estimate (3.3), for x > A,
&o 2
0
S * Tyyon F 2
SCH ( [ e sy s

</ //)(/f )Z”
o [ ([ B [ 500
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Further,

e
< f@)? _: < / ! /_ ooaexp( / S dv) dudy+Cl) F(2)dz
(

N

~A -A oy 2
< f(x)Q/ Cg/ / e_QV(y_“)dudy+Cl) f(2)dz

<op@r [P s Ofe < et

—0o0

moreover
z)?
d
ar f (/ 7 R
S (L />—f@” ) .
A fly
. 2
< [(as@ e [Ceremay) s
A A
S/ (Cle—2ya:+cvée—27(r z) Cl —2y(z— A) .Ce™ 2’yzdz
A
< e_47“”/ (C’ge%z + C’4e_272) dz < Ce ™7,
A
and finally

e [T F(y)dy)2 Fle)dz
< Cf(x / ( / / —2(u= y)dudy) e %dz

< C’f(:z:)Q/ (z — )% ?*dz
< Cf(x)Q/ s+ ds < Ce™12,
0

Then we have

o 2
E, ( M (y, :v)dy) < Ce 2l for o > A. (3.8)
0

9
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Similar estimate can be obtained for x < —A, therefore the result holds for
|z| > A. We obtain finally

00 o 2
/ E, < M (y, x)dy) dz
—0o0 0

B (/:; /_i+/:o> Eo( 060 M(y,x)dy)zdx

< Ol/ 6271(1%' —+ CQ + 03/ e_nyde < Q.
—00 A
This result yields directly the conditions O of Theorem 4.11 in [9]:
EgOM(fqgo — ’190, T — ’190)2 = E()M(&), T — 190)2 < 00,

and
2

&
Ey, ( 0 M(y — Jo, z — ﬁo)dy) < 00.
0

So we can deduce the convergence and the asymptotical normality of nr(zx).
In fact under the condition Ay, the LTE fr(z) is consistent and asymptoti-
cally normal, that is

nr(w) = VT (fr(e) = fla = 9)) = nla = o).
where n(z) ~ N (0, d(x)?), and

]I{50>x} - F(SO))z .

d(x)* = 4f(2)*E, < &)

Moreover

Ey, (r(z)nr(y))

=4f(z—90)f(y — o) Eo (

(Lieysa—voy — F (&) (Tigysy—o0y — F(&))
f(&0)? '

We can define
o) = [ M) VTAw ).

The distribution of n(z) is N(0, E¢M (&, r)?), and we have the following
convergence
nr(x) = n(z — Jo). (3.9)

For 47 and nr(z), we need more than (3.5) and convergence (3.9).

10
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Lemma 3.2. Let conditions Ay and A be fulfilled, then (nr(z1), ..., nr(xk), Ur)
18 asymptotically normal:

L (nr(x1), ... nr(zy), dr) = L (1 — o), ..., n(zr — Do), 4),
for any x = {x1, 79, ..., 23} € R,

Proof. The first integral in (3.7) converges to zero, so we only need to verify
the convergence for the part of It6 integral. Let us denote for simplicity

1 T
N (x) = ﬁ/o M (X, — 09, x)dW,.
It is sufficient to verify that for any x = {x1, xo, ..., % },

Remember that 7 can be defined as follows,

Zr(ur) = sup Zr(u), Ur={u:9+ o

sup 7 € e}, (3.11)

where

APy, o 2
ZT(U) = F(X ) = exXp UAT — ?I +7rrop.
9

Here Ar = \/LTIOT Si(Xp — 09)dW; and ro — 0. It was proved in [9],
Theorem 2.8 that Zp(-) converges in distribution to Z(-), where

where A is a r.v. with normal distribution A/ (0, I'), which can be written as

A= / S )T AW ().

