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Thesis Outline

The aim of this thesis is to investigate about the quantitative models used for

pricing and managing life insurance risks. It was done analyzing the existing

literature about methods and models used in the insurance field in order to

developing (1) new stochastic models for longevity and mortality risks and (2)

new pricing functions for life insurance policies and options embedded in such

contracts. The motivations for this research are to be searched essentially in:

• a new IAS/IFRS fair value-based accounting for insurance contracts (to be

approval, probably in 2013/2014),

• a new risk-based solvency framework for the insurance industry, so-called

Solvency II, that will becomes effective in 2013/2014,

• more rigorous quantitative analysis required by the industry in pricing and

risk management of insurance risks.

The first part of the thesis (first and second chapters) contains a review of the

quantitative models used for interest rates and longevity and mortality modeling.

The second part (remaining chapters) describes new methods and quantitative

models that it thinks could be useful in the context of pricing and insurance risk

management. The organization of the thesis is detailed in the following.

Chapter 1: Interest rates modeling: a review. The chapter reviews some

basic concepts and definitions related to interest rates and, briefly, the standard

market models for pricing bond and derivatives are explained. Moreover, a re-

view of the main short-rate models (both one- and two-dimensional) is provided.

Chapter 2: Longevity and mortality modeling: a review. The chapter

contains a review of the literature related to longevity and mortality models. The

chapter is devoted to review traditional and well-established models in longevity

and mortality analysis. However, recent developments in the longevity and mor-

tality modeling are considered taking into account contributes coming from the

3



4 CONTENTS

industry.

Chapter 3: A new stochastic model for estimating longevity and mor-

tality risks. A new stochastic model for estimating longevity and mortality

risks is presented. The model is able to derive the dynamic of the entire term

structure of mortality rates by means of a closed-formula. It is consistent with

the Gompertz law and is characterized by a stochastic dynamic where two state

variables follow an autoregressive stochastic process. The model can be employed

to generate stochastic scenarios taking into account the long-term mortality trend

observed in historical data and to evaluate longevity and mortality risks when an

internal model is used as prescribed by the risk-based Solvency II requirements

for European insurance companies. To assess the forecasting capability of the

model, Italian population mortality data are used. A comparison with the Sol-

vency II standard formula is performed in order to quantify the Solvency Capital

Requirement for mortality and longevity risks.

Chapter 4: Intensity-based framework for longevity and mortality

modeling. An intensity-based framework for longevity and mortality model-

ing is implemented where the use of affine stochastic models is emphasized.

Chapter 5: A new approach for pricing of life insurance policies. A

new approach for pricing of insurance contract is presented. According to this

approach, insurance contracts are view as a swap in which policyholders exchange

cash flows (premiums vs. benefits) with an insurer as in an interest rate swap or

credit default swap.

Chapter 6: Calibrating affine stochastic mortality models using term

assurance premiums. The chapter is focused on the calibration of affine

stochastic mortality models using term assurance premiums. Using a simple

bootstrapping procedure, the term structure of mortality rates is derived from a

stream of contract quotes with different maturities. This term structure is used

to calibrate the parameters of affine stochastic mortality models where the sur-

vival probability is expressed in closed-form. The Vasicek, Cox-Ingersoll-Ross,

and jump-extended Vasicek models are considered for fitting the survival prob-

abilities term structure. An evaluation of the performance of these models is

provided with respect to premiums of three Italian insurance companies.

Chapter 7: Pricing of extended coverage options embedded in life

insurance policies. A new model to evaluate the extended coverage option

embedded in life insurance contracts is developed. The extended coverage option

gives to the policyholder the right to extend the term of the policy after the origi-
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nal maturity maintaining the contractual conditions as valid. This type of option

is common in the European insurance market but literature’s references related

to the evaluation of such type of option are very poor. In this chapter, a pricing

model for the extended coverage option embedded in endowment life policies is

provided. We take into account interest rates and mortality rates as the main

risk factors of the option. We provide an evaluation method in closed-form in

which the well-known Black (1976) option pricing formula is used with the as-

sumption that the premiums (single or periodic) of the endowment life insurance

contract are lognormal martingales under an appropriate probability’s measure.

The proposed model could be useful under the new IAS/IFRS market-consistent

accounting for insurance contracts and the risk-based Solvency II requirements for

the European insurance market. In fact, with the new accounting and solvency

regimes, insurers will have to identify all material contractual options embedded

in life insurance policies.

Chapter 8: Market-consistent approach for with-profit life insurance

contracts and embedded options: a closed formula for the Italian poli-

cies. In this chapter, we present a simplified approach in closed-form to provide

the market-consistent value for the Italian with-profit life insurance policies. Fur-

thermore, we are able to compute the value of the minimum guaranteed option

and the future discretionary benefits as defined by the Solvency II requirements.

Our approach could be used in order to quantify the technical provisions for

Solvency II purposes. In addition, it could be useful under the new IAS/IFRS

principles for insurance contracts. Assuming a specific stochastic dynamic for

the segregated fund, we derive a closed formula, under the well-known Black and

Scholes framework, such that the value of the contract and the related embedded

options can be computed as a function of the effective asset allocation of the

segregated fund. We describe the model calibration procedure and provide some

numerical results for the Italian with-profit life policies.





Chapter 1

Interest rates modeling: a review

1.1 Cash account

We define C(t) to be the value of a cash account at time t ≥ 0. We assume the

cash account evolves according to the following differential equation

dC(t) = r(t)C(t)dt, C(0) = 1,

where r(t) is the instantaneous risk-free interest rate. Consequently,

C(t) = exp

{∫ t

0
r(u)du

}
.

The quantity,

D(t, T ) =
C(t)
C(T )

= exp

{
−
∫ T

t
r(u)du

}
,

is defined as stochastic discount factor. It is the value at time t of one unit of

cash payable at time T > t.

1.2 Year fraction

We denote by τ(t, T ) the time measure between t and T , which is usually referred

to as year fraction between the dates t and T . The particular choice that is made

to measure the time between two dates is known as day-count convention.

1.3 Day-count convention

In the interest rate market, the appropriate day-count convention is used in order

to fix the time measure between two dates. The number of days between two

7
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dates includes the first date but not the second. In order to indicate a date di,

we use the following notation

di =
[
dayi,monthi, yeari

]
,

where dayi, monthi and yeari represent the day, the month and the year of the

date di, respectively.

In order to quantify the year fraction, different conventions are used as specified

in the following.

ACT/365

With this convention a year is 365 days long and the year fraction between two

dates is the actual number of days between them divided by 365. Denoting by

d2 − d1 the actual number of days between the two dates, the year fraction is

τ(d1, d2) =
d2 − d1

365
.

ACT/360

In this case, a year is assumed to be 360 days long. The corresponding year

fraction is

τ(d1, d2) =
d2 − d1

360
.

30/360

With this convention, months are assumed 30 days long and years are assumed

360 days long. The corresponding year fraction is

τ(d1, d2) =
day2 − day1 + 30

(
month2 −month1

)
+ 360

(
year2 − year1

)
360

.

ACT/ACT

The convention ACT/ACT means that the accrued interest between two given

dates is calculated using the exact number of calendar days between the two dates

divided by the exact number of calendar days of the ongoing year.

Under this conventions, it counts the number of whole calendar years between

two dates and adds the fractions of the year at the start and end of the period

τ(d1, d2) =
y2 − d1

y2 − y1
+ (n− 3) +

d2 − yn−1

yn − yn−1
,

where yi are years end dates such that

yi =
[
31, 12, yeari

]
,
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and

y1 ≤ d1 ≤ y2 < ... < yn−1 ≤ d2 ≤ yn.

If each year is assumed to have 365 days, the expression simplifies to the case

ACT/365.

1.4 Zero-coupon bond

A zero-coupon bond with start date in t and maturity in T is a financial security

paying one unit of cash at a specified date T without intermediate payments.

The price at time t < T is denoted by P (t, T ).

There is a close relationship between the zero-coupon bond price P (t, T ) and

the stochastic discount factor D(t, T ). If the rates are deterministic then D is

deterministic as well and necessarily D(t, T ) = P (t, T ). Under stochastic interest

rates, P (t, T ) corresponds to the expectation of D(t, T ) under the risk-neutral

probability measure.

Being Rt the filtration generated by the term structure of interest rates up to

time t, it follows that

P (t, T ) = EQ
[
C(t)
C(T )

∣∣∣∣Rt

]
,

where EQ is the expectation under the risk-neutral measure denoted by MQ.

1.5 Spot interest rates

1.5.1 Simply-compounded spot interest rate

The simply compounded spot interest rate prevailing at time t for the maturity T

is denoted by Rs(t, T ). It is the constant rate at which an investment has to be

made to produce an amount of one unit of cash at maturity, starting from P (t, T )

units of cash at time t, when accruing occurs proportionally to the investment

time. In formulas

Rs(t, T ) =
1

τ(t, T )

1− P (t, T )

P (t, T )
=

1

τ(t, T )

[
1

P (t, T )
− 1

]
.

The zero-coupon bond price can be expressed in terms of Rs(t, T ) as

P (t, T ) =
1

1 + τ(t, T )Rs(t, T )
.

XIBOR rates

We refer to the interbank rates quoted in different currencies. Such rates are

known as LIBOR rates (London InterBank Offer Rates). We indicate with XI-

BOR the generic interbank rate refers to the currencyX. For example the XIBOR
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quoted in Euro is the EURIBOR. The market XIBOR rate for the period [t, T ],

that we denote by XIBOR(t, T ), is a simply-compounded rate. Consequently,

Rs(t, T ) = XIBOR(t, T ).

1.5.2 Annually-compounded spot interest rate

The annually-compounded spot interest rate prevailing at time t for the maturity

T is denoted by Ra(t, T ). It is the constant rate at which an investment has to

be made to produce an amount of one unit of cash at maturity, starting from

P (t, T ) units of cash at time t, when reinvesting the obtained amounts once a

year. In formulas

Ra(t, T ) =

(
1

P (t, T )

) 1
τ(t,T )

− 1.

The zero-coupon bond prices expressed in terms of annually-compounded rates

is

P (t, T ) =
(
1 +Ra(t, T )

)−τ(t,T )
.

1.5.3 k-times-per-year compounded spot interest rate

The k-times-per-year compounded spot interest rate prevailing at time t for the

maturity T is denoted by Rk(t, T ). It is the constant rate (referred to a one-year

period) at which an investment has to be made to produce an amount of one unit

of cash at maturity, starting from P (t, T ) units of cash at time t, when reinvesting

the obtained amounts k times a year. In formulas

Rk(t, T ) =

(
k

P (t, T )

) 1
kτ(t,T )

− k.

The bond prices expressed in terms of k-times-per-year compounded rate is

P (t, T ) =

(
1 +

Rk(t, T )

k

)−kτ(t,T )

.

1.5.4 Continuously-compounded spot interest rate

The continuously-compounded spot interest rate can be obtained as the limit of

k-times-per-year compounded rates for the number k going to infinity.

In fact, since that

lim
x→∞

(
1 +

a

x

)xb
= eab,
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it follows that

lim
k→∞

(
1 +

Rk(t, T )

k

)−kτ(t,T )

= e−Rk(t,T )τ(t,T ).

The continuously-compounded spot interest rate prevailing at time t for the ma-

turity T is denoted by Rc(t, T ). It is the constant rate at which an investment

of P (t, T ) units of cash at time t accrues continuously to yield a unit amount of

cash at maturity T .

Continuously-compounded rates, commonly defined through the limit relations

above, are such that

Rc(t, T ) = − logP (t, T )

τ(t, T )
.

Consequently, the zero-coupon bond price in terms of the continuously com-

pounded rate is,

P (t, T ) = e−Rc(t,T )τ(t,T ).

1.5.5 The term structure of spot interest rates

A fundamental curve that can be obtained from the market data of interest rates

is the zero-coupon curve at a given date t.

The zero-coupon curve at time t is the graph of the function

T 7→ Rg(t, T ), T > t.

where g = s, a, k, c represents the compounding type.

The zero-coupon curve is also known as term structure of interest rates.

The term yield curve is often used to denote several different curves deduced from

the interest-rate-market quotes.

The sequence Rg(t, T1), Rg(t, T2), ..., Rg(t, Tn), with respect to the vector of ma-

turities, T1, T2, ..., Tn, represents the term structure of interest rates under the

generic compounding g.

The zero-bond curve at time t can be also represented as

T 7→ P (t, T ), T > t.

which, because of the positivity of interest rates, is a T -decreasing function start-

ing from P (t, t) = 1. Such a curve is also referred to as the term structure of

discount factors.

The sequence P (t, T1), P (t, T2), ..., P (t, Tn), with respect to the vector of maturi-

ties, T1, T2, ..., Tn, represents the term structure of discount factors.

It is worth to note that the term structure of discount factors does not depends

by the compounding type.
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1.5.6 Instantaneous spot interest rate (or short rate)

All previous definitions of spot interest rates are equivalent in infinitesimal time

intervals.

The instantaneous spot interest rate, denoted by r(t), is obtainable as a limit of

all the different rates defined above. In fact, for each t, we have that

r(t) = lim
T→t+

Rs(t, T ),

r(t) = lim
T→t+

Ra(t, T ),

r(t) = lim
T→t+

Rk(t, T ),

r(t) = lim
T→t+

Rc(t, T ).

The instantaneous spot interest rate is also known as short rate.

1.6 Forward interest rates

1.6.1 Forward zero-coupon bond price

The zero-coupon bond forward price in t related to an investment that start in T1

and pays one unit of cash in T2, with t < T1 < T2, is

P (t, T1, T2) =
P (t, T2)

P (t, T1)
,

where t < T1 < T2.

1.6.2 Simple-compounded forward interest rate

The simply-compounded forward interest rate prevailing at time t for the expire

T1 and maturity T2. It is denoted by Fs(t, T1, T2) and defined by

Fs(t, T1, T2) =
1

τ(T1, T2)

[
P (t, T1)

P (t, T2)
− 1

]
.

XIBOR rate

Since that the market XIBOR rate is a simply-compounded rates, the simple

forward rate Fs(t, T1, T2) may be viewed as an estimate of the future spot XIBOR

rate. It is denoted by XIBOR(T1, T2).

Consequently, we assume that

Fs(t, T1, T2) = ET2
[
XIBOR(T1, T2)

∣∣∣∣Rt

]
.



1.7. COUPON BOND 13

The expectation ET2 refers to the T2-forward risk-adjusted measure denoted by

MT2 . In the T2-forward risk-adjusted measure, or more briefly T2-forward mea-

sure, the numeraire1 is represented by the price of a zero-coupon bond maturing

at time T2.

1.6.3 Instantaneous forward interest rate

The instantaneous forward interest rate prevailing at time t for the maturity

T1 > t is denoted by f(t, T1) and is defined as

f(t, T1) = lim
T2→T+

1

F (t, T1, T2) = −δ logP (t, T1)

δT1
.

We have also that,

P (t, T1) = exp

{
−
∫ t

t
f(t, u)du

}
.

1.7 Coupon Bond

A coupon bond, is a financial claim by which the issuer, or the borrower, is commit-

ted to paying back to the bondholder, or the lender, the cash amount borrowed,

called principal, plus periodic interests calculated on this amount during a given

period of time.

In this section, we treat the pricing of bonds without taking into account the

credit risk that characterizes such financial instruments.

1.7.1 Fixed-rate bond

A fixed-rate bond is a bond security that bear fixed coupon rates. This contract

ensures the payments at future time T1, T2, ..., Ti, ..., Tn.

In a fixed-rate bond with one unit of notional, interest rates are expressed as a per-

centageK(t, Tn) of the notional. The cash flow payed at time Ti is τ(Ti−1, Ti)K(t, Tn)

while the last one, payed at time Tn, includes the reimbursement of the notional

value of the bond.

The present value of the bond at time t, with t < T1, is

Bfx(t, Tn) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)K(t, Tn) + P (t, Tn).

1The numeraire represents the market price of a traded asset.
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1.7.2 Floating-rate bond

A floating-rate bond is a bond security that bear floating coupon rates where the

interest rate is a linear function of the Libor rate. Usually, the maturity of the

rate is equal to the time between two generic interest payment dates.

In a floating-rate bond with one unit of notional, the cash flow payed at time Ti
is equal to τ(Ti−1, Ti)XIBOR(Ti−1, Ti).

As in the case of the fixed-rate bond, even in the floating-rate bond the last cash

flow includes the reimbursement of the notional value.

The present value of the floating-rate bond at time t, with t < T1, is

Bfl(t, Tn) =

n∑
i=1

P (t, Ti)τ(Ti−1, Ti)Fs(t, Ti−1, Ti) + P (t, Tn).

1.8 Interest rate swap

An interest rate swap (IRS) is a contract that exchanges interest rate payments

between two differently indexed legs, of which one is usually fixed whereas the

other one is floating. Interest rates payments are exchanged at times T1, T2, ..., Ti, ..., Tn.

When the fixed leg is paid and the floating leg is received the interest rate swap

is termed payer IRS and in the other case receiver IRS.

The fixed rate of an IRS is also called swap rate and, with respect to the period

[t, T ], it is denoted by Rsw(t, T ).

The present value of the fixed leg at time t < T1 is

Legfx(t, Tn) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)Rsw(t, Tn),

while the present value of the floating leg is

Legfl(t, Tn) =

n∑
i=1

P (t, Ti)τ(Ti−1, Ti)Fs(t, Ti−1, Ti).

Consequently, the present value of the payer IRS at time tt < T1 is

IRS(p)(t, Tn) = Legfl(t, Tn)− Legfx(t, Tn),

while the present value of a receiver IRS is

IRS(r)(t, Tn) = Legfx(t, Tn)− Legfl(t, Tn).

If fixed-rate payments and floating-rate payments occur at the same dates and

with the same year fractions, we can simplify the pricing formula for the payer

IRS as follows

IRS(p)(t, Tn) =

n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
Fs(t, Ti−1, Ti)−Rsw(t, Tn)

]
.
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In a similar manner, for the receiver IRS we have

IRS(r)(t, Tn) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
Rsw(t, Tn)− Fs(t, Ti−1, Ti)

]
.

Being the interest rate swaps quoted by the market in term of the swap rate

with the fair value of the contract assumed equal to zero, we set Rsw(t, Tn) = K.

Consequently,

IRS(p)(t, Tn) =

n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
Fs(t, Ti−1, Ti)−K

]
.

and

IRS(r)(t, Tn) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
K − Fs(t, Ti−1, Ti)

]
.

Moreover, a payer IRS can be thought also as the difference between a floating-

rate bond and a fixed-rate one. Namely, an IRS can then be viewed as a contract

for exchanging a fixed-rate bond for a floating-rate bond. Consequently, the payer

IRS and the receiver IRS, respectively, can be defined also as follows

IRS(p)(t, Tn) = Bfl(t, Tn)−Bfx(t, Tn),

and

IRS(r)(t, Tn) = Bfx(t, Tn)−Bfl(t, Tn).

1.8.1 Spot swap rate

Interest rate swap are quoted by the market in terms of the spot swap rate

Rsw(t, Tn). Quotations at time t, with t = T0, refer to IRS with present value

equal to zero. Consequently, we have that

Rsw(t, Tn) =

∑n
i=1 P (t, Ti)τ(Ti−1, Ti)Fs(t, Ti−1, Ti)∑n

i=1 P (t, Ti)τ(Ti−1, Ti)
, with t = T0.

1.8.2 Forward swap rate

We may require the above IRS to be fair at time t < T0, where T0 is the issue

date of the IRS and we look for the particular fixed rate such that the above

contract value is zero. This defines a forward swap rate. Considering an IRS

with present value at time t < T0, issue date of the IRS at time T0 < T1, and

cash flows payments at future times T1, T2, ..., Ti, ..., Tn.

The forward swap rate is

Fsw(t, T0, Tn) =

∑n
i=1 P (t, Ti)τ(Ti−1, Ti)Fs(t, Ti−1, Ti)∑n

i=1 P (t, Ti)τ(Ti−1, Ti)
, with t < T0.
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1.9 Interest rate options

An option is a contract in which the seller of the option grants the buyer of

the option the right to purchase from the seller the designated underlying at a

specified price within a specified period of time. The seller grants this right to the

buyer in exchange for a certain sum of money called the option price or option

premium.

The price at which the instrument may be bought or sold is called the exercise or

strike price. The date after which an option is void is called the expiration date.

The market quotes American option, that may be exercised any time up to and

including the expiration date, and European option that may be exercised only

on the expiration date.

When an option seller grants the buyer the right to purchase the designated

instrument, it is called a call option. When the option buyer has the right to sell

the designated instrument to the seller, the option is called a put option. The

buyer of any option is said to be long the option; the seller is said to be short the

option.

In this section, we present the most popular over-the-counter (OTC) interest rate

options (Zero-coupon bond option, Caplet/Floorlet, Cap/Floor, Swaption) and

explain the standard market model for their valuation.

1.9.1 Black (1976) model

Practitioners use Black (1976) model to price and hedge standard fixed-income

derivatives. This model, which is particularly tractable and simple to use, remains

currently the reference for the market in terms of pricing and hedging. However,

this model is based on a strong simplifying assumption related to a stationary

interest rate. Another drawback is the absence of a model for explain the dynamic

of the term structure.