Therefore

A A
Ur — U = —.
T T

Take u = {uy, us, ..., U, }. We have to verify that the joint finite-dimensional
distribution of Yr
Yy = (np(21), mp(x2), . np(x), Zr(wr), Zr(ug), ..., Zr(un))

11
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converges to the finite-dimensional distribution of Y

Y = (77(3:1)7 77(3:2)7 s n(xk)a Z(”l)a Z(“Z)a ) Z(um>) :
Note that the only stochastic term in Zp(u) is Ar, so (3.10) is equivalent to

(np (1), mp(x2), - mp(aw), Ar) = (n(a1), n(x2), ...n(xx), A) . (3.12)
Take \ = {/\1, )\2, )‘k—l-l} and put
h(y,x,\) = Z)\l (y, 1) + Nep155 (y).

We have
Eﬂoh(gﬁo - 190, X, A)Q - EUh(&)) X, )‘)2

:/_OO (ZA, (y, 21) + M1 S (y )) f(y)dy

= /_00 (Z 2)\lf($z) ]I{y>xl}f(_y)F(y) -+ )\k+1Si(y) f(y)) f(y)dy
0o k k B -
-/ (Z B e

k
+ Z At Ak+1 (H{y>mz} - F(y)) Si(y) + >‘k+18/(y>2f(y)) dy < oco.
1=1
The law of large number gives us
1 (7
T/ B(X, — Po, %, M2t — Eoh(&, %, \)2.
0

Moreover, the central limit theorem for stochastic integral gives us
1 T
ﬁ/o (X — Yo, x, \)dW; = N (O, Eoh(&o, x, )\)2) .

In addition > A\m(z;) + A\gr1A is a zero mean normal r.v. with variance
=1

f 2
E, (Z () + )\k+1A>

=1
k k k

= ) MAnEo (n(z)n(zm) + > MdkpaBo(n(2)A) + A2 Eo(A)?.

=1 m=1 =1

12
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Furthermore
Eo (n(z1)n(wm))
— Af(m) f(z) /_ Z (Lgy>ay — F(y?f;g{y”’”} - F(y))d%
and
Eo(n(z)A) = =2f(z) /_Z(H{y”l} ~ F(y)S.(y)dy,
N Y
We find that

k 2
Egoh(&go — 190, X, )\)2 = th(fo, X, )\)2 = Eo (Z )\ﬂ7($l) + )\k—i-lA) .

1=1
This is as to say
k k
Z Mg (1) + A Ar = Z An(xr) + Mg A
=1 =1

thus (3.10) follows from this last convergence in distribution, and so the
lemma is proved.

Lemma 3.3. Let conditions Ay and A be fulfilled, then

o [~ b - anr@)acy — f [ o) - a0 ac)

o0 —00

Proof. Denote (r(z) = n%(z) — a7 f'(z) and ((x) = n(z) — af'(x), we will
prove the following properties
i) For z,y € [-L,L] and |z —y| < 1,
Ey,|Cr(x)? — Cr(y)?)? < Clz —y|°,  with some 6 > 0. (3.13)

ii) Ve > 0, 3L > 0, such that
Ey, / Cr(z)*dr <e, VT > 0. (3.14)
{l[>L}

13
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From i) it follows the convergence in every bounded set [—L, L]:

cf / LLCT(x)2dx} — f / LLC(x)de}.

The result in i) along with ii) gives us the result.

First we prove i). We have

Ey, (¢r(2)?) < 2Eg ) (2)” + 2f (2)°Ey, a7 < C.