1.9.2 Zero-coupon bond option

A zero-coupon bond option is an option with a zero-coupon bond as underlying.

In this section, we consider European zero-coupon bond options with strike equal

to K and maturity option in T1. The maturity of the zero-coupon bond is in

T2 > T1.

The payoff of the zero-coupon bond call option, for one unit of notional, is[
P (T1, T2)−K]+.

Since that, the spot price at time T1 is equal to the forward price

P (T1, T2) = P (T1, T1, T2),
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we can rewrite the option payoff as[
P (T1, T1, T2)−K]+.

Considering the price of a zero-coupon bond expiring in T1 as numeraire, the

value of the option is

ZCBC(t, T1, T2,K) = P (t, T1)ET1
[(
P (T1, T1, T2)−K

)+
P (T1, T1)

]
=

P (t, T1)ET1
[(
P (T1, T1, T2)−K

)+]
.

Moreover, we assume that under the T1-forward measure, denoted by MT1 , the

forward price is a lognormal martingale

dP (t, T1, T2) = σPP (t, T1, T2)dW T1(t),

where σP is the volatility of the zero-coupon bond forward price and dW T1(t) is

a standard Brownian motion under MT1 .

Applying the Black (1976) model, the present value of the zero-coupon bond call

option at time t < T1 is

ZCBC(t, T1, T2,K) = P (t, T1)
[
P (t, T1, T2)N(d1)−KN(d2)

]
,

where

d1 =

log

[
P (t,T1,T2)

K

]
+ 1

2σ
2
P (T1 − t)

σP
√

(T1 − t)
,

and

d2 = d1 − σP
√

(T1 − t).

The term N(·) denotes the standard normal cumulative distribution function.

Analogously, the price at time t of a zero-coupon bond put option, with one unit

of notional, is

ZCBP (t, T1, T2,K) = P (t, T1)
[
KN(−d2)− P (t, T1, T2)N(−d1)

]
.

Moreover, by the put-call parity, the price at time t of a zero-coupon bond put

option can be written as

ZCBP (t, T1, T2,K) = ZCBC(t, T1, T2,K)− P (t, T2) +KP (t, T1).
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1.9.3 Caplet and floorlet

We define a caplet as a call option on the XIBOR rate. The most usual ones are

the 3-month, 6-month and 1-year XIBOR rates.

Consider the value of a caplet at time t, with strike equal to K. The reference

rate of the caplet is XIBOR(T1, T2). The rate is fixed at time T1 and is related

to the period [T1, T2]. The maturity of the Caplet is at time T2.

The payoff of the caplet, for one unit of notional, is

τ(T1, T2)
[
XIBOR(T1, T2)−K]+.

Instead of using the XIBOR rate, let us use as underlying variable the forward

XIBOR rate Fs(t, T1, T2).

Since that, the spot rate at time T1 is equal to the forward rate

XIBOR(T1, T2) = Fs(T1, T1, T2),

we can rewrite the option payoff as[
Fs(T1, T1, T2)−K]+.

Consequently, a caplet is a call option on the simple forward XIBOR rate.

Considering the price of a zero-coupon bond expiring in T2 as numeraire, the

value of the caplet is

Caplet(t, T1, T2,K) = τ(T1, T2)P (t, T2)ET2
[(
Fs(T1, T1, T2)−K

)+
P (T2, T2)

]
=

τ(T1, T2)P (t, T2)ET2
[(
Fs(T1, T1, T2)−K

)+]
.

Moreover, we assume that under the T2-forward measure the simple forward rate

is a lognormal martingale

dFs(t, T1, T2) = σFsFs(t, T1, T2)dW T2(t),

where σFs is the volatility of the simple forward rate and dW T2(t) is a standard

Brownian motion under MT2 .

Applying the Black (1976) model, the present value of the Caplet at time t is

Caplet(t, T1, T2,K) = τ(T1, T2)P (t, T2)
[
Fs(t, T1, T2)N(d1)−KN(d2)

]
,

where

d1 =

log

[
Fs(t,T1,T2)

K

]
+ 1

2σ
2
Fs

(T1 − t)

σFs
√

(T1 − t)
,
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and

d2 = d1 − σFs
√

(T1 − t).

Analogously, the payoff of the floorlet is

τ(T1, T2)
[
K − L(T1, T2)]+,

and its present value is

Floorlet(t, T1, T2,K) = τ(T1, T2)P (t, T2)
[
KN(−d2)− Fs(t, T1, T2)N(−d1)

]
.

It is important to note that there is equivalence of a caplet to a zero-coupon bond

option. A caplet is like a zero-coupon bond put option with strike

K
′

=
1

1 + τ(T1, T2)K
,

and 1 + τ(T1, T2)K unit of notional. Consequently, we have that

Caplet(t, T1, T2,K) =
[
1 + τ(T1, T2)K

]
ZCBP (t, T, S,K

′
),

and

Floorlet(t, T1, T2,K) =
[
1 + τ(T1, T2)K

]
ZCBC(t, T, S,K

′
).

1.9.4 Cap and floor

A cap is a contract that corresponds to a sum of caplet where each exchange

payment is executed only if it has positive value.

We consider a cap with strike K and maturity at time Tn where the reference

rate reset at future times T0, T1, ..., Ti−1, ..., Tn−1. The cap price at time t will be

equal to the sum of the prices of the single caplets

Cap(t, Tn,K) =

n∑
i=1

Caplet(t, Ti−1, Ti,K) =

n∑
i=1

τ(Ti−1, Ti)P (t, Ti)
[
Fs(t, Ti−1, Ti)N(d1,i)−KN(d2,i)

]
.

where

d1,i =

log

[
Fs(t,Ti−1,Ti)

K

]
+ 1

2 σ̄
2
Fs

(Ti−1 − t)

σ̄Fs
√

(Ti−1 − t)
,

and

d2,i = d1,i − σ̄Fs
√

(Ti−1 − t).
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The quantity σ̄Fs is the so-called flat or par volatility. The flat volatility is a kind

of average volatility of the set of individual caplet volatilities. The OTC market

quotes the implied volatility of caps and floors for different maturities.

Analogously, the price at time t of a floor will be

Floor(t, Tn,K) =

n∑
i=1

Floorlet(t, Ti−1, Ti,K) =

n∑
i=1

τ(Ti−1, Ti)P (t, Ti)
[
KN(−d2,i)− Fs(t, Ti−1, Ti)N(−d1,i)

]
.

Since that the price of a caplet/floorlet can be written in terms of the price of a

zero-coupon bond option, it holds that

Cap(t, Tn,K) =

n∑
i=1

[
1 + τ(Ti−1, Ti)K

]
ZCBP (t, Ti−1, Ti,K

′
i), (1.-18)

and

Floor(t, Tn,K) =
n∑
i=1

[
1 + τ(Ti−1, Ti)K

]
ZCBC(t, Ti−1, Ti,K

′
i), (1.-17)

where

K
′
i =

1

1 + τ(Ti−1, Ti)K
. (1.-16)

1.9.5 Swaption

An european swaption is an option allowing the holder to enter some specified

underlying interest rate swap contract on a specified date, which is the expiration

date of the option.

There are two kinds of european swaption:

• the receiver swaption is an option that gives the buyer the right to receive

the fixed leg of the swap,

• the payer swaption is an option that gives the buyer the right to pay the

fixed leg of the swap.

Consider an europen swaption that give the right to enter a payer interest rate

swap at time T0 > t such that fixed-rate payments and floating-rate payments

occur at the same dates with the same year fractions. The time T0 is the maturity

of the swaption and it coincides with the issue date of the underlying. The interest

rate swap has maturity at time Tn and the stream of cash flows is payed at the

future dates T1, T2, ..., Ti, ..., Tn, with T0 < T1.
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In order to define the payoff of the swaption, we have to consider the value in

t < T0 of a forwad start interest rate swap

IRS(p)(t, T0, Tn) =

n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
Fs(t, Ti−1, Ti)− FSw(t, T0, Tn)

]
,

where FSw(t, T0, Tn) is the forward swap rate such that the value of the forward

start interest rate swap is equal to zero at time t.

Since that a payer swaption is in-the-money when IRS(p)(T0, T0, Tn) > 0, assum-

ing K = FSw(t, T0, Tn), the payoff of the payer swaption can be formalized as

follows[
IRS(p)(T0, T0, Tn)

]+

=

[ n∑
i=1

P (T0, Ti)τ(Ti−1, Ti)[Fs(T0, Ti−1, Ti)−K]

]+

.

Multiplying and dividing the simple forward rate of the above formula for

n∑
i=1

P (T0, Ti)τ(Ti−1, Ti),

we have that{ n∑
i=1

P (T0, Ti)τ(Ti−1, Ti)

[∑n
i=1 P (T0, Ti)τ(Ti−1, Ti)Fs(T0, Ti−1, Ti)∑n

i=1 P (T0, Ti)τ(Ti−1, Ti)
−K

]}+

.

Consequently, the payoff of a payer swaption can be written as[ n∑
i=1

P (T0, Ti)τ(Ti−1, Ti)
[
FSw(T0, T0, Tn)−K

]]+

.

Finally, the payoff of a payer swaption with one unit of notional and strike K is

n∑
i=1

P (T0, Ti)τ(Ti−1, Ti)
[
FSw(T0, T0, Tn)−K)

]+
.

Following Jamshidian (1997) and considering as numeraire the quantity2

n∑
i=1

P (t, Ti)τ(Ti−1, Ti),

the value of a payer swaption is

Swpt(p)(t, T0, Tn,K) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)ESw
[(
FSw(T0, T0, Tn)−K

)+]
,

2This quantity is known as annuity.
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where the expectation is computed under the so-called swap measure benoted by

MSw.

In addition, we assume that under the swap measure the forward swap rate is a

lognormal martingale

dFSw(t, T1, T2) = σFSwFSw(t, T1, T2)dWSw(t),

where σFSw is the instantaneous percentage volatility of the forward swap rate

and dWSw(t) is a standard Brownian motion under MSw.

Applying the Black (1976) model, the present value at time t of a payer swaption,

is

Swpt(p)(t, T0, Tn,K) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
FSw(t, T0, Tn)N(d1)−KN(d2)

]
,

where

d1 =

log

(
FSw(t,T0,Tn)

K

)
+ 1

2σ
2
FSw

(T0 − t)

σFSw
√

(T0 − t)
,

and

d2 = d1 − σFSw
√

(T0 − t).

Analogously, the present value at time t of a receiver swaption is

Swpt(r)(t, T0, Tn,K) =
n∑
i=1

P (t, Ti)τ(Ti−1, Ti)
[
KN(−d2)−FSw(t, T0, Tn)N(−d1)

]
.

1.10 One-factor affine interest rate models

In one-factor short rate models a single synthetic variable is modelled. This

variable is the instantaneous short rate denoted by r(t). Such models are based

on the assumption that by modelling the one dimensional instantaneous short

rate, it is possible to deduce the current yield curve and its evolution.

Under stochastic interest rates, the price P (t, T ) at time t of a risk-free zero

coupon bond that pays one unit of cash at time T under the risk-neutral measure

MQ is

P (t, T ) = EQ
[
exp

{
−
∫ T

t
r(u)du

}∣∣∣∣Rt

]
,

where EQ is the expectation under the risk-neutral measure denoted by MQ.
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1.10.1 Merton model

Merton (1973) assumes the following equation for the short rate under the risk-

neutral measure

dr(t) = θdt+ σdW (t),

where θ defines the average direction that r(t) moves at time t and σ is the

instantaneous standard deviation of the short rate.

In the Merton model, zero-coupon bonds can be valued analitically,

P (t, T ) = G(t, T ) exp

{
−H(t, T )r(t)

}
,

where

G(t, T ) = exp

{
σ2

6
(T − t)3 − θ

2
(T − t)2

}
,

and

H(t, T ) = T − t.

The model is analitically tractable and it is easy to apply. The main disadvantage

of the model is that it has not mean reversion.

1.10.2 Vasicek model

The first major development in modelling the interest rate using a one-factor

model was done by Vasicek (1977). Vasicek assumed that the instantaneous spot

rate evolves as an Ornstein-Uhlenbeck process with constant coefficients where

the short rate r(t) is mean reverting, since the expected rate tends, for t going

to infinity, to a long term average rate. In addition, it is able to price discount

bonds analitically.

The short rate follows the stochastic differential equation

dr(t) = k(θ − r(t))dt+ σdW (t), r(0) = r0,

where r0, k, θ, and σ are positive constants and dW (t) represents a standard

brownian motion.

In the Vasicek model, the short rate is normally distributed. The model implies

that, for each time t, the rate r(t) can be negative with positive probability and

the possibility of negative rates is indeed a major drawback of the Vasicek model.

Using the Vasicek model, the price of a zero-coupon bond can be obtained by

P (t, T ) = G(t, T ) exp

{
−H(t, T )r(t)

}
,
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where

G(t, T ) = exp

{(
θ − σ2

2k2

)[
H(t, T )− T + t

]
− σ2

4k
H(t, T )2

}
,

and

H(t, T ) =
1

k

[
1− e−k(T−t)

]
.

1.10.3 Cox-Ingersoll-Ross model

Another approach for modeling the short rate was developed by Cox, Ingersoll

and Ross (1985). Assuming the dynamic of the Cox-Ingersoll-Ross model (CIR

model hereafter), the short rate r(t) satisfies

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dW (t), r(0) = r0,

where r0, k, θ, and σ are positive constants. The principal advantage of the CIR

model over the Vasicek model is that the short rate is guaranteed to remain non-

negative. The condition 2kθ > σ2 has to be imposed to ensure that r(t) remains

positive.

The process r(t) follows a non-central chi-squared distribution. We denote by

χ2(·, υ, ζ) the non-central chi-squared distribution function with υ degree of free-

dom and non-centrality parameter ζ. Consequently, the distribution of the short

rate has tails that are fatter than in the gaussian case.

Under the CIR model, the price of a zero-coupon bond can be computed analyt-

ically and is given by

P (t, T ) = G(t, T ) exp

{
−H(t, T )r(t)

}
,

where

G(t, T ) =

[
2γ exp

[k+γ
2 (T − t)

]
2γ + (k + γ){exp

[
γ(T − t)

]
− 1}

] 2kθ
σ2

,

H(t, T ) =
2{exp

[
γ(T − t)

]
− 1}

2γ + (k + γ){exp
[
γ(T − t)

]
− 1
} ,

and

γ =
√
k2 + 2σ2.
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1.10.4 Jump-extended Vasicek model

The Vasicek model can be generalized adding a jump shock component to the

standard diffusion shock. The model is rich enough to capture possible asymme-

tries in the size and the probability of positive and negative shocks. This makes

it particularly suitable to fit higher-order aspects of the distribution of interest

rates, such as skewness and kurtosis.

The dynamic of the short rate follows the stochastic differential equation

dr(t) = k(θ − r(t))dt+ σdW (t) + dJ(t),

where J is a pure jump process such that

J(t) =

i=1∑
M(t)

Yi,

with M that represents a time-homogeneous Poisson process with intensity λ > 0

and Yi being exponentially distributed with parameter η > 0.

We present explicit closed formula for the affine jump diffusion model along with

the solutions found in Duffie and Garleanu (2001) and Christensen (2002) whose

results are summarized in Lando (2004).

The price of a zero-coupon bond can be computed analytically by the following

formula

P (t, T ) = J(t, T )G(t, T ) exp

{
−H(t, T )r(t)

}
,

where

J(t, T ) = exp

{
− λ(T − t)

}[
1 +

1

k
(k + η)

(
ek(T−t) − 1

)] λ
k+η

,

G(t, T ) = exp

{(
θ − σ2

2k2

)[
H(t, T )− T + t

]
− σ2

4k
H(t, T )2

}
,

and

H(t, T ) =
1

k

[
1− e−k(T−t)

]
.

1.10.5 Jump-extended Cox-Ingersoll-Ross model

As in the case of Vasicek model, the Cox-Ingersoll-Ross model can be generalized

adding a jump shock component to the standard diffusion shock.

The dynamics of r(t) satisfy,

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dW (t) + dJ(t),
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where J is a pure jump process. As in the Jump-extended Vasicek, one assume

that

J(t) =

i=1∑
M(t)

Yi,

where M is a time-homogeneous Poisson process with intensity λ > 0 and Yi
being exponentially distributed with parameter η > 0.

A jump extensions of the CIR model with analytical closed-form solution for

the price of the zero-coupon bond was proposed Duffie and Garleanu (2001) and

Christensen (2002). The main results are summarized in Lando (2004).

The price of a zero-coupon bond can be computed analytically by the following

formula

P (t, T ) = J(t, T )G(t, T ) exp

{
−H(t, T )r(t)

}
,

where

J(t, T ) = exp

{
2λη

γ − k − 2η
(T − t)

}[
1 +

(γ + k + 2η)
(
eγ(T−t) − 1

)
2γ

] −2λη

σ2−2ηk−2η2

,

G(t, T ) =

[
2γ exp

[k+γ
2 (T − t)

]
2γ + (k + γ){exp

[
γ(T − t)

]
− 1}

] 2kθ
σ2

,

H(t, T ) =
2{exp

[
γ(T − t)

]
− 1}

2γ + (k + γ){exp
[
γ(T − t)

]
− 1
} ,

and

γ =
√
k2 + 2σ2.

1.10.6 Double-jump-extended Vasicek model

The jump-extended Vasicek model, proposed by Chacko and Das (2002) allows

separate distributions for the upward jumps and downward jumps. This can

significantly reduce the probability of negative interest rates by allowing more

flexibility in estimating parameters for different interest rate regimes.

It implies the following process to model the short rate

dr(t) = k(θ − r(t))dt+ σdW (t) + JudNu(λu)− JddNd(λd), r(0) = r0,

where r0, k, θ, and σ are positive constants. The up-jump variable Ju and

the down-jump variable Jd are exponentially distributed random variables with

parameters ηu and ηd, respectively. The two Poisson parameters dNu(λu) and
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dNd(λd) are distributed, independently, with intensities λu and λd.

Also for this model, the price of a zero-coupon bond can be computed analytically

P (t, T ) = G(t, T ) exp

{
−H(t, T )[r(t)− θ]

}
,

where

G(t, T ) = exp

{[
(T − t)−H(t, T )

](
σ2

2k2

)
− σ2H(t, T )2

4k
+

−(λu + λd)(T − t) +
λuηu
kηu + 1

log

∣∣∣∣(1 +
1

kηu

)
ek(T−t) − 1

kηu

∣∣∣∣+

+
λdηd
kηd − 1

log

∣∣∣∣(1− 1

kηd

)
ek(T−t) +

1

kηd

∣∣∣∣− θ(T − t)},
and

H(t, T ) =
1

k

[
1− e−k(T−t)

]
.

The above solution is identical to that given by Chacko and Das (2002), though

expressed in a slightly different form.3

1.10.7 Ho-Lee model

Ho and Lee (1986) proposed the first no-arbitrage model of the term structure

of interest rates. They presented the model in the form of a binomial tree of

bond prices. However, it is possible to show that the continuous-time limit of the

model is

dr(t) = θ(t)dt+ σdW (t),

where σ (positive constant) is the instantaneous standard deviation of the short

rate and θ(t) is a function of time chosen so as to exactly fit the term structure

of interest rates being currently observed in the market. The variable θ(t) can be

evaluated analitically

θ(t) = fM (0, t) + σ2t,

where fM (0, t) is the market instantaneous forward rate.

We can define the short rate also as

r(t) = ϕ(t) + x(t),

where x(t) follows a stochastic differential equation as

dx(t) = σdW (t), x(0) = 0,

3See Nawalkha, Beliaeva, and Soto (2007).
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and the deterministic function ϕ(t) is such that

ϕ(t) = fM (0, t) +
σ2t2

2
.

In the Ho-Lee model, zero-coupon bonds and European option on zero-coupon

bonds can be avalued analitically.

The expression for the price of a zero-coupon bond at time t with payoff in T is

P (t, T ) = G(t, T ) exp

{
−H(t, T )r(t)

}
,

where

G(t, T ) =
PM (0, T )

PM (0, t)
exp

{
fM (0, t)(T − t)− σ2t

2
(T − t)2

}
,

and

H(t, T ) = T − t.

The quantity P (0, T )M is the market price in t of a zero-coupon bond with

maturity in T .

The price at time t of a European call option, with maturity T1 written on a

zero-coupon bond maturing at time T2 with strike K is

ZCBC(t, T1, T2,K) = P (t, T1)
[
P (t, T1, T2)N(d1)−KN(d2)

]
,

where

d1 =

log

[
P (t,T1,T2)

K

]
+ 1

2Σ2
P (t, T1, T2)

ΣP (t, T1, T2)
,

and

d2 = d1 − ΣP (t, T1, T2).

The quantity ΣP (t, T1, T2) is such that

ΣP (t, T1, T2) = σ(T2 − T1)
√
T1 − t.

Similarly, the price at time t of a European put option is

ZCBP (t, T1, T2,K) = P (t, T1)
[
KN(−d2)− P (t, T1, T2)N(−d1)

]
.

The Ho-Lee model is an analitically tractable no-arbitrage model. It is easy to

apply and provides an exact fit to the current term structure of interest rates.

One disadvantage of the model is that it has no mean reversion.
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1.10.8 Hull-White model

A drawback of the Vasicek model is that it assumes that the dynamics of the

short rate depend on constant, unobservable parameters. This model produces

an endogenous term structure of interest rates that will not necessarily match

the current term structure.

Hull and White (1990) have proposed an extension of the Vasicek model in which,

by introduction of a time-varying parameter, the model is able to provide an exact

fit to the currently-observed yield curve. This model is also known as the Hull-

White extended Vasicek model. In the original version of the Hull-White model,

also the term structure of spot or forward-rate volatilities can be fitted exactly

but the perfect fitting to a volatility term structure can be rather dangerous and

must be carefully dealt with. For this reason, we concentrate on the extension of

the Vasicek model where k and σ are positive constants and θ is chosen so as to

exactly fit the term structure of interest rates.

The Hull-White model assumes that the instantaneous short-rate process evolves

according to the following stochastic differential equation,

dr(t) = [θ(t)− kr(t)]dt+ σdW (t),

where k and σ are positive constants and θ(t) is a function of time chosen so as

to exactly fit the term structure of interest rates being currently observed in the

market. The variable θ(t) can be evaluated analitically

θ(t) =
δfM (0, t)

δT
+ kfM (0, t) +

σ2

2k

(
1− e−2kt

)
.

We can define the short rate also as

r(t) = ϕ(t) + x(t),

where x(t) follows a stochastic differential equation as

dx(t) = −kx(t)dt+ σdW (t), x(0) = 0,

and the deterministic function ϕ(t) is such that

ϕ(t) = fM (0, t) +
σ2

2k2

(
1− e−kt

)2
.

In Hull-White model, zero-coupon bonds can be evalued analitically. The price

at time t of a zero-coupon bond with payoff in T is given by

P (t, T ) = G(t, T ) exp

{
−H(t, T )r(t)

}
,
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where

G(t, T ) =
PM (0, T )

PM (0, t)
exp

{
H(t, T )fM (0, t)− σ2

4k

(
1− e−2kt

)
H(t, T )2

}
,

and

H(t, T ) =
1

k

[
1− e−k(T−t)

]
.

The price at time t of a European call option with strike K, maturity at time T1,

written on a pure discount bond maturing at time T2 is

ZCBC(t, T1, T2,K) = P (t, T1)
[
P (t, T1, T2)N(d1)−KN(d2)

]
,

where

d1 =

log

[
P (t,T1,T2)

K

]
+ 1

2Σ2
P (t, T1, T2)

ΣP (t, T1, T2)
,

and

d2 = d1 − ΣP (t, T1, T2).

The quantity Σ2
P (t, T1, T2) is such that

Σ2
P (t, T1, T2) = σ2 1− e−2k(T1−t)

2k

1

k2

[
1− e−k(T2−T1)

]2

,

Analogously, the price at time t of a European put option is

ZCBP (t, T1, T2,K) = P (t, T1)
[
KN(−d2)− P (t, T1, T2)N(−d1)

]
.

Using the pricing formula of the European zero-coupon bond option it is possible

to derive the pricing formula for caplets. The value at time t of a caplet that

resets at time Ti−1, pays at time Ti, and has strike K is,

Caplet(t, Ti−1, Ti,K) =
[
1 +Kτ(Ti−1, Ti)

]
ZCBP (t, Ti−1, Ti,K

′
i),

with

K
′
i =

1

1 +Kτ(Ti−1, Ti)
.

Analogously, the value at time t of a floorlet that resets at time Ti−1, pays at

time Ti and has strike K is

Floorlet(t, Ti−1, Ti,K) =
[
1 +Kτ(Ti−1, Ti)

]
ZCBC(t, Ti−1, Ti,K

′
i).

Consequently, the cap value is

Cap(t, Tn,K) =
n∑
i=1

[
1 +Kτ(Ti−1, Ti)

]
ZCBP (t, Ti−1, Ti,K

′
i),

and the price of the corresponding floor is

Floor(t, Tn,K) =

n∑
i=1

[
1 +Kτ(Ti−1, Ti)

]
ZCBC(t, Ti−1, Ti,K

′
i).
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1.10.9 Shift-extended Cox-Ingersoll-Ross model (CIR++)

In this subsection, we present an extension of the Cox-Ingersoll-Ross (1985) model

referred to as CIR++. Brigo and Mercurio (2006) have proposed a simple method

to extend a time-homogeneous short-rate model, so as to exactly reproduce any

observed term structure of interest rates while preserving the possible analytical

tractability of the original model. In the case of the Vasicek (1977) model, the

extension is perfectly equivalent to that of Hull and White (1990).

The model assumes the short rate as a sum of a state variable x(t) and another

variable ϕ(t) which is a deterministic function of time.

The short rate is

r(t) = ϕ(t) + x(t),

where x(t) follows a stochastic differential equation as

dx(t) = k(θ − x(t))dt+ σ
√

(x(t))dWt, x(0) = x0,

with x0, k, θ, and σ positive constants such that 2kθ > σ2. The deterministic

function ϕ(t) is such that

ϕ(t) = fM (0, t)− 2kθ(eγt − 1)

2γ + (k + γ)(eγt − 1)
− x0

4γ2eγt

[2γ + (k + γ)(eγt − 1)]2
.

The price at time t of a zero-coupon bond with payoff in T is given by

P (t, T ) =
PM (0, T )G(0, t) exp

[
−H(0, t)x0

]
PM (0, t)G(0, T ) exp

[
−H(0, T )x0

]G(t, T )e−x(t).

where

G(t, T ) =

[
2γ exp

[k+γ
2 (T − t)

]
2γ + (k + γ){exp

[
γ(T − t)

]
− 1}

] 2kθ
σ2

,

H(t, T ) =
2{exp

[
γ(T − t)

]
− 1}

2γ + (k + γ){exp
[
γ(T − t)

]
− 1
} ,

and

γ =
√
k2 + 2σ2.

The price at time t of a European call option with maturity T1 > t and strike

price K on a zero-coupon bond maturing at T2 > T1 is

ZCBC(t, T1, T2,K) = P (t, T1)
[
P (t, T1, T2)χ2(z1, υ, ζ1)−Kχ2(z2, υ, ζ2)

]
,
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where χ2(zi, υ, ζi) denotes the noncentral chi-squared distribution function with

υ degrees of freedom and non-centrality parameter ζi, with i = 1, 2. In the case

of CIR++ model, z1, z2, υ, ζ1, and ζ2 are such that,

z1 =
2

H(T1, T2)

×
[

log
G(T1, T2)

K
− log

PM (0, T1)G(0, T2) exp
[
−H(0, T2)x0

]
PM (0, T2)G(0, T1) exp

[
−H(0, T1)x0

]][%+ ς +H(T1, T2)
]
,

z2 =
2

H(T1, T2)

×
[

log
G(T1, T2)

K
− log

PM (0, T1)G(0, T2) exp
[
−H(0, T2)x0

]
PM (0, T2)G(0, T1) exp

[
−H(0, T1)x0

]][%+ ς
]
,

υ =
4kθ

σ2
,

ζ1 =
2%2x(t)eγ(T1−t)

%+ ς +H(T1, T2)
,

ζ2 =
2%2x(t)eγ(T1−t)

%+ ς
,

where

% =
2γ

σ2
{

exp
[
γ(T − t)

]
− 1
} ,

and

ς =
k + γ

σ2
.

By put call parity, the price at time t of a European put option is

ZCBP (t, T1, T2,K) = ZCBC(t, T1, T2,K)− P (t, T2) +KP (t, T1).

The value at time t of a caplet that resets at time T1, pays at time T2, and has

strike K is

Caplet(t, T1, T2,K) = [1 +Kτ(T1, T2)]ZCBP (t, T1, T2,K
′
),

with

K
′

=
1

1 +Kτ(T1, T2)
,
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Analogously, the value at time t of a floorlet that resets at time T1, pays at time

T2 and has strike K is

Floorlet(t, T1, T2,K) =
[
1 +Kτ(T1, T2)

]
ZCBC(t, T1, T2,K

′
).

Consequently, the value of the cap is,

Cap(t, Tn,K) =

n∑
i=1

[1 +Kτ(Ti−1, Ti)]ZCBP (t, Ti−1, Ti,K
′
i),

where

K
′
i =

1

1 +Kτ(Ti−1, Ti)
,

and the price of the corresponding floor is

Floor(t, Tn,K) =
n∑
i=1

[1 +Kτ(ti−1, ti)]ZCBC(t, ti−1, ti,K
′
i).

1.11 Two-Factor affine interest rate models

Using one-factor short rate models, the evolution of the whole curve is character-

ized by the evolution of the single quantity r(t) and the rates for all maturities

in the curve are perfectly correlated.

Truly, interest rates are known to exhibit some decorrelation (i.e. non-perfect cor-

relation), so that a more satisfactory model of curve evolution has to be found.

Whenever the correlation plays a more relevant role, or when a higher precision

is needed anyway, we need to move to a model allowing for more realistic corre-

lation patterns. This can be achieved with multifactor models, and in particular

with two-factor models.

If the short rate is obtained as a function of two driving diffusion components

(typically a summation, leading to an additive model) the model is said to be

two-factor. Two-factor models provide a more realistic correlation and volatility

structures in the evolution of the interest-rate curve.

We move to analyze the major two-factor short-rate models.

1.11.1 Two-factor Gaussian model (G2)

The Two-factor Gaussian model has the following dynamic,

r(t) = x(t) + y(t)

dx(t) = k(θ − x(t))dt+ σdWx(t),

dy(t) = h(ϑ− y(t))dt+ vdWy(t),

dWx(t)dWx(t) = ρ,
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where ρdt is the instantaneously-correlated sources of randomness.

Given the analytical tractability of the two-factor Gaussian model, it is possible

to derive the closed formula for the price of a zero coupon bond also when ρ 6= 0.

Let X = mX + σXNX and Y = mY + σYNY be two random variables such

that NX and NY are two correlated standard Gaussian random variables with

[NX , NY ] jointly Gaussian vector with correlation ρ. Then,

E
[

exp(−X)
]

= exp

[
−mX +

1

2
σ2
X

]
.

Consequently, the quantity

X =

∫ T

t
x(u) + y(u)du,

is a Gaussian random variable with mean

mX = (θ + ϑ)(T − t)−
[
θ − x0

]1

k

[
1− exp

[
− k(T − t)

]]
−
[
ϑ− y0

]1

h

[
1− exp

[
− h(T − t)

]]
,

and variance

σ2
X =

(
σ

k

)2{
(T − t)− 2

k

[
1− exp

[
− k(T − t)

]]
+

1

2k

[
1− exp

[
− 2k(T − t)

]]}
+

(
v

h

)2{
(T − t)− 2

h

[
1− exp

[
− h(T − t)

]]
+

1

2h

[
1− exp

[
− 2h(T − t)

]]}
+

2ρσv

kh

{
(T − t)− 1

k

[
1− exp

[
− k(T − t)

]]
− 1

h

[
1− exp

[
− h(T − t)

]]
+

1

k + h

[
1− exp

[
− (k + h)(T − t)

]]}
.

Consequently, adopting a two-factor Gaussian model, the price of a zero-coupon

bond is such that

P (t, T ) = E
[

exp

(
−
∫ T

t
x(u) + y(u)du

)]
= exp

[
−mX +

1

2
σ2
X

∣∣∣∣Rt

]
,

where EQ is the expectation under the risk-neutral measure.

1.11.2 Shift-extended two-factor Gaussian model (G2++)

Brigo and Mercurio (2006) explain the two additive factor Gaussian model, de-

noted by G2++, as a model of the instantaneous short rate process given by

the sum of two correlated gaussian factors. The drawback of negative interest

rates as a consequence of the normal distributional assumption still exists. How-

ever, the additional factor in the model explains the actual variability of market
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rates more precisely than models that only look at one source of randomness. As

a result of the gaussian assumption, this model remains analytically tractable,

therefore there exists a formula that one can use to price pure discount bonds.

This characteristic of the model, allows one to use this model, together with a

numerical procedure, to price options with any payoff.

The model is equivalent to the two-factor Hull-White model. However, the for-

mulation described by Brigo and Mercurio is easier to implement in practice.

The dynamic of the instantaneous process is,

r(t) = ϕ(t) + x(t) + y(t), r(0) = r0,

dx(t) = −kx(t)dt+ σdWx(t),

dy(t) = −hy(t)dt+ vdWy(t),

dWx(t)dWx(t) = ρ.

where r0, k, h, σ, and v are positive constants and −1 ≤ ρ ≤ 1. The deterministic

function ϕ(t) is such that

ϕ(t) = fM (0, t) +
σ2

2k2

(
1− e−kt

)2
+

v2

2h2

(
1− e−ht

)2
+ ρ

σv

kh

(
1− e−kt

)(
1− e−ht

)
.

The price at time t of a zero-coupon bond with payoff in T is given by

Px(t, T ) = G(t, T ) exp
[
−Hx(t, T )x(t)−Hy(t, T )y(t)

]
,

where

Hx(t, T ) =
1

k

[
1− e−k(T−t)

]
,

Hy(t, T ) =
1

h

[
1− e−h(T−t)

]
,

and

G(t, T ) =
PM (0, T )

PM (0, t)
exp

{
1

2

[
V (t, T )− V (0, T ) + V (0, t)

]}
.

The quantity V (t, T ) is such that

V (t, T ) =
σ2

k2

[
T − t+

2

k
e−k(T−t) − 1

2k
e−2k(T−t) − 3

2k

]
+

v2

h2

[
T − t+

2

h
e−h(T−t) − 1

2h
e−2h(T−t) − 3

2h

]
+

2ρ
σv

kh

[
T − t+

e−k(T−t) − 1

k
+
e−h(T−t) − 1

h
− e−(k+h)(T−t) − 1

k + h

]
.
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The price at time t of a European call option with maturity T1 and strike K,

written on a zero-coupon bond with maturity T2 is given by

ZCBC(t, T1, T2,K) = P (t, T1)
[
P (t, T1, T2)N(d1)−KN(d2)

]
,

where

d1 =
log
( P (t,T2)
KP (t,T1)

)
+ 1

2Σ2
P (t, T1, T2)

ΣP (t, T1, T2)
,

and

d2 = d1 − ΣP (t, T1, T2).

The quantity Σ2
P (t, T1, T2) is such that

Σ2
P (t, T1, T2) =

σ2

2k3

[
1− e−k(T2−T1)

]2[
1− e−2k(T1−t)

]
+

v2

2h3

[
1− e−h(T2−T1)

]2[
1− e−2h(T1−t)

]
+

2ρ
σv

kh(k + h)

[
1− e−k(T2−T1)

][
1− e−h(T2−T1)

][
1− e−(k+h)(T1−t)

]
.

Similarly, the price at time t of a European put option is

ZCBP (t, T1, T2,K) = P (t, T1)
[
KN(−d2)− P (t, T1, T2)N(−d1)

]
.

Starting from the pricing formula of the European zero-coupon bond option it is

possible to derive the pricing formula for caplets. The value at time t of a caplet

that resets at time ti−1, pays at time ti, and has strike K is,

Caplet(t, ti−1, ti,K) = [1 +Kτ(ti−1, ti)]ZCBP (t, ti−1, ti,K
′
i),

with

K
′
i =

1

1 +Kτ(ti−1, ti)
.

Analogously, the value at time t of a floorlet that resets at time Ti−1, pays at

time Ti and has strike K is

Floorlet(t, Ti−1, Ti,K) =
[
1 +Kτ(Ti−1, Ti)

]
ZCBC(t, Ti−1, Ti,K

′
i).

Consequently, the value of the cap is

Cap(t, Tn,K) =
n∑
i=1

[1 +Kτ(ti−1, ti)]ZCBP (t, ti−1, ti,K
′
i),

and the price of the corresponding floor is

Floor(t, Tn,K) =
n∑
i=1

[1 +Kτ(ti−1, ti)]ZCBC(t, ti−1, ti,K
′
i).



1.12. REFERENCES 37

1.12 References

Black, F., 1976. The pricing of commodity contracts. Journal of Financial Eco-

nomics 3, 167-179.

Brigo, D., Mercurio, F., 2006. Interest Rate Models: Theory and Practice, 2nd

ed. Springer.

Chacko, G., Das, S.R., 2002. Pricing Interest Rate Derivatives: A General Ap-

proach. The Review of Financial Studies 15(1), 195-241

Christensen, J. H., 2002. Kreditderivater og deres prisfaststtelse. Thesis, In-

stitute of Economics, University of Copenhagen.

Cox, J.C., Ingersoll, J.E., Ross, S.A., 1985. A Theory of the Term Structure

of Interest Rates. Econometrica 53, 385-407.

Duffie, D., Garleanu, N, 2001. Risk and valuation of collateralized debt obli-

gations. Financial Analysts Journal, 57, 4159.

Duffie, D., Pan J., Singleton, K., 2000. Transform analysis and asset pricing

for affine jump diffusions. Econometrica 68, 13431376.

Ho, T.S.Y., Lee, S.B., 1986. Term structure movements and pricing interest

rate contingent claims. Journal of Finance, 41, 1011,29.

Hull, J., White, A. 1990. Pricing Interest Rate Derivative Securities. The Review

of Financial Studies 3, 573-592.

Lando, D., 2004. Credit Risk Modeling: Theory and application. Princeton

series in finance.

Merton, R., 1973. Theory of Rational Option Pricing. Bell Journal of Eco-

nomics and Management Science 4, 141-183.

Nawalkha S.K., Beliaeva N.A., Soto G.M., 2007. Dynamic Term Structure Mod-

eling. Wiley.

Vasicek O., 1977. An Equilibrium Characterization of the Term Structure. Jour-

nal of Financial Economics 5, 177-188.





Chapter 2

Longevity and mortality

modeling: a review

2.1 Introduction

Recently, stochastic mortality models have received increased attention among

practitioners and academic researchers. The introduction of International Finan-

cial Reporting Standards (IFRS) market-consistent accounting and risk-based

Solvency II requirements for the European insurance market has called for the

integration of mortality risk analysis into stochastic valuation models.1 Fur-

thermore, the issuance of mortality/longevity-linked securities requires stochastic

models to price financial instruments related to demographic risks.

Several proposals for modeling and forecasting mortality rates have been prof-

fered. The leading statistical model of mortality forecasting in the literature is

the one proposed by Lee and Carter (1992). The use of the Lee-Carter model or

one similar to it was recommended by two U.S. Social Security Technical Advi-

sory Panels. There is further support for this model in other countries.

However, an important body of literature regarding models that describe death

arrival as the first jump time of a Poisson process with stochastic force of mor-

tality have appeared since the turn of the century.2 In these models, the same

mathematical tools used in interest rate and credit risk modeling are applied.

Milevsky and Promislow (2001) were the first to propose a stochastic force of

mortality model. Since then, several other stochastic models have been pro-

1See European Community (2009), European Commission (2010), and IFRS Foundation
(2010) for further information.

2In actuarial science, force of mortality represents the instantaneous rate of mortality at a
certain age measured on an annualized basis. It is identical in concept to the failure rate or
hazard function.

39
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posed.

In this chaper, a review of the most significant mortality models existing in lit-

erature is provided.

2.2 Mortality data: source and structure

2.2.1 Mortality data source

In order to perform mortality research one needs access to accurate and reliable

data that cover a long enough period.

To analyze mortality trends on a national level is needed the number of indi-

viduals alive and deceased at all ages over a range of years. This information

differs between several countries. Moreover, mortality differs between males and

females.

To facilitate the investigation of human mortality, an international project, the

Human Mortality Database (HMD), was initiated by the Department of Demogra-

phy at the University of California Berkeley, USA. This project provides detailed

mortality and population data which can be accessed online and may be used

freely for research purposes. Currently the HMD provides information on 34

countries. For each country the HMD offers basic quantities in mortality studies:

the deceased and survivors by sex, age, year of death, and birth cohort. Though

the age range covered is the same in all countries (from age 0 to 110+), the range

of years covered differs from country to country. The longest series is provided

for Sweden (1751-2006), whereas other countries have data from the nineteenth

century (Scandinavian countries, Belgium, England, France, Italy, Netherlands,

New Zealand and Switzerland). For some European countries, Japan, Australia,

Canada, Taiwan and the USA, the series of data first start in the twentieth cen-

tury.3

2.2.2 Mortality data structure

Typically, mortality data are presented in the so-called life tables that include

the following information:

• t : reference year,

• x : age,

• lx(t): number of survivors at exact age x with respect to the reference year

t, assuming l0(t) = 100, 000,

• dx(t): number of deaths with respect to the reference year t between ages

x and x+ 1.

3Human Mortality Database (2008).
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National mortality data are generally published on an annual basis and by indi-

vidual year of age.

Data used for calculating population mortality can be presented in the form of

central rate of mortality

mx(t) =
# deaths during year t aged x last birthday

average population during year t aged x last birthday
.