Eo, |Cr(2)? = Cr(y)?|
= Ey, (ICr(z) + &) Pl¢r () = Cr(y))?)
< CEy, |¢r(x) — Cr(y))?
< O(f'(x) = f'(y) Egoltr|* + Eo | (0 (x) — 0z (y)) >

For the first part, let us recall the following result, given in [9], page 119: for
any p > 0, R > 0, chosen N sufficiently large, we have

Cn

P {|ir|” > R} < BT

Now, denoted Fr(u) the distribution of |ar|, we have

Eﬁ0|ﬁT|p = / U,deT(U) S 1 —/ Upd[l — FT(U)]
0 1

<1-[1— Bp(1)] +p/ w1 N 4 < ¢ (3.15)
1

uN/P -

Remember that under condition Ay, S, and f are sufficiently smooth. So,
for x,y € [-L, L] we can write

[f(@) = fWl = )@=yl =25.(2)f(2) (@ —y)| < Clz —yl,

and

[f'(@)=f' W) = ["(2)(@=y)| = [4f(2)S:(2) + 2f (2) S.(2)| e —y| < Cla—yl.

So we have

(f'(@) = F'(y)) By lar|* < Clz — yf*.

14
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For the second part, we can write
Eqgo|(n7(x) — n7p(y))?

= C,Ey, (% /OT(M(Xt — g, x) — M(X,; — 190,y))th)2

C T
< Tl Eg, (M (X, — Yo,2) — M(X; — o, y))* dt
0

= C\Eo (M (&,2) — M(%.y))°.
Suppose that z < y,

Eo (M(&,x) — M(&.,y))?

- / Oo (2?52 (f(x) - f<y>>)2f<z>dz

[ (2% (1 - F(2))f(x) + F(z)f(y») F()dz
[ (21;(—;(2)%) - f<y>>) F()dz
< Ci(z—y)' + Cy(z —y) + Cs(z —y)* < Oy — x).
Similar result holds for x > y. Then we obtain

2
Ey, [n3(x)* = n? ()| < Clz—y|, z,yecR.

Thus we have )
Ey, |¢r(2)? — Cr(y)?|” < Clz —yl.
Now we prove ii). As in Lemma 3.1, we can deduce that
EoM (&, 2)* < Ce " for x > A.

So for L > A,
> 2 * /1 T 2
Eﬂo/ (77%(55)) dz = Eﬂo/ (_/ M(Xt — ﬂo,x)th) dz
L L T Jo
< C/ EoM (&, z)*dr < C’/ e % dr < Ce™ L,
L L

Note that f'(z) = 2S.(x)f(z) and along with (3.15) we get
| Bl - f@yin) s
L
< /00 (2Ey,nr(z)? 4 2f'(2)Ey, 07) dz
L

o0
§/ Ce 2%dg = Ce™2F,
L

15
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For any € > 0, take L = IH(E/C V A, then we have (3.14).

Proof of Theorem 2.1.

We can write

s = T [ (frla) = fla—ir)do
= 7 [ ((rle) = fla = 00) + (o = 90) = Sl = 9r) o
-/ (f (fr(e) - f<x—z9o>>—ﬁwT—ﬁo)f'(x—éT))gdx

= /_Oo (UT(JU) — G f'(z — 1§T)>2d37-

See that

B [ (i1f/a =) - e = 00) do
= By, h

/_ (u§ P& — 05)2 (g — 190)2> de,

and that f'(x — ) = Si(x — V) f(x = 0), f'(z,0) = Si(x =) f(x — V) +
S.(x — V)% f(x — ¥), the smoothness of S,(-) gives us the convergence

E,, /_OO (317 = ) — 7' — o)) dr — 0,

[e.9]

Applying Lemma 3.1 and Lemma 3.3 we get
s = [ (e =0~ i f o - 00) ot of)
— / n(x — 90) — af' (x — 9o))* dz
= [ - i) ay=s

We see that the limit of the statistic 6 does not depend on ¥y, and the test

16
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Yr = lys,>a.) with d. defined by
P (5 > ds) —¢
belongs to K..