The central rate of mortality reflects deaths per unit of exposure over an entire

year, assuming that the population changes uniformly over the year.

Some authors choose to model mx directly, while others choose to model the

mortality rate as the underlying probability that an individual aged exactly x at

time t will survive until time t+ 1.

2.3 Relevant quantities

2.3.1 Probability of death

With respect to a reference year t and an individual aged x, a standard measure

of mortality is the probability in t that an individual aged x dies before one year.

We denote this probability by Dx(t) and it is such that

Dx(t) =
dx(t)

lx(t)
.

A simple approximation for Dx(t), assuming a uniform distribution of deaths

over the year, is

Dx(t) ≈ mx(t)

1 + 1
2mx(t)

.

2.3.2 Survival probability

Given the rate of mortality Dx(t), it is possible to define the survival probability

which reflects the probability that an individual aged x survives over one year.

This probability is denoted by Sx(t) and it is such that

Sx(t) = 1− dx(t)

lx(t)
.

Survival and death probability are such that

Sx(t) = 1−Dx(t).
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2.3.3 Survival function

We define X as the non negative and continuous random variable describing time

from birth of an individual until death. The basic quantity to describe time-to-

death distribution is the survival function, which is defined as the probability of

an individual surviving beyond age x,

Sx = Prob(X > x).

The survival function is the complement of the cumulative distribution function,

that is

Dx = Prob(X ≤ x).

Consequently,

Sx = 1−Dx.

Moreover, the survival function is the integral of the probability density function,

denoted by f(x), from x to infinity,

Sx = Prob(X > x) =

∫ ∞
x

f(t)dt.

2.3.4 Force of mortality

A fundamental quantity is the force of mortality denoted by µx (with respect to an

individual aged x). It describes the instantaneous rate of death of an individual

aged x that is alive until x. In formula

µx = lim
∆x→0

=
Prob(x < X ≤ x+ ∆x

∣∣X > x)

∆x
=
f(x)

Sx
= −d logSx

dx
.

In actuarial science, force of mortality represents the instantaneous rate of mor-

tality at a certain age measured on an annualized basis. The concept is identical

to the failure rate or hazard function.

The survival function is related to the force of mortality according to the following

expression

Sx = exp

{
−
∫ x

0
f(u)du

}
.

2.4 Mortality models over age

2.4.1 Gompertz law (1825)

The Gompertz law (1825) is commonly known as the most successful law to model

the dying out process of living organisms. It is based on the biological concept of
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organism senescence, in which mortality rates increase exponentially with age.

Gompertz observed that death rates increase exponentially with age. He sug-

gested representing the hazard rate as

µx = aebx,

with parameters a > 0 and b > 0. Commonly, a represents the mortality at

time zero and b is the rate of increase of mortality and is frequently used as a

measure of the rate of aging. The probability density function for the Gompertz

distribution is,

f(x) = aebx exp

[
a

b

(
1− ebx

)]
.

2.4.2 Makeman law (1860)

Makeham (1860) extended Gompertz equation by adding an age-independent

term, c > 0, to account for risks of death that do not depend on age. This model

is known also as Gompertz-Makeham model. In formula

µx = c+ aebx.

In the Makeham model, the probability density function is equal to

f(x) = aebx exp

[
− cx+

a

b

(
1− ebx

)]
.

2.4.3 Perks law (1932)

Perks (1932) was the first to proposed a logistic modification of the Gompertz-

Makeham models. The logistic function proposed to model the late-life mortality

deceleration is

µx = c+
aebx

1 + αebx
.

We can see that this includes Makeham law as the special case when α = 0.

2.5 Mortality models over age and over time

2.5.1 Lee-Carter model (1992)

One of the seminal works on mortality modeling is the Lee-Carter model intro-

duced by Lee and Carter (1992). The Lee-Carter model is the leading statistical

model of mortality forecasting in the demographic literature.

The model emerged as the benchmark for forecasting mortality rates and its use
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or one similar to it was recommended by two U.S. Social Security Technical Advi-

sory Panels. Further support for this model has been proposed in other countries.

In the Lee-Carter approach, the central rate of mortality is modelled as a two

variable function. It is a one factor stochastic model where the mortality rate is

a function of three parameters expressed in the form

log[mx(t)] = β(1)
x + β(2)

x k
(2)
t .

The state variable k
(2)
t follows a one-dimensional random walk with drift

k
(2)
t = µ+ k

(2)
t−1 + σz

(2)
t ,

in which µ is a constant drift term, σ is a constant volatility and z
(2)
t is a one-

dimensional i.i.d. standard gaussian error.

The coefficient β
(1)
x is the drift term expressed as a function of a particular age

group. This term describes the age-specific pattern of mortality. The coefficient

β
(2)
x is a function of the age group and describes the sensitivity of mortality rate,

specified by k
(2)
t , to changes through time. The state variable k

(2)
t describes

the change in mortality rates over time without any differentiation between age

groups.

Since that for this model there is an identifiability problem in parameter estima-

tion, Cairns et al. (2007) suggested to impose two constraints to circumvent this

problem, ∑
t

k
(2)
t = 0,∑

x

β(2)
x = 1.

The model is calibrated on historical data, namely population and number of

deaths. The model is extremely easy to calibrate, given the limited number of

parameters and their intuitive meaning.

2.5.2 Brouhns-Denuit-Vermunt model (2002)

Brouhns, Denuit and Vermunt (2002) improve the Lee-Carter approach embed-

ding in the original method a Poisson regression model which is perfectly suited

for age-sex-specific mortality rates.

They consider that the number of deaths recorded at age x during the year

t, denoted by Dxt, has a Poisson distribution with parameter Extµx(t), where

Ext represents the exposure-to-risk (i.e., Ext is the number of person years from

which Dxt occurred) and µx(t) is the force of mortality. The force of mortality is

assumed to have the log-bilinear form

log[µx(t)] = β(1)
x + β(2)

x k
(2)
t ,

where the parameters are essentially the same as in the classical Lee-Carter model.
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2.5.3 Renshaw-Haberman model (2006)

The Lee-Carter extension model designed by Renshaw and Haberman (2006) is

a generalized version of the Lee-Carter model. It allows for the modeling and

extrapolation of age-specific cohort effects

log[mx(t)] = β(1)
x + β(2)

x k
(2)
t + β(3)

x γ
(3)
t−x.

The state variable k
(2)
t follows a one-dimensional random walk with drift

k
(2)
t = µ+ k

(2)
t−1 + σz

(2)
t ,

in which µ is a constant drift term, σ is a constant volatility and z
(2)
t is a one-

dimensional i.i.d. standard gaussian error.

Following Dowd et al. (2008), the cohort effect γ
(3)
t−x is modelled as anARIMA(1, 1, 0)

process indipendent of k
(2)
t

∆γ
(3)
t−x = µγ + αγ(∆γ

(3)
t−x−1 − µγ) + σγz

(γ)
t−x.

The quantity γ
(3)
t−x is a random cohort effect expressed as a function of the year

of birth (t − x) and k
(3)
t . The impact of this cohort effect can be varied by age

through β
(3)
x .

This model has similar identifiability problems to the previous one. Also in this

case Cairns et al. (2007) suggested to impose the following constraints∑
t

k
(2)
t = 0,∑

x

β(2)
x = 1,∑

x,t

γ
(3)
t−x = 0,

∑
x

β(3)
x = 1.

2.5.4 Currie model (2006)

Currie (2006) proposed a simplified version and a special case of the Renshaw-

Haberman model (2006) with β
(2)
x = 1 and β

(3)
x = 1.

In the Currie model, the age period and cohort effects influence mortality rates

independently. The model can be expressed in the form

log[m(t, x)] = β(1)
x + k

(2)
t + γ

(3)
t−x,

where the variables k
(2)
t and γ

(3)
t−x are defined as in the previous model. Currie

(2006) uses P-splines to fit β
(1)
x , k

(2)
t and γ

(3)
t−x to ensure smoothness.
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For this model, Cairns et al. (2007) have suggested the following constraints∑
t

k
(2)
t = 0,∑

x,t

γ
(3)
t−x = 0.

2.5.5 Cairns-Blake-Dowd model (CBD)

The Cairns, Blake, and Dowd model (2006a) differs from the previous stochastic

models and assume a functional relationship between mortality rates across ages.

It is fitted, directly, to initial mortality rates instead of central mortality rates.

This model can be expressed as

logit q(t, x) = k
(1)
t + k

(2)
t (x− x),

where x is the mean age in the sample range of ages with lenght na such that

x =

∑na
i=1 xi
na

.

The state variables follow a two-dimensional random walk with drift

k
(1)
t = µ(1) + k

(1)
t−1 + σ(1)z

(1)
t ,

k
(2)
t = µ(2) + k

(2)
t−1 + σ(2)z

(2)
t ,

where the parameters µ(1) and µ(2) are constant drift terms, σ(1) and σ(2) are

constant volatilities while z
(1)
t and z

(2)
t are indipendent and i.i.d. standard gaus-

sian errors.

It is important to note that this model has no identifiability problems.

2.5.6 A first generalisation of the Cairns-Blake-Dowd model (CBD1)

In Cairns et al. (2007) a first generalisation of the Cairns-Blake-Dowd model

(CBD) including a cohort effect is presented. The functional form of the model

is

logit q(t, x) = k
(1)
t + k

(2)
t (x− x) + γ

(3)
t−x,

where the variables x, k
(1)
t , k

(2)
t and γ

(3)
t−x are defined as in the previous case.

In this case there is a identifiability problems that can be solve according to the

suggestion contains in Cairns et al. (2007).
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2.5.7 A second generalisation of the Cairns-Blake-Dowd model (CBD2)

In Cairns et al. (2007) a second generalisation of the Cairns-Blake-Dowd model

(CBD) adding a quadratic term into the age effect is showed. This model is able

to take into account some curvature identified in the logit q(t, x) plots in the US

data

logit q(t, x) = k
(1)
t + k

(2)
t (x− x) + k

(3)
t

[
(x− x)2 − σ(2)

x

]
+ γ

(4)
t−x.

The state variables k
(1)
t , k

(2)
t and k

(3)
t follow a three-dimensional random walk

with drift, and γ
(4)
t−x is a cohort effect that is modelled as an AR(1) process. The

constant

σ(2)
x =

∑na
i=1(x− x)2

na
,

is the mean of (x− x)2.

2.5.8 A third generalisation of the Cairns-Blake-Dowd model (CBD3)

A further generalization of the Cairns-Blake-Dowd model (CBD) is reported in

Cairns et al. (2007) and it is such that

logit q(t, x) = k
(1)
t + k

(2)
t (x− x) + γ

(3)
t−x(xc − x),

for some constant parameter xc to be estimated.

To avoid identifiability problems one constraint is introduced∑
x,t

γ
(3)
t−x = 0.

Also in this case, the variables k
(1)
t , k

(2)
t and γ

(3)
t−x are defined as in the previous

models.

2.6 Discrete-time models

2.6.1 Lee-Young model

Lee (2000) and Yang (2001) proposed the following model for stochastic mortality

in which the actual mortality experience is modelled as

Dx(t) = D̂x(t) exp

[
Xt −

1

2
σ2
Y + σY , ZY (t)

]
,

where

• Dx(t) is the actual probability of a life aged x at time t dying in year t+ 1,
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• D̂x(t) represents the probability (estimated) that an individual aged x at

time t will die before time t+ 1 for each integer x and t.

The quantity Xt is such that

Xt = Xt−1 −
1

2
σ2
X + σXZX(t),

where ZX(t) and ZY (t) are i.i.d. standard normal variates.

2.6.2 Smith-Oliver model

The Smith (2005) and Oliver (2004) proposed a stochastic model for the long term

trends in mortality. This model assumes that the estimates of future survival

probabilities change on an annual basis where the change in estimates of survival

probabilities is driven by a random variation factor which follows a Gamma dis-

tribution.

The model produces stochastic variation around the deterministic best estimates

of mortality and can be formalized as follows

Sx(t+ 1, T, T + 1) = Sx(t, T, T + 1)detx(t+1,T,T+1),

where Sx(t, T, T + 1) is the probability, based on information available at time

t+ 1, that if the individual survives to time T he will then survive to time T + 1.

The model is driven by the deterioration factor, denoted by detx(t+ 1, T, T + 1),

such that

detx(t+ 1, T, T + 1) = bx(t+ 1, T, T + 1)G(t+ 1).

The quantity bx(t + 1, T, T + 1) is a bias correction factor and G(1), G(2), ... is

a series of i.i.d. gamma random variables with both shape and scaling param-

eters equal to some constant α. Following Cairns (2007), it is assumed that

there exists a probability measure MQ under which the prices of all assets dis-

counted by the cash account are martingales. Hence EQ[G(t)] = 1 and variance

V arQ[G(t)] = α−1.

The Smith-Oliver model provides us with an elegant approach to simulating

stochastic mortality where no approximations are required.

There are, however, two potential drawbacks to the model. First, the model only

accommodates a single source of randomness through G(t). In contrast, historical

data suggests that more than one factor may be appropriate: specifically, changes

in mortality rates at different ages are not perfectly correlated. Second, there is

no flexibility in the way in which the volatility term structure is specified.
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2.6.3 Generalisation of the Smith-Oliver model

Cairns (2007) proposes a generalisation of the Smith-Olivier model that moves

away from dependence on a single source of risk and allows for full control over

the variances and correlations

Sx(t+ 1, t, T ) = Sx(t, t, T )detx(t+1,T ).

The deterioration factor detx(t+ 1, T ) is calculated as

detx(t+ 1, T ) = gx(t+ 1, T )Gx(t+ 1, T ).

For each x and for each T > t+ 1, we have that

Gx(t+ 1, T ) ∼ Gamma[αx(t+ 1, T ), αx(t+ 1, T )],

and

gx(t+ 1, T ) = −αx(t+ 1, T )[Sx(t, t, T )−1/αx(t+1,T ) − 1]

log[Sx(t, t, T )]
.

2.7 Continuous-time models

A fairly recent stream of academic literature models the force of mortality as a

stochastic process.

In these models, the death arrival is modelled as the first jump time of a Poisson

process with stochastic force of mortality where the same mathematical tools

used in interest rate and credit risk modeling are applied.

Cairns, Blake, and Dowd (2006b) suggest that affine stochastic models need to

incorporate non-mean reverting elements; Luciano and Vigna (2005) propose

non-mean reverting affine processes for modeling the force of mortality. In the

non-mean reverting models, the deterministic part of the mortality rate process

increases exponentially in a manner that is consistent with the exponential growth

that is the main feature of the Gompertz model.4

2.7.1 Milevsky-Promislow model

Milevsky and Promislow (2001) have used a stochastic force of mortality, whose

expectation at any future date, under an appropriate choice of the parameters,

has a Gompertz specification.

They investigate a so-called mean reverting Brownian Gompertz specification

with the force of mortality µx(t) that is modelled by the following process

µx(t) = µx(0) exp(gt+ σYt),

dYt = −bYtdt+ bWt,

4The model is based on the Gompertz law (1825) founded on the biological concept of
organism senescence, in which mortality rates increase exponentially with age.
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where g, σ, µx(0) are positive constants, Y0 = 0 and b ≥ 0.

Essentially, the model is equivalent to a Gompertz model with a time-varying

scaling factor.

2.7.2 Dahl model

Dahl (2004) models the process for µx(t) as follows

dµx(t) =
[
δα(t, x)µx(t) + ζα(t, x)

]
dt+

√
δσ(t, x)µx(t)ζσ(t, x)dW (t).

In Dahl model, the survival probability can be written as

Sx(t, T ) = G(t, T ) exp
[
−H(t, T )µx(t)

]
,

where the deterministic functions G(t, T ) and H(t, T ) are derived from differential

equations involving δα(t, x), δσ(t, x), ζα(t, x), and ζσ(t, x).

2.7.3 Biffis model

Biffis (2005) has extended the Dahl model adding a jump process into the SDE.

2.7.4 Luciano-Vigna model

Luciano and Vigna (2005) has proposed non-mean reverting affine stochastic

mortality models.

They observes that the force of mortality extrapolated from the mortality tables

does not seem to present a mean reverting behaviour, but rather an exponential

one. This fact leads to the simple idea of dropping the mean reverting term

in the classical affine processes used in finance and choosing processes whose

deterministic part increases exponentially. Consequently, non-mean reverting

processes are consistent with all the deterministic exponential models presented

in the actuarial literature.

Four affine models with these characteristics are presented in the paper

• the Ornstein Uhlenbeck process without jumps,

• the Ornstein Uhlenbeck process with jumps,

• the Feller process without jumps,

• the Feller process with jumps.
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2.7.5 Schrager model

Schrager (2004) has proposed the following general form for the force of mortality

µx(t) = g0(x) +
M∑
i=1

Yi(t)gi(x),

where gi is a function with the positive half line as its range and Y (t) are factors

driving the uncertainty in the mortality intensity.

The M-dimensional factor dynamics are given by the following diffusion

dY (t) = A(θ − Y (t))dt+ Σ
√
VtdWt,

Y (0) = Ȳ .

The matrices A and Σ are M ×M matrices and θ is an M vector.

The matrix Vt is a diagonal matrix holding the diffusion coefficients of the factors

on the diagonal such that

Vt = diag[α+ βY (t)],

where α and β are such that

α =

[
α1, α2, ..., αM

]′
,

β =

[
β1, β2, ..., βM

]′
.

Considering the special case of the Gaussian Thiele Model, by choosing

g0(x) = 0,

g1(x) = exp
[
− τ1(x)

]
,

g2(x) = exp
[
− τ2(x− η)2

]
,

g3(x) = exp
[
− τ3(x)

]
,

it follows that

µx(t) = Y1(t) exp
[
− τ1(x)

]
+ Y2(t) exp

[
− τ2(x− η)2

]
+ Y3(t) exp

[
− τ3(x)

]
.

2.8 Models from the industry

2.8.1 Barrie and Hibbert & Heriot-Watt University model

Barrie and Hibbert5 use a simple model for mortality uncertainty developed with

researchers at Heriot-Watt University.6 The model is characterized by an adjust-

ment applied to best-estimate mortality rates where
5Barrie and Hibbert supplies software to insurance and financial companies to enable them

to understand and estimate their risks.
6We refer to McCullock et al. (2005).
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• the adjustment factor follows a random walk without drift,

• the model implies two sources of mortality uncertainty.

The model has the following dynamic

Dx(t) = D̂x(t) exp

[
Yt −

σ2
Y

2
− t

σ2
X

2

]
,

Yt = Xt + σY ZYt ,

Xt = Xt−1 + σXZXt ,

where,

• Dx(t) is the actual probability of a life aged x at time t dying in year t+ 1,

• D̂x(t) is the best estimate at time 0 of the probability of a life aged x at

time t dying in year t+ 1,

• ZYt and ZXt are i.i.d. standard normal variates.

It is assumed that Y0 = 0. This ensured that the ratio of actual to estimated

mortality rates is a martingale. Consequently, the current value of this ratio is

the best estimate of its value at any time in the future.

2.8.2 Extended Barrie and Hibbert & Heriot-Watt University model

The model represents an extended version of the previous one where a stochastic

trend factor is added.7

In this model, the actual probability Dx(t) of a life aged x dying in year t+ 1 is

represented by

Dx(t) = D̂x(t)

[
exp

(
δ(s)− 1

2
sσ2

δ

)]t−s
× exp

[
Y (t)− Y (s)− 1

2
(t− s)σ2

X − (t− s)σ2
δ −

1

2
σ2
Y

]
,

where

Yt = Xt + ZYt ,

Xt = Xt−1 + δt + ZXt ,

δt = δt−1 + Zδt .

The stochastic process Y (t) is observable and models the year-by-year random

transient change. It relates to another two non-observable stochastic processes

7We refer to a the 3-month Internship project carried out at Barrie and Hibbert in conjunc-
tion with Heriot-Watt University.
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X(t) and δ(t), which model the long-term true trend in mortality. The quantities

ZXt , ZYt and Zδt are stochastic drivers following independent N(0, σ2
X), N(0, σ2

Y )

and N(0, σ2
δ ) distributions, respectively. The exponential term, that represent the

trend factor is [
exp

(
δ(s)− 1

2
sσ2

δ

)]t−s
.

2.8.3 Munich Re model

Edwalds et al. (2008), in name of Munich Re,8 propose the use of a predictive

modeling technique called projection pursuit regression (PPR) to model mortality

data. PPR is a form of Generalized Additive Models (GAM) models, but PPR

has extra flexibility allowing one to model interactions between various predictors

without requiring additional effort.

2.8.4 ING model

Van Broekhoven (2002), in name of ING,9 proposed a model by means of that it

is possible deriving the best estimate and the price of mortality risk.

In order to fit the expected mortality as well as possible for the applicable group

of insured persons the model take into account (1) the current mortality for a

specified group of (insured) persons and (2) the expected changes in the level of

this mortality in the future. The first part is the level of the mortality, the second

part is the trend.

2.8.5 Partner Re model

Duchassaing and Suter (2009), in name of Partner Re,10 has developed a simple

stochastic model which could be an alternative to some of the well known models.

The model can be applied to company specific best estimates for future mortality

rates. The following stochastic model is applied for the mortality process

Dx(t) = D̂x(t)Ct + εt,

where

• D̂x(t) is the expected mortality,

• Dx(t) the real mortality,

• C0 = 1,

8Munich Re is a reinsurance company.
9ING is an insurance company.

10Partner Reinsurance Europe Limited is a reinsurance company.
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• Ct = exp(Xt)Ct−1,

• Xt are i.i.d. N(µ, σ) variates,

• C and ε are indipendent.

Based on the England and Wales data, the authors estimated the underlying

parameters µ and σ using various smoothing methods for particular age and

calendar year ranges and tested their validity.

2.8.6 Towers Perrin model for the Solvency II longevity shock

The proposal of Towers Perrin11 for the Solvency II longevity shock consists in

projecting the evolution of the base population taking into account the number

of people alive from one year to another, including a random variable within the

annual mortality improvement factor.12 The functional form of the model is the

following

l
′
x+1 = lx ×

[
1−Dx ×

(
1− µx + σx ×Kaleatory

)]
,

where,

• lx: population alive in year 0, given an x age,

• Dx: probability of death within a year under the standard table, given an

age of x years old at the start of the year,

• l′x+1: population alive in year x + 1, given an age of x years old at the

beginning,

• µx: mean of the mortality improvement factor for the analysed age range,

• σx: standard deviation of the mortality improvement factor for the analysed

age range,

• Kaleatory: is a standard normal random variable.

Setting equal to n the number of years in the projection, the population alive at

the end of the projection would be

l
′
x+1 = lx ×

[
1−Dx ×

n∏
i=1

(
1− µx+i + σx+i ×Kaleatory

)]
.

11Towers Perrin is an independent consulting company.
12See Unespa-Towers Perrin (2009).
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2.8.7 Milliman model for longevity risk under Solvency II

Silverman and Simpson (2011), in name of Milliman,13 proposed a stochastic

model for longevity risk where mortality projections reflects three sources af

volatility:

• randomized dates of death,

• future mortality improvements trends volatility,

• potential extreme longevity occurrences.

In the Milliman model, the annual rate of mortality improvement, at attained

age x and duration t, reflects stochastic volatility in the following way

∆D̂x(t) = 1− [1−∆Dx(t) + δx(t)],

where

• ∆Dx(t) is the expected annual rate of mortality improvement at attained

age x and duration t = 0, 1, 2, ...,

• δx(t) is the stochastic adjustment to mortality improvement of attained age

x and duration t.

The stochastic adjustment is such that

δx(t) = M̂x(t)−Mx,

with

M̂x(t) = W T
x (t)

M∗x(t)[∏T
s=1M

∗
x(s)

]−T ,
and Mx is the average of 10-year improvement factors over the entire period for

each age x. In particular,

M∗x(t) = W T
x (t) + σ1

xε
x
t ,

and

W T
x (t) = Mx + σxε

x
t ,

where

• σx is the standard deviation of average annualized mortality improvement

factors over each of the consecutive T -year periods within the N years of

historical experience,

13Milliman is among the world’s largest independent actuarial and consulting firms.
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• σ1
x is the average of standard deviations of annual mortality improvement

rates within each of the consecutive T -year periods contained in the N years

of historical data,

• εxt are correlated standard normal random variables.
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Chapter 3

A new stochastic model for

estimating longevity and

mortality risks

3.1 Introduction

Longevity risk and mortality risk are critical components of a life insurance com-

pany’s risk profile because these risks impact life products where benefits are paid

upon the insured’s survival and life products based on the insured’s death. In

order to quantify a life insurer’s longevity and mortality risks, several proposals

for modeling and forecasting mortality rates have been suggested. The leading

statistical model of mortality forecasting is the one proposed by Lee and Carter

(1992) and that has been recommended by two U.S. Social Security Technical

Advisory Panels.1 The Lee-Carter model (and variants of it) is a discrete model

where the parameters can be calibrated to historical mortality experience.

A different approach in mortality modeling involves the use of continuous-

time stochastic models of the force of mortality.2 Milevsky and Promislow (2001)

— the first to propose a stochastic force of mortality model — and others focused

on the use of affine stochastic models.3 Other authors have proposed the use of

1Other models have been proposed by Lee (2000), Yang (2001), Cairns et al. (2006a), Currie
et al. (2004), Lin and Cox (2005), Renshaw and Haberman (2003), Brouhns et al. (2002), and
Giacometti et al. (2009).

2In actuarial science, force of mortality represents the instantaneous rate of mortality at a
certain age measured on an annualized basis. It is identical in concept to failure rate or hazard
function.

3For other force of mortality models see Dahl (2004), Biffis (2005), Denuit and Devolder
(2006), Schrager (2006), Luciano and Vigna (2005), and Giacometti et al. (2011).
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stochastic models to quantity the amount of capital that insurance companies

need to reserve in order to deal with their exposure to longevity and mortality

risks. Several studies have analyzed stochastic models for longevity and mortality

risks with respect to Solvency II capital requirements that will become effective

January 2013 for European insurers.4

In this chapter, we propose a new stochastic model for the estimation of

longevity and mortality risks. We use the mortality rates closed-formula implied

in affine stochastic mortality models in order to extract two time-varying param-

eters that will be used as a proxy for factors affecting the shape of the mortality

rates curve across time. The parameters of the closed-formula are estimated

yearly by means of an optimization procedure. To explain the dynamic of the

parameters, we apply a two-dimensional autoregressive process. Our approach

is similar to that used for modeling the term structure of interest rates where a

time-varying functional form for the term structure is assumed and the dynamic

of the parameters is analyzed using a stochastic process.5 In summary, our model

has the following attributes: (1) the dynamic of the mortality rates is explained

by two state variables that follow a two-dimensional autoregressive process of or-

der 1;6 (2) the mortality rate increases exponentially in a consistent manner with

the Gompertz law;7 (3) the model incorporates the decreasing trend observable

in historical mortality data, and; (4) the term structure of mortality rates can be

obtained with a closed-formula for each age and for each point in time.

Our model could be useful for the modeling of mortality/longevity risks under

insurance solvency regimes mandated by Solvency II. It could potentially offer

an appropriate tool for the valuation of longevity and mortality risks where an

internal assessment of the insurance business must be provided according to a

solvency investigation based on internal models.

Using Italian population data, we provide empirical support for our proposed

model. Moreover, we analyze the consistency of the shocks proposed in the Sol-

vency II standard formula by assessing the impact of comparable shocks using

the stochastic model we propose.

There are four sections that follow. In the next, we present model, followed in

Section 3.3 by a description of the estimation methodology. Empirical results of

4See Olivieri and Pitacco (2008), Olivieri (2009), Unespa-Tower Perrin (2009), Borger (2010),
Stevens et al. (2010), Borger et al. (2011), Silverman and Simpson (2011), Plat (2011).

5See McCulloch (1971), Nelson and Siegel (1987), Bliss (1989), Bliss (1996) and Fabozzi et
al. (2005).

6See Rachev et al. (2007) for details about the autoregressive process.
7The Gompertz law (1825) is founded on the biological concept of organism senescence, in

which mortality rates increase exponentially with age.
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the model are provided in Section 3.4. Some empirical results related to Solvency

II are analyzed in Section 3.5 while our conclusions are summarized in the last

section.

3.2 The proposed model

Our proposed stochastic model is a closed-formula for the term structure of mor-

tality rates where the rates with different maturities can be computed explicitly.

The closed-formula is a function of two state variables describing the dynamic

of mortality rates along time and age dimensions. We assume a two-dimensional

autoregression process of order one to explain the dynamic of the state variables.

Consequently, the closed-formula is time-varying in the sense that the entire term

structure of the mortality rates changes stochastically over time following the dy-

namic of the autoregression process. The model is consistent with the Gompertz

law and it is able to take into account the long-term mortality trend observed

in historical data. In this section, we present the model’s functional form and

describe how it can be calibrated to historical data.

3.2.1 Notation

In order to describe the model, we introduce and define the following quantities:

• x = reference age with x = 1, 2, ..., X;

• t = reference year with t = 1, 2, ..., T ;

• m = reference maturity of the mortality rate (i.e., the number of years ofter

the reference year t);

• Dx(t, t+m) = death probability (i.e., the probability in t that an individual

aged x dies within the period [t, t+m]);

• Sx(t, t + m) = survival probability (i.e., the probability in t that an indi-

vidual aged x dies after t+m) and is such that,

Sx(t, t+m) = 1−Dx(t, t+m).

Modeling the death event according to the Poisson distribution and denoting the

mortality rate by µx(t, t+m),8 the survival probability at time t of an individual

aged x can be computed as,

Sx(t, t+m) = exp[−µx(t, t+m)m].

8For further details see Cairns, Blake, and Dowd (2006b).



64
CHAPTER 3. A NEW STOCHASTIC MODEL FOR ESTIMATING LONGEVITY

AND MORTALITY RISKS

Consequently, the mortality rate is equal to:

µx(t, t+m) = − log[Sx(t, t+m)]

m
.

All of the previous quantities have to be considered theoretical quantities. In

order to distinguish the values derived by historical data from the values implied

by the theoretical model, we denote by µ̂x(t, t+m) the historical mortality rate.

In the same way, we denote by D̂x(t, t+m) and Ŝx(t, t+m) the historical death

probability and the historical survival probability, respectively.

3.2.2 Model specification

Instead of defining directly a parametric functional form for the term structure

of the mortality rates, we assume that the force of mortality, for a fixed age x,

increases exponentially over time and satisfies the following differential equation

consistent with its empirical observed behavior,

dµx(t) = kµx(t)dt, µx(0) = hx,

where (1) µx(t) is the instantaneous force of mortality assumed as deterministic

such that,

µx(t) = lim
m→0

µx(t, t+m),

(2) the parameter k is a positive constant, and (3) the parameter hx is age de-

pendent.

The differential equation that we propose is derived from the dynamic of

an affine stochastic mortality model where only the deterministic component of

the equation, without considering the mean-reversion, is taken into account. In

this way, our model takes into account the so-called non-mean reverting effect

that assures consistency with the Gompertz law. Cairns et al. (2006b) suggest

that affine stochastic models need to incorporate non-mean reverting elements,

while Luciano and Vigna (2005) and Russo et al.(2011) propose non-mean re-

verting affine processes for modeling the force of mortality. In these models, the

deterministic part of the mortality rate process increases exponentially as in the

model that we propose.

Then, in order to introduce a parametric function, we observe that affine

stochastic mortality models imply a closed-form expression for the survival prob-

abilities,9 with the consequence that, for t = 0, we have

Sx(0,m) = exp

[
hx
k

[
1− exp(km)

]]
,

9We apply the same mathematical tools used in interest rate and credit risk modeling. See
Duffie, Pan and Singleton (2000) and Brigo and Mercurio (2006) for further details.
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where hx and k are the model’s parameters.

Due to the term structure closed-formula implied in affine stochastic models,

we are able to define the entire term structure of mortality rates with respect to

the rate’s maturity m.

In order to explain the dynamic of the parameters across time, we estimate

them yearly by means of an optimization procedure. Consequently, the closed-

formula that we have defined previously becomes time-varying. We use the two

time-varying parameters as a proxy for factors affecting the term structure of

mortality rates across time. We denote by hx(t) and k(t) the two time-varying

parameters. Consequently, although the dynamic of our model across the ma-

turity m and ages x is deterministic, the dynamic of the model across time t is

stochastic.

The dynamic of the mortality rates across time t, across age x, and across

maturity m can be explained by the following functional form

Sx(t, t+m) = exp

{
hx(t)

k(t)

[
1− exp

[
k(t)m

]]}
.

In terms of mortality rates, our model becames

µx(t, t+m) = − hx(t)

k(t)m

[
1− exp

[
k(t)m

]]
,

where hx(t) and k(t) represent the two fundamental state variables.

In order to disantangle age and time dependence, we define the state vari-

able hx(t) as

hx(t) = h(t)g(x),

where,

• h(t) is the state variable that explains the dynamic of the force of mortality

considered as a latent factor;

• g(x) is a deterministic function of x such that,

g(x) = µ̂x(t̄, t̄+ 1),

with t̄ representing the last available date in mortality rates for the time

series.
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For t = 1, 2, ..., T , the variables k(t) and h(t) are estimated in order to derive the

time series {k̂(t)}Tt=1 and {ĥ(t)}Tt=1.

We model the dynamic of the first differences computed on {k̂(t)}Tt=1 and

{ĥ(t)}Tt=1 with a two-dimensional autoregression process of order one, denoted

by AR(1). Setting,

∆h(t) = h(t)− h(t− 1)

∆k(t) = k(t)− k(t− 1),

we estimate,

∆h(t) = α0 + α1∆h(t− 1) + σhεh(t)

∆k(t) = β0 + β1∆k(t− 1) + σkεk(t).

The parameters α0 and β0 are constant drift terms while α1 and β1 quantify the

sensitivities of the state variables with respect to the regressors. The quantities

σh and σk are constant volatility parameters while εh(t) and εk(t) are correlated

standard normal errors with correlation coefficient equal to ρ.

The parameters of the AR(1) process are independently estimated using the

ordinary least squares (OLS) method.

Basically, our model possesses the following characteristics:

• It describes the dynamic of mortality rates across the maturity m providing

a closed-formula for the term structure of mortality rates.

• It describes the dynamic of mortality rates across age x in a manner that

is consistent with the Gompert law.

• It describes the dynamic of mortality rates across time t.

• It incorporates the decreasing trend observable in historical mortality data.

3.3 Estimation procedure

In this section, we describe the estimation procedure.

3.3.1 Input data

In order to estimate the model, we use data contained in life tables. Typically,

life table includes the following information:

• lx(t) = number of survivors of age x at the start of the reference year t;



3.3. ESTIMATION PROCEDURE 67

• dx(t, t+1) = number of deaths with respect to the reference year t between

age x and x+ 1.

Given the reference year t and age x, we compute the one-year survival probability

as,

Ŝx(t, t+ 1) = 1− dx(t, t+ 1)

lx(t)
.

Consequently, we derive the one year death rate as

µ̂x(t, t+ 1) = − log[Ŝx(t, t+ 1)].

In order to estimate the proposed model, we use a T ×X matrix of historical

data containing the one-year death rate for t = 1, 2, ...T and x = 1, 2, ...X.

3.3.2 Calibrating the vectors {h(t)} and {k(t)}

The estimation procedure of the model involves the calibration of the state vari-

ables h(t) and k(t) by means of an optimization procedure. The t-th element of

the time series {ĥ(t)}Tt=1 and {k̂(t)}Tt=1 is calibrated by minimizing the sum of

the square difference between the observed mortality rate and the theoretical one

implied by our model at time t with respect to all available ages.

Denoting by ex(t) the square difference between the observed mortality rate

and the theoretical one, we have that,

ex(t) = [µ̂x(t, t+ 1)− µx(t, t+ 1)]2.

The estimates of h(t) and k(t) are the solution of the following optimization

problem,

arg min
h(t),k(t)

X∑
x=1

ex(t).

Repeating this procedure for t = 1, 2, ..., T , we obtain the time series {ĥ(t)}Tt=1

and {k̂(t)}Tt=1.

3.3.3 Modeling the dynamic of the state parameters

In order to model the dynamic of the state variables, h(t) and k(t), we estimate

the parameters of the AR(1) on the time series {h(t)} and {k(t)}.

Using the OLS method, we estimate the parameters of the two processes

independently. Applying the OLS method on the time series {h(t)}, we obtain

the estimators of the parameters α0 and α1. In the same way, applying the OLS

method on the time series {k(t)}, we obtain the estimators of the parameters β0
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and β1. Consequently, computing the expected values of h(t) and k(t), we obtain

the time series of the empirical residuals ε̂h(t) and ε̂k(t).

Denoting the covariance by σh,k(t) = ρσhσk, the two vectors of residuals

are then used to estimate the variance-covariance matrix (Σ) of the model,

Σ =

[
σ2
h σh,k

σh,k σ2
k

]
.

3.4 Empirical results

3.4.1 Data

In order to provide an empirical application of the model, we use Italian popula-

tion annual data from 1950 to 2008. We did not consider pre-1950 data in order

to avoid the impact of the two world wars on the volatility of mortality rates.

We consider all the available ages (up to 110). The source of data is The Human

Mortality Database of the University of California, Berkeley (www.mortality.org).

The graphical presentation of the one-year death rates from 1950 to 2008

for all the available ages is shown in Figure 3.1.

Figure 3.1: Historical one-year death rate from 1950 to 2008
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3.4.2 Estimation results

To provide the time series of the two state variables k(t) and h(t), the optimization

procedures for each reference year t as described in Section 3.2 are used. Figures

3.2-3.5 show the vectors {k(t)}, {h(t)}, {∆h(t)} and {∆k(t)}. In Table 1, we

report some basic descriptive statistics.

Figure 3.2: Time series of {h(t)}

Figure 3.3: Time series of {k(t)}
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Figure 3.4: Time series of {∆h(t)}

Figure 3.5: Time series of {∆k(t)}

Table 3.1: Descriptive statistics on {∆h(t)} and {∆k(t)}

state variable mean standard deviation skewness kurtosis
∆h(t) -0.002750 0.051399 0.148946 3.528705
∆k(t) 0.000025 0.004237 0.446829 2.928592
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Note that the time series of h(t) (Figure 3.2) show a decreasing trend, while

the series of the first differences (Figure 3.4) appear to be stationary. This ob-

servation led us to employ the stochastic processes of ∆h(t) and ∆k(t) in place

of h(t) and k(t).

To confirm our assumption, we performed a formal Augmented Dickey-Fuller

test for unit root. The null hypothesis of a unit root in the dynamics of the h(t)

and k(t) was not rejected. We did find that after differencing once, the time

series of ∆h(t) and ∆k(t) appear to be stationary.

In order to model the dynamic of {∆h(t)} and {∆k(t)} we evaluated which

type of autoregressive process was more appropriate. We did so by first estimat-

ing a vector autoregression process of order one — so-called VAR(1) — to model

the two time series. Unfortunately, we obtained low values for the significant of

the parameters. Consequently, we decided to verify the estimation results using

a pure autoregressive process (AR). Because by doing so we obtained significant

estimates for the parameters of the model, we adopted a two-dimensional AR(1)

process in place of a VAR(1) process.

To verify our assumption that the residuals of the AR(1) process for {∆h(t)}
and {∆k(t)} follow a normal distribution, we performed a Kolmogorov-Smirnov

test to compare the values in the vectors {εh(t)} and {εk(t)} with the standard

normal distribution values. The null hypothesis that the residuals of the regres-

sion on {∆h(t)} and {∆k(t)} have a standard normal distribution is accepted at

the 5% significance level. Our findings are consistent with the results reported

in Unespa-Tower Perrin (2009), where using the same statistical test the normal

distribution hypothesis was not rejected at the 5% significance level.

Consequently, we have estimated the parameters of the AR(1) process start-

ing from the time series {∆h(t)} and {∆k(t)} as described in Section 3.3. The

parameters estimation, the values of standard deviations and t-statistics are re-

ported in Table 3.2. The estimation results show that the regression coefficients

α1 and β1 are significant. We also estimated the variance-covariance matrix Σ

with the following results,

Σ̂ =

[
0.002021 0.000057

0.000057 0.000013

]
.

Consequently, we find that ρ̂ = 0.351761.
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Table 3.2: Estimation results for the AR(1) process

parameter coefficient standard error t-statistic
α0 -0.005803 0.006018 -0.964165
α1 -0.420959 0.116953 -3.599397
β0 0.000114 0.000480 0.238224
β1 -0.529630 0.113183 -4.679427

3.4.3 Simulation results

The simulation procedure involves generating a four-dimensional ipercube of mor-

tality rates, where the four dimensions are represented by:

• x = the reference age with x = 1, 2, ..., X,

• t = the reference year with t = T + 1, T + 2, ..., T +N ,

• m = the maturity of the mortality rate with m = 1, 2, ...,M ,

• s = the number of simulations with s = 1, 2, ..., S.

Here we report the simulation results for S = 1,000.10 The ipercube consists of a

set of mortality rates, one for each reference year, for each age, for each maturity,

and for each simulation step.

In Figure 3.6, the projection of the one-year mortality rate for an individ-

ual aged 50 is provided for a period of 20 years. From the projection, one can

appreciate how our model explains the mortality trend over a long-time horizon.

Moreover, the level of the mortality rate decreases in time which is consistent

with the decreasing trend that is observed for the historical data as shown in

Figure 3.1.

In Figure 3.7, we provide the same projection as Figure 3.6 but this time

plotting a confidence level of 90%.

3.4.4 Backtesting

Our focus in this section is on backtesting techniques for verifying the accuracy

of our proposed model. Backtesting is a statistical testing framework that con-

sists of checking whether actual mortality rates are in line with a model’s forecast.