The same procedure can be applied with other estimators of the unknown
parameter and of the invariant density, provided that they are consistent

and asymptotically normal. For example, we can take the minimum distance
estimator (MDE) . for dy:

Oy = arg inf | F(-) = F(0,)]|

and the kernel estimators fr(z) as estimator for the invariant density

1 T
fr(z) = Nia /0 K(VT(X, — x))dt.

Under some regularity conditions, the MDE 19?} is asymptotically normal (See
[7] or [9]):
Wy = VT (0 — 0o) = 0" ~ N(0, R(¥)).

Also if we do not present explicitly R(-) here, it can be verified that R(J) =
R(0) does not depend on ¢J. The kernel estimator fr(z) has the same asymp-
totic properties of the LTE (See [9]). Then we can construct the statistic

i =1 [ (F@) = fla = 05)" da,

[e.e]

which converges to

that does not depend on the unknown parameter. So that the test Ty, -
with k. the solution of the equation

P(u>k)=c¢

belongs to K..

17
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4 Proof of Theorem 2.2

In this section, we study the GoF test Wy = T a, >} defined by the statistic

Ar = T/OO (FT(:C) — F(x — @T))de,

—00

where Fp(x) is the empirical distribution function:

. 1 (T

Denote nk(z) = VT(Fr(z) — F(z — 9,)) and
F(zANz)— F(z)F(x)

H(z,z) =2

In [9] Theorem 4.6, the following equality is presented:

2 [T F((zAx) =) — F(z — ) F(z — )

UT(JJ) N \/_ Xo f(Z—ﬁo) @
(Xy ANx) —0g) — F(Xy —9o)F(z — )
\/_/ 7%= 00) e
Then
P _ 2 X F((z = 99) A (z —19g)) — F(z — 00)F(x — 1) B
i) = ﬁ/X f(z—0) ‘
_ 2 TF((Xt—’LgD)/\(:U—’l?o))—F(Xt—’l%)F([E—’L%)
7, 70X~ 00) A
= L( . H(z — 1o, x — Jg)dz — XOH(Z—Q? x—ﬁ)dz)
T 05 0 ; 05 0

/ HX, — o, 2 — 00)dW,.

Using (3.2) we have, for z > A,

o0 y
1—F(z) = C/ exp (2/ S*(T)dr> dy < Ce ™"
T 0

o0
— < C’/ e—2v(y—z)dy < C.

and
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For x < —A we have F(x) < Ce 2l and we can write

F() _ / " exp(2 / " 5.(r)dr)dy < C.

f(z) o0

These inequalities allow us to deduce the following bounds

Eyg, H (&9, — Vo, 2)* = EgH (&, 2)* < e |z > A (4.1)
and

§vq—"0 2 &o 2
Ey, </ H(z,:z:)dz) = E ( H(Z,x)dz) < Ce |z > A
0 0
(4.2)

Moreover

/_ "B, ( Ogo H(z,x)dz>2dx < . (4.3)

o0

Hence we get the asymptotic normality of n%(z):
nr () = 0" (& — Vo) ~ N (0,4, (H (&0, = — ¥o))*).

As in Lemma 3.2 and Lemma 3.3, if conditions A and A, hold, we can
show the convergence of the vector (nf(z1), ..., 0¥ (zy), dr):

'6190 (775@1)7 ) 775(9%), aT) = ‘Cﬁo (UF(fEl - 190)7 ) 775(9% - 00)’ ﬁ)

and the convergence of the integral:

ﬁﬁo{/z (nk(x) — aipf(z —0)) dz} — g{/

—0o0

o0

(1 ()~ ()" e .
We obtain finally

Ap = T/_OO(FT(;E)—F(:C,@T))%;

(e 9]

= / N VT (Fr(z) — F(z — 00)) — VT (0 — 0p) F'(z — d7)] da
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So that the limit of the statistic A does not depend on vy, and the test
Up = M{a,;>c.} With c. the solution of

PA>c)=c¢
belongs to K..