10We have simulated correlated values of the state variables starting from independent stan-
dard normal random numbers, denoted by zh(t) and zk(t). Consequently, εh(t) and εk(t) are
such that,

εh(t) = zh(t)

εk(t) = zh(t)ρ+ zk(t)
√

1− ρ2.
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Figure 3.6: Projection of the one-year mortality rate (x = 50): simulation results

Figure 3.7: Projection of the one year-mortality rate (x = 50): confidence interval
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We divided the available time series of one-year mortality rates (from 1950 to

2008) into two parts: in-sample and out-of-sample. The in-sample part is from

1950 to 1980; the out-of-sample part is from 1981 to 2008. We compared the

historical data from 1981 to 2008 with the related estimation. In addition, we

provided an upper and lower bound with respect to the 0.5% and 99.5% confi-

dence level. We can see from backtest results shown in Figure 3.8 that our model

is able to correctly predict the trend and the volatility of the one-year mortality

rate.

We also provided a comparison between historical and expected value across

ages. For the reference year 2008, we computed the expected value and the con-

fidence interval for each age. The results are shown in Figure 3.9. Note the

consistency between the observed and expected values.

Figure 3.8: Backtesting (x = 50)

3.5 The Solvency II European project

The so-called Solvency II rules for European insurance companies that will be-

come effective January 1, 2013 sets forth two capital requirements representing

different levels of supervisory intervention: the Solvency Capital Requirement
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Figure 3.9: Backtesting for different ages

(SCR) and the Minimum Capital Requirement (MCR).11 According to the Sol-

vency II directive, insurers should hold an amount of capital that enables them

to absorb unexpected losses and meet their obligations to policyholders. The

calculation of this requirement must be made on the basis of the value at risk

(VaR) with a confidence level of 99.5% over a time horizon of one year.

The capital requirements must be computed using a standard formula or by

means of an internal model. If the standard formula is adopted, the overall risk

can be split into several modules. Separate capital requirements are computed

for each risk and then aggregated with linear correlation matrices to allow for the

benefit of diversification. The capital requirement for each risk is determined as

the 99.5% VaR of the available capital over a one-year time horizon. In lieu of the

standard formula, with the approval of the insurance supervisor, internal mod-

els can be used to compute the capital requirement. On the one hand, internal

models should provide a more accurate quantification of the capital requirements.

On the other hand, internal models are often more complex than the standard

formula and generally are based on stochastic models.

As an alternative to the standard formula, stochastic mortality models can be

used as internal models for evaluating the impact of longevity and mortality risk

within the overall risk framework. The typical reasons for an insurer’s adoption of

11See European Commission (2009) and European Community (2009) for further details
about Solvency II.
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an internal model are threefold: (1) more accurate measure of the risks, (2) moral

suasion from the capital market and rating agencies, and (3) encouragement by

regulators.

3.5.1 Using the proposed model under Solvency II regime

In the Solvency II standard model, the capital charges for longevity and mortality

risks are computed as the change in liabilities with respect to a percentage shock

applied to the current level of the mortality rates. In particular, for longevity

risk, a reduction of the mortality rates is taken into account while for mortality

risk an increase of the mortality rates is considered. The percentage shock is used

for all ages is the same.

The percentage shocks as a part of the standard formula of Solvency II are

currently being established by a series of Quantitative Impact Studies (QIS) in

which the effects of the new capital requirements are analyzed. According to

the latest Quantitative Impact Study as of this writing, the so-called QIS5,12

the capital charge for longevity risk is captured by a permanent 20% decrease in

the mortality rates, while the capital charge for mortality risk is captured by a

permanent 15% increase.

We compared the percentage shocks proposed in the QIS5 with the analo-

gous results of our stochastic model with respect to Italian population data. In

order to obtain comparable results with the Solvency II longevity and mortality

shocks, we have considered the empirical distribution of µx(t, t + m) projected

over a time horizon of one year. Using the empirical distribution, we calculated

the percentile at the 0.5% and 99.5% confidence levels over the time horizon

of one-year where the percentile at 0.5% represents the VaR for longevity risk

and the percentile at 99.5% the VaR for mortality risk. The VaR for both are

computed over a one-year time horizon as prescribed by the Solvency II directive.

Transforming the value of the percentile into a percentage shock, we find

that our model implies a 12.7% decrease in mortality rates for the longevity risk

capital charge and a 12.8% increase in mortality rates for the mortality risk cap-

ital charge. The percentage shocks are the same for all the ages. This finding

suggests that for computing the capital charge for longevity risk, a reduction of

20% in mortality probabilities as mandated by Solvency II seems unrealistically

high. However, the percentage shock for mortality risk from our model appears

to be consistent with Solvency II. That is, if the shock value proposed by Sol-

vency II for mortality risk can be considered realistic with respect to the Italian

population data, the shock value for longevity risk appears to be too conservative.

12See European Commission (2010) for further details.
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3.6 Conclusions

In this chapter, we propose a stochastic model for the estimation of longevity

and mortality risks that can be employed as an internal model for risk evaluation

in determining risk-based Solvency II requirements for European insurance com-

panies. Our model provides a closed-formula for computing the mortality rates

at different maturities for different ages and for each reference year. Because the

model has two stochastic drivers that follow an autoregressive stochastic process,

it is capable of accounting for the observed long-term mortality trend and it is

consistent with the Gompertz law.

Calibrating our stochastic model to historical data for the Italian population,

we find that the estimated values for the model’s parameters are statistically sig-

nificant.

Moreover, we performed a backtesting analysis where we found that our model

produced highly accurate forecasts of mortality rates.

We also analyzed the shock values specified in the Solvency II standard for-

mula for longevity and mortality risks. Applying our model, we calculated the

percentage shocks for the expected longevity and mortality risks in a manner con-

sistent with the VaR at 0.5% and 99.5% confidence levels over a one-year time

horizon. For the Italian population data, we found that the shock values com-

puted with our model are consistent with the assumption of the standard formula

in which an increase of 15% is mandating for the purpose of computing the mor-

tality risk. In contrast, our results suggest that the standard formula of Solvency

II could lead to an over-estimation of the capital requirements for longevity risks

when a decrease of 20% of the mortality rates is required to quantify the capital

charge for longevity risks.
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Chapter 4

Intensity-based framework for

longevity and mortality modeling

4.1 Introduction

The use of intensity-based models has seen a remarkable surge during the last

decade in the modeling of credit risk.1

In this chapter, following Cairns et al. (2006) and Luciano and Vigna (2005),

an intensity-based framework for mortality modeling is presented. In fact, the

modeling of mortality in life insurance became very similar to that of default in

the credit risk literature. Consequently, the mortality intensity can be thought

of as a hazard rate in the context of the Poisson process approach.

4.2 Quantitative measures of mortality and longevity

As a standard measure of mortality, we consider the probability in t that an

individual aged x dies within the period [t, T ] with t < T . This probability is

denoted by Dx(t, T ). Given the probability in t that an individual aged x dies

within the period [Ti−1, Ti] it holds that,

Dx(Ti−1, Ti) = Dx(t, Ti)−Dx(t, Ti−1).

We consider also the survival probability which reflects the probability in t that

an individual aged x survives over T . We denote this probability by Sx(t, T ).

Clearly, it holds the following relation

Sx(t, T ) = 1−Dx(t, T ).

1See Lando (2004), Schonbucher (2000), Duffie, Pan and Singleton (2000), and Brigo and
Mercurio (2006).
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4.3 Mortality reduced form models

Reduced form models can be considered to model the death event describing

death arrival as the first jump time of a Poisson process with deterministic or

stochastic force of mortality.

4.3.1 Time-homogeneous Poisson process: constant force of morta-

lity

Time-homogeneous Poisson process is the standard Poisson process.

Considering an individual aged x at time t, it is assumed that the death arrival is

the first jump-time of a time-homogeneous Poisson process indicated by {Aτ , τ ≥
0}. Denoting by µx(t, T ) the mortality rate related to the period [t, T ] and

assuming the death arrival as the first jump time of a Poisson Process, it follows

that

Prob[Aτ = a] =
e−µx(t,T )τ(t,T )[µx(t, T )τ(t, T )]a

a!
.

Setting a = 0, the survival probability at time t that an individual aged x survives

over T is

Sx(t, T ) = exp

{
− µx(t, T )τ(t, T )

}
.

The term structure of mortality rates

A stream of mortality rates related to the respective maturities represents the

term structure of mortality rates. Setting a vector of maturities, T1, T2, ..., Tn,

the term structure of mortality rates is represented by the sequence

µx(t, T1), µx(t, T2), ..., µx(t, Tn).

4.3.2 Time-inhomogeneous Poisson process: time-varying determi-

nistic force of mortality

Time-inhomogeneous Poisson process can be built on the based of time-homogeneous

Poisson process with deterministic and time-varying force of mortality.

We denote by µx(t) the force of mortality in t related to an individual aged x to

take into account that it is time-varying. The force of mortality is such that

µx(t) = lim
T→t

µx(t, T ).

We assume that the death event can be considered as the first jump time of a

Poisson process where

Λµx(t) = exp

{∫ t

0
µx(u)du

}
,
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represents the cumulative force of mortality or cumulative hazard rate or hazard

function.

Under the assumption of time-inhomogeneous Poisson process, we have that

Prob[Aτ = a] =
e−

∫ T
t µx(u)du

[ ∫ T
t µx(u)du

]a
a!

.

Consequently,

Sx(t, T ) =
Λµx(t)

Λµx(T )
= exp

{
−
∫ T

t
µx(u)du

}
,

where Sx(t, T ) is the so-called survivor index. It is equal to the probability at

time t that an individual aged x survives over T .

4.3.3 Double stochastic Poisson process (Cox process): stochastic

intensity

The Poisson process can have deterministic or stochastic intensity.

In the case of double stochastic Poisson process (Cox process) the force of mor-

tality is stochastic.

Indicating by Mt the filtration generated by the evolution of the term structure

of the mortality rates, we have that

Sx(t, T ) = EQ
[

Λµx(t)

Λµx(T )

∣∣∣∣Mt

]
.

4.4 Affine processes as stochastic mortality models

Affine models are very popular in quantitative finance. They have been employed

in finance since decades, and they have found growing interest due to their compu-

tational tractability. The main property of affine models is that the conditional

cumulant function, defined as the logarithmic of the conditional characteristic

function, is affine in the state variable.

Affine models are very often used to model the short term of interest rates because

they lead to closed-form of the bond prices and yields whatever the maturity. This

approach has been introduced in continuous time by Vasicek (1977) where the

short term interest rate is assumed to follow a gaussian Ornstein-Uhlenbeck pro-

cess. Another important affine model used in financial modeling was proposed

by Cox, Ingersoll, and Ross (1985), the so-called CIR model.

Besides these applications in risk-free rate modeling, affine processes are also used

in credit risk modeling. In this case, affine models lead to a closed-form solution

for the survival probability.2

2See Duffie, Pan and Singleton (2000).



86
CHAPTER 4. INTENSITY-BASED FRAMEWORK FOR LONGEVITY AND

MORTALITY MODELING

We apply reduced-form models into mortality risk modeling where the force of

mortality is driven by affine diffusions processes. In particular, the force of mor-

tality is an affine function of one latent factor and the survival probabilities are

known in closed-form. It is important to know that thank to the affine formula-

tion it is possible to obtain analytical formulas for the entire term structure of

mortality rates. Different types of affine models used in interest rate modeling

can be taken into account to model stochastic force of mortality.

Below, we provide a brief description of Vasicek and CIR model affine models

with the related closed-formula for survival probability.

4.4.1 Vasicek model

For the Vasicek (1977) model, we assume that the force of mortality follows the

stochastic differential equation

dµx(t) = k(θ − µx(t))dt+ σdW (t), µx(0) = µx,

with µx and σ positive constants, θ constrained to be positive, and k constrained

to be strictly negative. The main drawback of this process is that the force of

mortality can be negative with positive probability. For this model, the survival

probability can be obtained by

Sx(t, T ) = G(t, T )e−H(t,T )µx(t),

G(t, T ) = exp

{(
θ − σ2

2k2

)[
H(t, T )− τ(t, T )

]
− σ2

4k
H(t, T )2

}
,

H(t, T ) =
1

k

[
1− e−kτ(t,T )

]
.

4.4.2 Cox-Ingersoll-Ross model

Assuming the dynamic of the Cox, Ingersoll, and Ross (1985) model (CIR model

hereafter), the force of mortality µx(t) satisfies

dµx(t) = k(θ − µx(t))dt+ σ
√
µx(t)dW (t), µx(0) = µx,

with µx and σ positive constants, θ constrained to be positive, and k constrained

to be strictly negative. The principal advantage of the CIR model over the Vasicek

model is that the hazard rate is guaranteed to remain non-negative. However, the

condition 2kθ > σ2 is not applicable and the hazard rates can be equal to zero

with positive probability. Survival probabilities can still be computed analytically
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and are given by

Sx(t, T ) = G(t, T )e−H(t,T )µx(t),

G(t, T ) =

[
2γe

1
2 (k+γ)τ(t,T )

2γ + (k + γ)(e
γτ(t,T ) − 1)

] 2kθ
σ2

,

H(t, T ) =
2(e

γτ(t,T ) − 1)

2γ + (k + γ)(e
γτ(t,T ) − 1)

,

γ =
√
k2 + 2σ2.

4.5 How correlating interest rates and mortality rates

Usual assumption is to assume mortality and interest rates as independent. How-

ever, in extreme scenarios there must be some dependence (e.g. war and inflation,

pandemic and economic growth,...).

A two-factor Vasicek process can be used to take into account correlation between

interet rate and mortality. The two-factor gaussian process has the following dy-

namic,

dr(t) = k(θ − r(t))dt+ σdWr(t), r(0) = r0,

dµx(t) = h(ϑ− µx(t))dt+ vdWµ(t), µx(0) = µx,

dWr(t)dWµ(t) = ρ.

Given the analytical tractability of the two-factor gaussian model, it is possible

to derive the closed formula for the price of the so-called zero coupon longevity

bond.

Let X = mX + σXNX and Y = mY + σYNY be two random variables such

that NX and NY are two correlated standard gaussian random variables with

[NX , NY ] jointly gaussian vector with correlation ρ. Then,

E
[

exp(−X)
]

= exp

[
−mX +

1

2
σ2
X

]
.

Consequently, the quantity

X =

∫ T

t
r(u) + µx(u)du,

is a gaussian random variable with mean

mX = (θ + ϑ)(T − t)−
[
θ − r0

]1

k

[
1− exp

[
− k(T − t)

]]
−
[
ϑ− µx

]1

h

[
1− exp

[
− h(T − t)

]]
,
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and variance

σ2
X =

(
σ

k

)2{
(T − t)− 2

k

[
1− exp

[
− k(T − t)

]]
+

1

2k

[
1− exp

[
− 2k(T − t)

]]}
+

(
v

h

)2{
(T − t)− 2

h

[
1− exp

[
− h(T − t)

]]
+

1

2h

[
1− exp

[
− 2h(T − t)

]]}
+

2ρσv

kh

{
(T − t)− 1

k

[
1− exp

[
− k(T − t)

]]
− 1

h

[
1− exp

[
− h(T − t)

]]
+

1

k + h

[
1− exp

[
− (k + h)(T − t)

]]}
.

Consequently, the price of a zero-coupon longevity bond that pays one unit of

cash in case of life and 0 in case of death of the individual aged x is

P̄ (t, T ) = E
[

exp

(
−
∫ T

t
r(u) + µx(u)du

)]
= exp

[
−mX +

1

2
σ2
X

]
.
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Chapter 5

A new approach for pricing of life

insurance policies

5.1 Introduction

The present chapter is focus on a new approach for pricing of life insurance poli-

cies.

We consider life insurance contracts as a swap where the pricing function is sim-

ilar to the pricing function of an interest rate swap (IRS) or credit default swap

(CDS). According to our pricing approach, policyholders exchange cash flows

(premiums vs. benefits) with an insurer as with an IRS or CDS. We present our

pricing approach with respect to term assurance, pure endowment and endow-

ment policies.

5.2 The basic building block

Interest rates and the mortality rates are the most important risk factors that

affect the valuation of insurance contracts. In the following, we introduce some

basic standard concepts in interest rates and mortality rates modeling.

5.2.1 Interest rates modeling

We define C(t) to be the value of a bank account at time t ≥ 0. We assume the

bank account evolves according to the following differential equation

dC(t) = r(t)C(t)dt, C(0) = 1,
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where r(t) is the instantaneous risk-free interest rate. As a consequence,

C(t) = exp

(∫ t

0
r(u)du

)
.

Being Rt the filtration generated by the term structure of interest rates up to

time t, it follows that

P (t, T ) = EQ
[
C(t)
C(T )

∣∣∣∣Rt

]
,

where P (t, T ) is the price at time t of a risk-free zero coupon bond that pays one

unit of cash at time T and EQ is the expectation under the risk-neutral measure

MQ.

5.2.2 Mortality modeling

We consider the force of mortality related to an individual aged x, denoted by

µx(t).1 We assume that the death event can be considered as the first jump time

of a Poisson process where the quantity,

Λµx(t) = exp

(∫ t

0
µx(u)du

)
,

represents the cumulative force of mortality, also known as hazard function.

Indicating by Mt the filtration generated by the evolution of the term structure

of the mortality rates, we have that

Sx(t, T ) = EQ
[

Λµx(t)

Λµx(T )

∣∣∣∣Mt

]
= EQ

[
Sx(t, T )

∣∣∣∣Mt

]
,

where Sx(t, T ) is the survival probability, namely the probability in t that an

individual aged x dies after T , and Sx(t, T ) is the so-called survivor index.

Starting from Sx(t, T ) we define also the death probability, indicated by Dx(t, T ),

as the probability that an individual aged x dies within the period [t, T ].

Consequently, we have that

Dx(t, T ) = 1− Sx(t, T ),

and

Dx(Ti−1, Ti) = Dx(t, Ti)−Dx(t, Ti−1) = Sx(t, Ti−1)− Sx(t, Ti).

1In actuarial science, force of mortality represents the instantaneous rate of mortality at a
certain age measured on an annualized basis. It is identical in concept to the failure rate or
hazard function.
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5.2.3 Zero-coupon longevity bond

We use the convenient assumption that, under the risk neutral measure MQ,

mortality rates are independent by interest rates. Under this assumption, the

price of a zero-coupon longevity bond that pays one unit of cash in case of life and

zero in case of death of an individual aged x is

P̄ (t, T ) = EQ
[
C(t)
C(T )

∣∣∣∣Rt

]
EQ
[

Λµx(t)

Λµx(T )

∣∣∣∣Mt

]
= EQ

[
C(t)
C(T )

Λµx(t)

Λµx(T )

∣∣∣∣Ct] =

EQ
[
D(t, T )Sx(t, T )

∣∣∣∣Ct] = P (t, T )Sx(t, T ),

where Ct is the combined filtration for both the term structure of mortality rates

and the term structure of interest rates.

5.2.4 Temporary life annuity

A life annuity is an insurance contract where an insurer makes a series of future

payments to a policyholder in exchange for an immediate payment of a lump

sum (single-payment annuity) or a series of regular payments (regular-payment

annuity). The value of the annuity depends by the survival probability of the

insured.

We consider a temporary life annuity for n periods (at the beginning of the pe-

riod), with respect to an insured aged x and a fixed benefit equal to one unit

of cash. The insurer makes regular payments starting from the issue date of the

contract. Assuming that the issue date T0 of the annuity coincide with the val-

uation date t, the expected present value of the temporary life annuity, denoted

by A(t, Tn, x), with maturity at time Tn is

A(t, Tn, x) = τ(T0, T1) +
n−1∑
i=1

τ(Ti, Ti+1)P (t, Ti)Sx(t, Ti)

= τ(T0, T1) +
n−1∑
i=1

τ(Ti, Ti+1)P̄ (t, Ti),

where τ(Ti, Ti+1) is the time measure as a fraction of the year between the dates

Ti and Ti+1 according to some convention.

5.2.5 Forward start temporary life annuity

We denote by A(t, T0, Tn, x) the value in t of a forward start temporary life annuity

with start date in T0 > t and maturity in Tn. The present value of a forward

start temporary life annuity is

A(t, T0, Tn, x) =
n−1∑
i=0

τ(Ti, Ti+1)P (t, Ti)Sx(t, Ti) =

n−1∑
i=0

τ(Ti, Ti+1)P̄ (t, Ti).



94
CHAPTER 5. A NEW APPROACH FOR PRICING OF LIFE INSURANCE

POLICIES

5.3 Pricing life insurance contracts as a swap

5.3.1 Term assurance as a swap: pricing function

A term life insurance or term assurance is a life insurance contract which pro-

vides coverage for a limited period of time in exchange for premium payments.

Although this form of life insurance can have a fixed or variable payment over

time, here we only consider the fixed payment case. If the insured dies during

the term, the death benefit will be paid to the beneficiary; no benefit is provided

by the policy should the insured survive to the end of the policy period.

As explained above, a term assurance can be considered a swap in which policy-

holders exchange cash flows (premiums vs. benefits) with an insurer just as with

a generic interest rate swap or credit default swap. The policyholder pays to an

insurer a constant periodic premium Q (or a single premium U) to insure the life

of an individual aged x (insured) against the death event during a certain number

of years. We consider the case where the beneficiary of the contract receives a

fixed amount C in the case of the insured’s death. We assume that the payment

related to the effective death time is postponed to the first discrete time Ti.