Remark. It can be shown that in the case of Kolmogorov-Smirnov tests

SOT = ]I{WT>P6}’ q)T = H{QT>QE}
where
wr = sup fT(x)—f<x—1§)‘\/i QT:sup’FT(x)—F<:c—1§>‘\/T

the limit distributions of these statistics (under hypothesis) do not depend
on . The proofs can be done following the same lines as in Kutoyants [9]
and Negri [14] respectively.

5 Consistency

In this section we discuss the consistency of the proposed tests. We study
the tests statistics under the alternative hypothesis that is defined as

Hy S() €S( )7

where §(0) = {S (z — ),V € [, 5]}
Under this hypothesis we have:

Proposition 5.1. Let all drift coefficients under alternative satisfy the con-

ditions ES, Ay, and A, then for any S(-) ¢ S(O) we have

PS ((ST > dg) — 1,

and
Ps(Ar >c.) — L

Proof. Remember that under hypothesis H;, the MLE Dy converges to the
point which minimize the distance

D(¥) = Es (S.(¢ — 9) — S(¢))°,

20
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where ¢ is the random variable of invariant density fs(z) (See |9], Proposition
2.36): ) )
O — J9 = arg E,Iel(gD(”&).

In addition, denoted with || - || the norm in L?, we have

2
- )

o) — fs(o)||”

Pgs (67 > d.) =Pg (HfT() — f(,97)

2

(Hfs flx — ) ds) :
| (fste) = fa = i) o

_ T/OO (Fs(a) = Flz — o) + 0(1)>2dx

=(C+0o(1)T — o0, asT — oo.

Moreover
2) =Eg (T/_: (fT(x) - fs(x))Zdﬂv)

Es (HfT(ﬂC) — fs(x)

< C’/ Es(nr(z)?)dz < C/ e 2eldy < oo

o — 00

We can deduce

| 5(2) — s )|

And finally we have the result for d7:

Py (67 > d.) > Pg (Hfs( ~ f(z — dr) ’

fr(z) = fs(x H>d> — 1.

A similar result can be obtained for Ar.

6 Numerical Example

We consider the Ornstein-Uhlenbeck process. Remind that the tests for O-U
process were studied in [11] as well. Suppose that the observed process under
the null hypothesis is

dXt - _(Xt - ﬁo)dt + th, X(), O S t S T

The invariant density is f(z — 0,), where f(z) = 7~ /2e %",
The log-likelihood ratio is
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o.7

Donsity of doita B [ = — — bendity of Deita

[SR)

o.6f

o.s5 |

o.al - |

1

= o8 |

o.alf .

o6l

o.2 - \
oal

o.z|

Figure 1: Density of the statistics. On the left the density of §, on the right
the density of A

T 1 T
L(XT,9) = —/ (X; —9)dX; — 5/ (X, — 9)2dt,
0 0
so that the MLE @T can be calculated as

X
/ X,dt LA =X

The Fisher information in this case equals to 1, and the LTE is

s 1 I
Fol@) = 21X — o] — [Xo — ) —/ sen(X, — x)dX..
T T J,
The conditions Ay and A are fulfilled, then the statistic is convergent:
o0 . . 2 o0 9
or :/ (fT(ac) — flr— 79T)) do = § = / ¢ (x)da,

where the limit process (i(x) = n(z) — uf'(x) can be written as

(i(z) = / N (%(@W T f() f(y)) AW (y).
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Thresholds

Figure 2: Threshold for different €. The solid line represents the values for
0, the dotted line represents the values for A

We have a similar result for the test based on the EDF:

Ap = /OO (Fr(x) - Fla - qéT))ng; A= /Z (Go(x))? de,

o0 -

where the limit process can be written as

o) = [ (2”” o)~ Fpkle) | f(w)\/f(y)> aw(y).
—00 f(y)

We simulate 10° trajectories of § (resp. A) and calculate the empirical
1 — & quantiles of § (resp. A). We obtain the simulated density for 6 and A
that are showed in Graphic 1. The values of the thresholds d. for different ¢
are showed in Graphic 2.
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