Consider a term assurance related to an individual aged x. Given a set of n

annual payments at discrete times T1, T2, ..., Ti, ..., Tn, the expected present value

of the term assurance at time t = T0 < T1 is the difference between the expected

present value of the premium leg, denoted by Legpm(t, Tn, x), and the expected

present value of the protection leg, denoted by Legpr(t, Tn, x).

Denoting by QTa(t, Tn, x) the premium of the term assurance, the expected

present value of the premium leg is

Legpm(t, Tn, x) = QTa(t, Tn, x)τ(T0, T1)

+QTa(t, Tn, x)

n−1∑
i=1

τ(Ti, Ti+1)P (t, Ti)Sx(t, Ti),

and the expected present value of the protection leg is

Legpr(t, Tn, x) = C

n∑
i=1

P (t, Ti)Dx(Ti−1, Ti).

At the valuation date t, the present value of the term assurance from the prospec-

tive of the insurance company, denoted by TA(c)(t, Tn, x), is

TA(c)(t, Tn, x) = Legpm(t, Tn, x)− Legpr(t, Tn, x) = 0.

Analogously, the present value of the term assurance from the prospective of the

policyholder, denoted by TA(p)(t, Tn, x), is

TA(p)(t, Tn, x) = Legpr(t, Tn, x)− Legpm(t, Tn, x) = 0.
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Consequently, the value of the periodic premium is

QTa(t, Tn, x) =
C
∑n

i=1 P (t, Ti)Dx(Ti−1, Ti)

τ(T0, T1) +
∑n−1

i=1 τ(Ti, Ti+1)P (t, Ti)Sx(t, Ti)
.

Considering a contract with a single premium, it follows that

UTa(t, Tn, x) = Legpr(t, Tn, x).

For the policyholder (or the investor), a term assurance contract can be viewed as

a long position on the death rate to n years: if the n year’s death rate increases,

the fair value of the contract increases from the prospective of the policyholder.

From the prospective of the insurer (or another counterparty), the contract can

be viewed as a short position on the n years death rate. Consequently, if the

death rate decreases, the fair value of the contract increases from the prospective

of the insurer.

5.3.2 Pure endowment as a swap: pricing function

A pure endowment is a life insurance contract which provides coverage with re-

spect to payments for a limited period of time. In this case, if the insured does

not dies during the term, a benefit C is payed at the end of the period. Also in

this case, although this form of insurance can have a fixed payment or one that

changes over time, here we only consider the fixed payment case.

A pure endowment can be considered as a swap where the policyholder, during a

period of n years, pays to an insurer a constant periodic premium Q (or a single

premium U) to ensure the payment of the fixed amount C if the insured of age

x survives up to the year n.

Given a set of n annual payments at discrete times T1, T2, ..., Ti, ..., Tn, the present

value of the premium leg and the present value of the protection leg, at time

t = T0 < T1, are

Legpm(t, Tn, x) = QPe(t, Tn, x)τ(T0, T1)

+QPe(t, Tn, x)
n−1∑
i=1

P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti),

and

Legpr(t, Tn, x) = P (t, Tn)Sx(t, Tn)C.

The present value of the pure endowment at time t, denoted by PE(t, Tn, x), is

the difference between the present value of the premium leg and the present value

of the protection leg.
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At the valuation date t, the present value of the pure endowment from the

prospective of the insurance company, denoted by PE(c)(t, Tn, x), is

PE(c)(t, Tn, x) = Legpm(t, Tn, x)− Legpr(t, Tn, x) = 0.

Analogously, the present value of the pure endowment form the prospective of

the policyholder, denoted by PE(p)(t, Tn, x), is

PE(p)(t, Tn, x) = Legpr(t, Tn, x)− Legpm(t, Tn, x) = 0.

Consequently, the value of the periodic premium is

QPe(t, Tn, x) =
P (t, Tn)Sx(t, Tn)C

τ(T0, T1) +
∑n−1

i=1 P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti)
.

Considering a contract with a single premium U , it follows that

UPe(t, Tn, x) = Legpr(t, Tn, x).

5.3.3 Endowment as a swap: pricing function

An endowment is a life insurance contract which provides coverage for a limited

period of time in exchange for premium payments. If the insured dies during the

term, the death benefit C will be paid to the beneficiary; if the insured does not

dies during the term, the benefit C is payed at the end of the period. Conse-

quently, an endowment can be considered as a combination of a term assurance

and a pure endowment.

Also in this case, although this form of insurance can have a fixed payment or

one that changes over time, here we only consider the fixed payment case.

An endowment can be considered as a swap where the policyholder, during a

period of n years, pays to an insurer a constant periodic premium Q (or a single

premium U) to ensure the payment of the fixed amount C.

Given a set of n annual payments at discrete times T1, T2, ..., Ti, ..., Tn, the present

value of the premium leg and the present value of the protection leg, at time

t = T0 < T1, are

Legpm(t, Tn, x) = QE(t, Tn, x)τ(T0, T1)

+QE(t, Tn, x)
n−1∑
i=1

P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti),

and

Legpr(t, Tn, x) = C

n∑
i=1

P (t, Ti)Dx(Ti−1, Ti) + P (t, Tn)Sx(t, Tn)C.
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At the valuation date t, the present value of the endowment from the prospective

of the insurance company, denoted by E(c)(t, Tn, x), is

E(c)(t, Tn, x) = Legpm(t, Tn, x)− Legpr(t, Tn, x) = 0.

Analogously, the present value of the endowment form the prospective of the

policyholder, denoted by E(p)(t, Tn, x), is

E(p)(t, Tn, x) = Legpr(t, Tn, x)− Legpm(t, Tn, x) = 0.

Consequently, the value of the periodic premium will be such that,

QE(t, Tn, x) =
C
∑n

i=1 P (t, Ti)Dx(Ti−1, Ti) + P (t, Tn)Sx(t, Tn)C

τ(T0, T1) +
∑n−1

i=1 P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti)
.

Considering a contract with a single premium U , it follows that

UE(t, Tn, x) = Legpr(t, Tn, x).
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Chapter 6

Calibrating affine stochastic

mortality models using term

assurance premiums

6.1 Introduction

A fundamental issue in the use of any stochastic mortality model involves the

quantification of the parameters. Parameter estimation can be based on histor-

ical data employing various statistical procedures. This approach is appropriate

for risk management purposes where parameter estimation is provided under

real-world measure. However, for the purpose of pricing, a risk-neutral measure

should be considered and risk-neutral parameter calibration should be provided

using stochastic mortality models. Under a risk-neutral measure, the main issue

involves the mortality risk premium estimation1 deriving risk-neutral survival

probabilities leading to an arbitrage-free price for mortality/longevity-linked in-

surance or financial products.

Several instruments such as so-called longevity or survivor bonds or survivor

swaps have been proposed. In December 2003, Swiss Re issued a three-year life

catastrophe bond. In November 2004, BNP Paribas announced the issuance of

the first longevity bond, the so-called EIB/BNP bond,2 a bond that has attracted

considerable attention among practitioners and researchers. Cairns, Blake, and

Dowd (2006a) used the published pricing value of the EIB/BNP bond to calibrate

the parameters of a 2-factor stochastic mortality model.

1See Milevsky, Promislow, and Young (2005).
2See Blake, Cairns, and Dowd (2006) and Cairns, Blake, Dawson, and Dowd (2005).
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We believe that the market for life insurance policies can be utilized for pric-

ing the mortality risk premium. In this chapter, we develop a new procedure

to calibrate the parameters of affine stochastic mortality models using insurance

contract premiums. The fundamental idea is to utilize real quotes from simple

insurance products such as term assurance contracts to calibrate the parameters

of affine stochastic mortality models. We consider these life insurance contracts

as a“swap” where the pricing function is similar to the pricing function of an

interest rate swap or credit default swap.

An important step in the proposed model involves deriving the term structure

of mortality rates by means of a bootstrapping technique, a procedure similar

to bootstrapping of the default rates using credit default swaps. Then, the term

structure of mortality rates is used to calibrate the parameters of affine stochastic

mortality models by means of an optimization procedure.

Our model can be used for pricing mortality/longevity-linked securities and deriva-

tives. Furthermore, it can be applied to the calculation of the technical provisions

of insurance contracts under a market-consistent accounting regime. In fact, the

introduction of the IFRS market-consistent accounting for insurance contracts

(enforcement expected to begin in 2013) and the risk-based Solvency II require-

ments for the European insurance market (enforcement scheduled to begin in

2013) will involve taking into account the market-consistent value of the techni-

cal provisions related to insurance contracts. Under these regulations, insurance

companies will have to identify all material contractual options embedded in the

life insurance policies that they issue. Our model could represent a useful frame-

work when a calibrated stochastic mortality model is needed in the evaluation of

mortality/longevity-linked options.

We provide an empirical application of the model using premiums of contracts

with different maturities issued by three Italian insurance companies. The per-

formance of Vasicek, Cox-Ingersoll-Ross, and jump-extended Vasicek models are

analyzed for individuals at different ages.

The organization of the chapter is as follows. In Section 6.2, the proposed model is

described. The empirical results are presented in Section 6.3 and the conclusions

are provided in Section 6.4.
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6.2 Proposed model for calibrating affine stochastic mor-

tality models on term assurance premiums

As discussed in the previous section, a fundamental issue in the use of any stochas-

tic mortality model is the quantification of the parameters. Although historical

parameter estimation under real-world measure is appropriate for risk manage-

ment purposes, for pricing purposes a risk-neutral measure is needed.

A different approach to calibrating stochastic mortality models could be based

on transactions in the life settlement market. In this market, the contract’s pol-

icyholder can sell the policy to a third party (an investor). Transactions of this

type, referred to as viatical settlements, have been available in the United States

since 1911; the volume of these transactions was roughly $18 to $19 billion in

2009. Unfortunately, this form of investment is still underdeveloped in Europe

and it is accessible only through hedge funds, structured products, and funds of

funds for qualified investors.3

In order to provide an alternative approach for risk-neutral calibration of stochas-

tic mortality models, the approach we propose involves estimating the parameters

of affine stochastic mortality models using the quotes of life insurance contracts.4

More specifically, using insurance contracts such as term assurance, we infer the

risk-neutral survival probability implied in the quotes. For this purpose, term as-

surance is treated as a “swap” (any insurance contract can be viewed as a swap)

in which the policyholder (or the investor) exchanges with the insurer (or a new

counterparty) the premium payments against the contingent benefit payment.

Viewing these contracts as a swap, we propose a bootstrapping procedure to de-

rive the term structure of mortality rates implied by the contracts. The term

structure of mortality rates obtained by the bootstrapping procedure is used as

an input to calibrate the parameters of affine stochastic mortality models by

means of an optimization procedure.

It is important to note that our model requires estimating a different model

3See The Economist (2009) and United States Senate (2009) for further information.
4We specify the dynamics under a risk-neutral pricing measure Q. Unfortunately, at the

present time the market for life insurance contracts is currently far from being liquid. Conse-
quently, from a theoretical point of view the life insurance market is incomplete and the risk-
neutral measure Q is not unique. A different way of generating risk-neutral measures involves
using the Wang transform (Wang, 2000, 2002, 2003). Lin and Cox (2004), Denuit, Devolder and
Goderniaux (2004), and Dowd, Blake, Cairns, and Dawson (2005) apply the Wang transform
to mortality/longevity-linked securities. An alternative approach was adopted by the Solvency
II requirements. Under Solvency II, the market-consistent value of the technical provisions for
non-hedgeable risks (indicating market incompleteness) is given by the sum of a “best estimate”
and a “risk margin” (see European Community (2009) and European Commission (2010) for
details).
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for each cohort. Consequently, when several term structures of mortality rates

have to be considered to manage different cohorts, the correlation between co-

horts must be taken into account.

In summary, our proposed model involves the following four tasks: (1) obtain-

ing real quotes of term assurance contracts; (2) recasting the pricing function of

these contracts in terms of a swap; (3) employing a bootstrapping procedure to

construct the mortality rates term structure, and; (4) calibrating the parameters

of stochastic mortality models based on the bootstrapped term structure.

6.2.1 Term assurance as a swap: pricing function

Term life insurance or term assurance is a life insurance contract which provides

coverage for a limited period of time in exchange for premium payments. Al-

though this form of life insurance can have a fixed or variable payment over time,

here we only consider the fixed payment case. If the insured dies during the term,

the death benefit will be paid to the beneficiary; no benefit is provided by the

policy should the insured survive to the end of the policy period.

As explained above, a term assurance can be considered a swap in which pol-

icyholders exchange cash flows (premiums vs. benefits) with an insurer just as

with a generic interest rate swap or credit default swap. The policyholder pays

to an insurer a constant annual premium Q (or a single premium U) to insure

the life of an individual aged x (insured) against the death event during a cer-

tain number of years. We consider the case where the beneficiary of the contract

receives a fixed amount C in the case of the insured’s death. We assume that

the payment related to the effective death time is postponed to the first discrete

time Ti.

Consider a term assurance related to an individual aged x. Given a set of n

annual payments at discrete time T1, T2, ..., Ti, ..., Tn, the expected present value

of the term assurance at time t < T1 is the difference between the expected present

value of the premium leg, denoted by TApml(t, Tn, x), and the expected present

value of the protection leg, denoted by TAprl(t, Tn, x). Denoting by Q(t, Tn, x)

the premium of the term assurance, the expected present value of the premium

leg is

TApml(t, Tn, x) = Q(t, Tn, x) +Q(t, Tn, x)

n−1∑
i=1

τ(Ti−1, Ti)P (t, Ti)Sx(t, Ti),

and the expected present value of the protection leg is

TAprl(t, Tn, x) = C

n∑
i=1

P (t, Ti)Dx(Ti−1, Ti),
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where

P (t, Ti) = the price of a risk-free zero-coupon bond evaluated at time t with

maturity at time [Ti];

τ(Ti−1, Ti) = the time measure as a fraction of the year between the dates Ti−1

and Ti according to some convention;

Dx(Ti−1, Ti) = the death probability; it is the probability at time t that an

individual aged x dies within the period [Ti−1, Ti] with

Dx(Ti−1, Ti) = Dx(t, Ti)−Dx(t, Ti−1);

Sx(t, Ti) = the survival probability; it is the probability at time t that an indi-

vidual aged x dies after time Ti with

Sx(t, Ti) = 1−Dx(t, Ti).

Consequently, the value of the premium is

Q(t, Tn, x) =
C
∑n

i=1 P (t, Ti)Dx(Ti−1, Ti)

1 +
∑n−1

i=1 τ(Ti−1, Ti)P (t, Ti)Sx(t, Ti)
.

At the valuation date, the value of the swap, denoted by TA(t, Tn, x), is equal to

zero,

TA(t, Tn, x) = TApml(t, Tn, x)− TAprl(t, Tn, x) = 0.

Considering a contract with a single premium, it follows that

U(t, Tn, x) = TAprl(t, Tn, x).

Then, for the policyholder (or the investor), a term assurance contract can be

viewed as a long position on the death rate to n years: if the n year’s death

rate increases, the fair value of the contract increases from the prospective of the

policyholder. From the prospective of the insurer (or another counterparty), the

contract can be viewed as a short position on the n years death rate. Conse-

quently, if the death rate decreases, the fair value of the contract increases from

the prospective of the insurer.

6.2.2 Bootstrapping the term structure of mortality rates from term

assurance contracts

In this section, we derive a term structure of mortality rates from a vector of

premiums related to term assurance quotes for different discrete maturities and
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for each x. The procedure is very similar to the bootstrapping of default rates re-

lated to a reference obligation/reference entity using quoted premiums for credit

default swaps (CDS).5 CDS contracts with different maturities are used to extract

the piecewise constant default rates using an iterative procedure. Our approach

is similar where term assurance contracts with different maturities are used.

In the bootstrapping procedure, we assume deterministic interest rates and mor-

tality rates. In addition, we assume independence between interest rates and mor-

tality rates, an assumption that we restrict to the bootstrapping procedure. In

implementing pricing functions for mortality/longevity-linked securities, stochas-

tic interest rates and mortality rates can be assumed and some dependence can

be considered between interest rates and mortality (e.g., war and inflation, pan-

demic and economic growth, and the like).

By modeling the death event according to the Poisson distribution and denoting

the mortality rate by µ̄x(t, Ti), it is possible to compute the survival probability

of an individual aged x by means of the following relation

Sx(t, Ti) = e−µ̄x(t,Ti)τ(t,Ti).

Consequently, it is possible to express the mortality rate as

µ̄x(t, Ti) = − log[Sx(t, Ti)]

τ(t, Ti)
.

The vector of mortality rates related to the respective maturities represents the

term structure of mortality rates. It also can be expressed in terms of the survival

probabilities computed according to the relation (8).

From a series of maturities, T1, T2, ..., Ti, ..., Tn, we develop the bootstrapping

procedure to obtain a vector of mortality rates that represents the term struc-

ture of mortality rates, µ̄x(t, T1), µ̄x(t, T2), ..., µ̄x(t, Ti), ..., µ̄x(t, Tn). Suppose that

a set of n term assurance contracts is quoted in terms of their annual premi-

ums Q(t, T1, x), Q(t, T2, x), ..., Q(t, Ti, x), ..., Q(t, Tn, x) with respect to maturities

T1, T2, ..., Ti, ..., Tn.6 Starting from a term assurance contract with maturities T1

and setting T0 = t, the pricing formula is

Q(t, T1, x)− P (t, T1)Dx(t, T1)C = 0.

After setting

Dx(t, T1) = 1− Sx(t, T1) = 1− e−µ̄x(t,T1)τ(t,T1),
5See Schonbucher (2000).
6Pure premiums are considered in order to obtain the term structure of mortality rates.

In practice, only the part of the premium which is sufficient to pay losses and loss adjustment
expenses is considered, but not other expenses. The various types of loading (commission,
expenses, taxes, and so on) are ignored.



6.2. PROPOSED MODEL FOR CALIBRATING AFFINE STOCHASTIC

MORTALITY MODELS ON TERM ASSURANCE PREMIUMS 105

it follows that

Q(t, T1, x)− P (t, T1)

[
1− e−µ̄x(t,T1)τ(t,T1)

]
C = 0.

Solving with respect to µ̄x(t, T1) we obtain

µ̄x(t, T1) = − 1

τ(t, T1)
ln

[
1− Q(t, T1, x)

P (t, T1)C

]
.

So, considering a contract with maturity T2, it is possible to compute µ̄x(t, T2)

given µ̄x(t, T1) as an input to the following pricing function

Q(t, T2, x) +Q(t, T2, x)τ(t, T1)P (t, T1)Sx(t, T1)− C
2∑
i=1

P (t, Ti)Dx(Ti−1, Ti) = 0.

Solving with respect to µ̄x(t, T2) we obtain

µ̄x(t, T2) = − 1

τ(t, T2)
ln

[
1−

Q(t, T2, x)
[
1 + τ(t, T1)P (t, T1)Sx(t, T1)

]
P (t, T2)C

−
Dx(t, T1)

[
P (t, T2)− P (t, T1)

]
P (t, T2)

]
.

Iterating the procedure described above up to n, the term structure of mortality

rates, µ̄x(t, T1), µ̄x(t, T2), ..., µ̄x(t, Ti), ..., µ̄x(t, Tn), is obtained with respect to the

maturities T1, T2, ..., Ti, ..., Tn.

6.2.3 Affine stochastic models as mortality models

To model the force of mortality, we employ the same affine stochastic models uti-

lized in interest rate and credit risk modeling.7 Affine stochastic models such as

the Vasicek, Cox-Ingersoll-Ross, and jump-extended Vasicek models are analyzed

in the calibration procedure. It is important to note that modeling the force of

mortality as an affine function leads to the analytical representations of survival

probabilities with closed-form solution.

Denoting by µx(t) the stochastic force of mortality, below we provide a brief

description of the three affine models showing the related closed formula for sur-

vival probability.

Vasicek model

For the Vasicek (1977) model, we assume that the force of mortality follows the

stochastic differential equation

dµx(t) = k(θ − µx(t))dt+ σdW (t), µx(0) = µx,

7See Brigo and Mercurio (2006) for further details.
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with µx and σ positive constants, θ constrained to be positive, and k constrained

to be strictly negative. The main drawback of this process is that the force of

mortality can be negative with positive probability. For this model, the survival

probability can be obtained by

Sx(t, T ) = Gµ(t, T )e−Hµ(t,T )µx(t),

Gµ(t, T ) = exp

{(
θ − σ2

2k2

)[
Hµ(t, T )− τ(t, T )

]
− σ2

4k
Hµ(t, T )2

}
,

Hµ(t, T ) =
1

k

[
1− e−kτ(t,T )

]
.

Cox-Ingersoll-Ross model

Assuming the dynamic of the Cox, Ingersoll, and Ross (1985) model (CIR model

hereafter), the force of mortality µx(t) satisfies

dµx(t) = k(θ − µx(t))dt+ σ
√
µx(t)dW (t), µx(0) = µx,

with µx and σ positive constants, θ constrained to be positive, and k constrained

to be strictly negative. The principal advantage of the CIR model over the Vasicek

model is that the hazard rate is guaranteed to remain non-negative. However, the

condition 2kθ > σ2 is not applicable and the hazard rates can be equal to zero

with positive probability. Survival probabilities can still be computed analytically

and are given by

Sx(t, T ) = Gµ(t, T )e−Hµ(t,T )µx(t),

γ =
√
k2 + 2σ2,

Gµ(t, T ) =

[
2γe

1
2 (k+γ)τ(t,T )

2γ + (k + γ)(e
γτ(t,T ) − 1)

] 2kθ
σ2

,

Hµ(t, T ) =
2(e

γτ(t,T ) − 1)

2γ + (k + γ)(e
γτ(t,T ) − 1)

.

Jump-extended Vasicek model

The jump-extended Vasicek model, proposed by Chacko and Das (2002), implies

the following process to model the force of mortality

dµx(t) = k(θ − µx(t))dt+ σdW (t) + JudNu(λu)− JddNd(λd),



6.2. PROPOSED MODEL FOR CALIBRATING AFFINE STOCHASTIC

MORTALITY MODELS ON TERM ASSURANCE PREMIUMS 107

where Ju and Jd are exponentially distributed random variables with parameters

ηu and ηd, respectively. In this model, µx(0), θ, and σ, are positive constants, and

k is constrained to be strictly negative.8 Also for this model, survival probabilities

can be computed analytically as

Sx(t, T ) = Gµ(t, T )e−Hµ(t,T )[µx(t)−θ],

Gµ(t, T ) = exp

{[
τ(t, T )−Hµ(t, T )

](
σ2

2k2

)
− σ2Hµ(t, T )2

4k
+

−(λu + λd)τ(t, T ) +
λuηu
kηu + 1

log

∣∣∣∣(1 +
1

kηu

)
ekτ(t,T ) − 1

kηu

∣∣∣∣+

+
λdηd
kηd − 1

log

∣∣∣∣(1− 1

kηd

)
ekτ(t,T ) +

1

kηd

∣∣∣∣− θτ(t, T )

}
,

Hµ(t, T ) =
1

k

[
1− e−kτ(t,T )

]
.

The above solution is identical to that given by Chacko and Das (2002), though

expressed in a slightly different form.9

6.2.4 Model calibration

We calibrate each model’s parameters by minimizing the sum of squares relative

differences between mortality rates implied in the quotes and mortality rates im-

plied by a specific affine model. This calibration technique is analogous to the

calibration of affine stochastic interest rates models with respect to the term

structure of interest rates.

The relative error is defined as

εi(β) =
µ̄mktx (t, Ti)− µ̄x(t, Ti)

µ̄mktx (t, Ti)
,

where µ̄mktx (t, Ti) is the mortality rate implied in the contracts and µ̄x(t, Ti) is

the mortality rate computed using the survival probability closed-formula related

to the considered affine model.

Denoting by β the set of the parameters of the affine model, the calibration

procedure is such that

β̂ = argmin
β
ε′(β)ε(β).

8The model allows jumps with a positive size, in which case the mortality increases (in the
case of wars, for instance), or jumps with a negative size, in which case mortality decreases (in
the case of medical advancements, for instance).

9See Nawalkha, Beliaeva, and Soto (2007).
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6.3 Empirical results

In this section, some numerical results related to premiums of Italian insurance

companies are presented. We applied bootstrapping and calibration procedures

to term assurance pure premiums of three Italian insurance companies in force

during 2010:10

1. AXA MPS ASSICURAZIONI VITA S.p.A. - AXA Group

2. CATTOLICA, Società Cattolica di Assicurazione S.C. - CATTOLICA Group

3. GENERTEL LIFE S.p.A. - GENERALI Group

More specifically, we used premiums with respect to males aged 30, 40, and 50.

The premiums are denominated in euros and related to an insured amount of euro

1,000. For each age, only contracts with a maturity of 5, 10, 15, 20, and 25 years

are available. Consequently, premiums related to intermediate maturities are ob-

tained by applying linear interpolation.11 The data are reported in Table 6.1-6.3.

The pure premiums of AXA MPS and GENERTEL LIFE appear very similar.

There are some differences with respect to the premiums of CATTOLICA.12

For the five contracts available for each company with different discrete maturities

(5, 10, 15, 20, and 25 years), the term structure of mortality rates is derived from

the vector of premiums related to term assurance with different time horizons

and for each x. In order to evaluate the pricing function of the term assurance

contracts and to implement the bootstrapping procedure, the term structure of

risk-free interest rates denominated in euros as of December 31, 2009 was used.13

10Data used for the analysis are public. Premium data are reported in the informative-sheet
available on the web-site of the companies:
AXA MPS: http://www.axa-mpsvita.it/

CATTOLICA: http://www.cattolica.it/

GENERTEL LIFE: http://www.genertellife.it/
11Suppose that a series of maturities, (T1, T2, ..., Tj , ..., Tm) and the related vector of pre-

miums (Q(t, T1, x), Q(t, T2, x), ..., Q(t, Tj , x), ..., Q(t, Tm, x)) are available in the market. If the
consecutive maturities of two contracts are Tj−1 and Tj and the premiums related to these
maturities are Q(t, Tj−1, x) and Q(t, Tj , x), then the interpolated premium Q(t, Ti, x) related to
the maturity Ti, such that Tj−1 < Ti < Tj , is given by:

Q(t, Ti, x) =
Q(t, Tj−1, x)(Tj − Ti) +Q(t, Tj , x)(Ti − Tj−1)

Tj − Tj−1
.

12A further analysis could be provided using re-insurance rates but it was difficult to find
such data.

13This is the official EUR-Swap yield curve, without illiquidity premium, adopted in the 5th

Quantitative Impact Study of Solvency II (QIS5). Yield curve data are available on the web site
of EIOPA, the European Insurance and Occupational Pensions Authority (http://www.eiopa.
europa.eu/). Since annual interest rates are published, we computed the risk-free zero-coupon

http://www.axa-mpsvita.it/
http://www.cattolica.it/
http://www.genertellife.it/
http://www.eiopa.europa.eu/)
http://www.eiopa.europa.eu/)
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Table 6.1: Premiums in euros for an insured amount of euro 1,000. Age = 30

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Tj , x) Q(t, Tj , x) Q(t, Tj , x)

5 1,017391 0,918919 0,990000
10 1,121739 0,891892 1,090000
15 1,286957 0,954955 1,260000
20 1,565217 1,144144 1,530000
25 1,965217 1,423423 1,920000

Table 6.2: Premiums in euros for an insured amount of euro 1,000. Age = 40

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Tj , x) Q(t, Tj , x) Q(t, Tj , x)

5 1,704348 1,126126 1,670000
10 2,182609 1,522523 2,130000
15 2,800000 2,000000 2,740000
20 3,686957 2,675676 3,610000
25 4,800000 3,540541 4,690000

Tables 6.4-6.6 report the results of the bootstrapping procedure for three ages

(x = 30, 40, 50) and for each insurance company. The first column in the table

contains the maturity (in years) of each contract while the other columns contain

for each insurance company the pure premiums (Qi) and the values of the term

structure of mortality rates obtained by the bootstrapping procedure (µ̄x(t, Ti)).

We can see from Table 2 that the term structures of mortality rates increase

exponentially across time for each age and this result is consistent with the bio-

logical concept of organism senescence.

Beginning with the term structure of mortality rates bootstrapped as explained

in Section 6.2, the Vasicek, Cox-Ingersoll-Ross, and jump-extended Vasicek mod-

els were calibrated. The mean-square error (MSE) and the euro calibration error

(ECE)14 for each model are reported in the Tables 6.7-6.9, along with optimal

values for the parameters. The MSE and ECE are very low in all the models

investigated, indicating a good fitting of the survival probability implied in the

quotes.

bond price as

P (t, Ti) =

(
1 + r̄(t, Ti)

)−τ(t,Ti)

where r̄(t, Ti) is the deterministic and piecewise constant risk-free interest rate.
14The ECE is the euro difference between (1) the value of a contract with an insured amount

of euro 1,000 and maturity of 20 years that is computed by applying the mortality rates derived
by bootstrapping and (2) the value of a contract in which the mortality rates are derived by the
model.
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Table 6.3: Premiums in euros for an insured amount of euro 1,000. Age = 50

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Tj , x) Q(t, Tj , x) Q(t, Tj , x)

5 4,382609 3,315315 4,280000
10 5,791304 4,414414 5,660000
15 7,452174 5,810811 7,280000
20 9,730435 7,459459 9,510000
25 12,573913 9,297297 12,290000

Table 6.4: Bootstrapping procedure results: interpolated premiums and term
structure of mortality rates. Age = 30

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti)

5 1,017391 0,001045 0,918919 0,000944 0,990000 0,001017
6 1,038249 0,001071 0,913516 0,000940 1,009989 0,001042
7 1,059165 0,001097 0,908099 0,000935 1,030033 0,001066
8 1,080023 0,001123 0,902697 0,000930 1,050022 0,001092
9 1,100881 0,001149 0,897294 0,000926 1,070011 0,001117
10 1,121739 0,001176 0,891892 0,000920 1,090000 0,001143
11 1,154837 0,001219 0,904525 0,000938 1,124056 0,001187
12 1,187844 0,001263 0,917124 0,000956 1,158019 0,001232
13 1,220851 0,001307 0,929723 0,000974 1,191981 0,001278
14 1,253859 0,001353 0,942322 0,000992 1,225944 0,001324
15 1,286957 0,001398 0,954955 0,001010 1,260000 0,001371
16 1,342578 0,001479 0,992772 0,001066 1,313970 0,001450
17 1,398200 0,001561 1,030589 0,001123 1,367941 0,001529
18 1,453822 0,001644 1,068406 0,001180 1,421911 0,001609
19 1,509596 0,001728 1,106327 0,001238 1,476030 0,001691
20 1,565217 0,001813 1,144144 0,001296 1,530000 0,001773
21 1,645174 0,001941 1,199969 0,001386 1,607957 0,001898
22 1,725130 0,002071 1,255795 0,001476 1,685915 0,002024
23 1,805305 0,002202 1,311773 0,001568 1,764085 0,002151
24 1,885261 0,002334 1,367598 0,001660 1,842043 0,002280
25 1,965217 0,002468 1,423423 0,001753 1,920000 0,002410

6.4 Conclusions

In this chapter, we demonstrate how the use of term assurance contracts premi-

ums can be utilized to derive the term structure of implied mortality rates and

how to calibrate the parameters of affine stochastic mortality models. We pro-

vide a new procedure for estimating affine models based on insurance contract

premiums.

In the approach we present, term assurance contracts are viewed as a swap in

which a policyholder (or the investor) exchanges cash flows with an insurer (or a

new counterparty) as in a generic interest rate swap or credit default swap. By

employing the bootstrapping procedure that we propose, the term structure of

mortality rates can be derived from insurance contract premiums. The technique,

analogous to the bootstrapping procedure used to generate the term structure of

default rates, is then used to calibrate the parameters of affine stochastic mor-
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Table 6.5: Bootstrapping procedure results: interpolated premiums and term
structure of mortality rates. Age = 40

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti)

5 1,704348 0,001751 1,126126 0,001157 1,670000 0,001716
6 1,799948 0,001864 1,205362 0,001249 1,761950 0,001824
7 1,895809 0,001977 1,284815 0,001342 1,854151 0,001933
8 1,991409 0,002092 1,364051 0,001437 1,946101 0,002044
9 2,087009 0,002210 1,443287 0,001534 2,038050 0,002157
10 2,182609 0,002329 1,522523 0,001632 2,130000 0,002272
11 2,306290 0,002488 1,618175 0,001754 2,252200 0,002429
12 2,429633 0,002650 1,713566 0,001878 2,374067 0,002589
13 2,552976 0,002816 1,808957 0,002005 2,495933 0,002753
14 2,676319 0,002985 1,904348 0,002134 2,617800 0,002920
15 2,800000 0,003157 2,000000 0,002267 2,740000 0,003090
16 2,977294 0,003417 2,135061 0,002462 2,913905 0,003344
17 3,154588 0,003681 2,270122 0,002661 3,087809 0,003604
18 3,331882 0,003951 2,405183 0,002864 3,261714 0,003868
19 3,509662 0,004226 2,540615 0,003070 3,436095 0,004137
20 3,686957 0,004506 2,675676 0,003280 3,610000 0,004412
21 3,909443 0,004873 2,848554 0,003560 3,825882 0,004767
22 4,131930 0,005246 3,021432 0,003845 4,041763 0,005128
23 4,355026 0,005628 3,194784 0,004135 4,258237 0,005498
24 4,577513 0,006017 3,367662 0,004429 4,474118 0,005874
25 4,800000 0,006414 3,540541 0,004729 4,690000 0,006257

Table 6.6: Bootstrapping procedure results: interpolated premiums and term
structure of mortality rates. Age = 50

AXA MPS CATTOLICA GENERTEL LIFE
Year Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti) Q(t, Ti, x) µ̄x(t, Ti)

5 4,382609 0,004509 3,315315 0,003409 4,280000 0,004404
6 4,664194 0,004842 3,535015 0,003668 4,555849 0,004729
7 4,946550 0,005178 3,755316 0,003929 4,832453 0,005059
8 5,228135 0,005522 3,975016 0,004195 5,108302 0,005395
9 5,509720 0,005874 4,194715 0,004467 5,384151 0,005739
10 5,791304 0,006233 4,414414 0,004745 5,660000 0,006091
11 6,124024 0,006670 4,694152 0,005110 5,984532 0,006516
12 6,455834 0,007118 4,973126 0,005483 6,308177 0,006953
13 6,787644 0,007578 5,252099 0,005865 6,631823 0,007401
14 7,119455 0,008051 5,531073 0,006257 6,955468 0,007861
15 7,452174 0,008537 5,810811 0,006660 7,280000 0,008335
16 7,907577 0,009241 6,140360 0,007155 7,725756 0,009023
17 8,362979 0,009966 6,469909 0,007662 8,171512 0,009731
18 8,818382 0,010714 6,799458 0,008184 8,617267 0,010460
19 9,275032 0,011486 7,129910 0,008720 9,064244 0,011214
20 9,730435 0,012284 7,459459 0,009271 9,510000 0,011992
21 10,298819 0,013343 7,826826 0,009911 10,065696 0,013022
22 10,867203 0,014443 8,194192 0,010570 10,621391 0,014092
23 11,437145 0,015592 8,562565 0,011250 11,178609 0,015208
24 12,005529 0,016792 8,929931 0,011952 11,734304 0,016372
25 12,573913 0,018052 9,297297 0,012677 12,290000 0,017593
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Table 6.7: Calibrated parameters. Age = 30 (VAS = Vasicek model; CIR =
Cox-Ingersoll-Ross model; JVAS = jump-extended Vasicek model).

AXA MPS CATTOLICA GENERTEL LIFE
VAS CIR JVAS VAS CIR JVAS VAS CIR JVAS

µ0 0,0010 0,0010 0,0001 0,0008 0,0008 0,0000 0,0009 0,0009 0,0001
k - 0,1660 - 0,1509 - 0,1696 - 0,2183 - 0,1931 - 0,1970 - 0,1660 - 0,1352 - 0,1705
θ 0,0008 0,0008 0,0008 0,0008 0,0008 0,0007 0,0008 0,0007 0,0007
σ 0,0002 0,0057 0,0002 0,0001 0,0025 0,0001 0,0002 0,0014 0,0002
λu - - 0,0001 - - 0,0000 - - 0,0001
ηu - - 0,0001 - - 0,0002 - - 0,0001
λd - - 0,0000 - - 0,0001 - - 0,0000
ηd - - 0,0001 - - 0,0000 - - 0,0001

MSE 0,0006 0,0007 0,0004 0,0150 0,0074 0,0070 0,0003 0,0009 0,0004
ECE 0,1796 0,0866 0,1388 0,1244 0,0587 0,0724 0,1448 0,0585 0,1535

Table 6.8: Calibrated parameters. Age = 40 (VAS = Vasicek model; CIR =
Cox-Ingersoll-Ross model; JVAS = jump-extended Vasicek model).

AXA MPS CATTOLICA GENERTEL LIFE
VAS CIR JVAS VAS CIR JVAS VAS CIR JVAS

µ0 0,0014 0,0014 0,0009 0,0009 0,0009 0,0009 0,0014 0,0014 0,0007
k - 0,1269 - 0,1269 - 0,1300 - 0,1160 - 0,1156 - 0,1159 - 0,1299 - 0,1321 - 0,1405
θ 0,0005 0,0005 0,0005 0,0000 0,0000 0,0000 0,0005 0,0005 0,0000
σ 0,0006 0,0130 0,0006 0,0005 0,0125 0,0005 0,0006 0,0141 0,0006
λu - - 0,0000 - - 0,0000 - - 0,0007
ηu - - 0,0001 - - 0,0001 - - 0,0929
λd - - 0,0000 - - 0,0000 - - 0,0000
ηd - - 0,0002 - - 0,0001 - - 0,0000

MSE 0,0006 0,0006 0,0006 0,0009 0,0010 0,0009 0,0005 0,0006 0,0005
ECE 0,2010 0,1883 0,2274 0,2098 0,2026 0,2043 0,1792 0,1776 0,2364

Table 6.9: Calibrated parameters. Age = 50 (VAS = Vasicek model; CIR =
Cox-Ingersoll-Ross model; JVAS = jump-extended Vasicek model).

AXA MPS CATTOLICA GENERTEL LIFE
VAS CIR JVAS VAS CIR JVAS VAS CIR JVAS

µ0 0,0035 0,0035 0,0033 0,0025 0,0025 0,0025 0,0034 0,0034 0,0014
k - 0,1124 - 0,1174 - 0,1117 - 0,1175 - 0,1183 - 0,1176 - 0,1105 - 0,1104 - 0,1550
θ 0,0002 0,0005 0,0000 0,0000 0,0000 0,0000 0,0001 0,0001 0,0000
σ 0,0003 0,0091 0,0001 0,0013 0,0218 0,0013 0,0000 0,0001 0,0007
λu - - 0,0002 - - 0,0000 - - 0,0035
ηu - - 0,0021 - - 0,0000 - - 1,1122
λd - - 0,0000 - - 0,0000 - - 0,0000
ηd - - 0,0001 - - 0,0001 - - 0,0000

MSE 0,0009 0,0010 0,0009 0,0003 0,0002 0,0003 0,0009 0,0009 0,0003
ECE 0,7405 0,8538 0,7150 0,4217 0,3483 0,4252 0,6913 0,7018 0,6394
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tality models by means of an optimization procedure.

Three affine models are investigated for fitting the term structure of mortality

rates: the Vasicek, Cox-Ingersoll-Ross, and jump-extended Vasicek models. Be-

cause the survival probability implied in the affine models is expressed in closed

form, by minimizing the differences between mortality rates implied in quotes

and theoretical ones, we derive the value of the parameters of affine stochastic

mortality models. Using term assurance premiums of three Italian insurance

companies, we find support for fitting the term structure of mortality rates.

The calibrated affine stochastic mortality models can be used for the pricing

of mortality/longevity-linked securities. In particular, it can be implemented in

order to obtain a market-consistent assessment of the technical provisions of in-

surance contracts where the evaluation of embedded options is mandated under

the IFRS market-consistent accounting framework and Solvency II requirements.
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Chapter 7

Pricing of extended coverage

options embedded in life

insurance policies

7.1 Introduction

The evaluation of the options embedded in life insurance policies is very present.

In fact, under the new IAS/IFRS market-consistent accounting for insurance

contracts (to be approval) and the risk-based Solvency II requirements for the

European insurance market (enforcement to begin in 2013), insurance companies

will have to identify all material contractual options embedded in life insurance

policies.

An embedded option provides to the policyholder the right to modify the con-

tract conditions during the contract term. Exercising it can affect the amount of

the policy’s cash flows and their payment time. Consequently, embedded options

can represent a substantial value for the policyholder.1

A particular type of embedded option is the extended coverage option. Such op-

tions are common in the European insurance market as embedded options in life

insurance contracts. The extended coverage option gives to the policyholder the

right to extend the policy’s maturity at the expiry of the original contract main-

taining the contractual conditions in force at the issue date without producing

further evidence of health.2

1See Gatzert (2009) for an overview on the options embedded in life insurance contracts.
2See European Commission (2010).
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In the recent actuarial literature, a growing attention has been devoted to the

valuation of options embedded in life insurance contracts. Unfortunately, litera-

ture references related to the valuation of the extended coverage option are very

poor. The valuation of such option involves considering many aspects in the pric-

ing depending by the characteristics of the life insurance contract in which the

option is embedded. For example, the valuation model has to take into account

if the policyholder pays single or periodic premium. Furthermore, the value of

the option depends not only by financial risk factors as in the classical financial

options but it is affected also by actuarial risk factors such as lapse or mortality

rates.

In this chapter, we develop a pricing model to evaluate the extended coverage

option taking into account of interest rates and mortality rates as the main risk

factors that impact the valuation. We provide a pricing model in closed-form

where the well-known Black’s model (1976) for option pricing is used. We as-

sume that the premium (single or periodic) of the life insurance contract is a

lognormal martingale under an appropriate probability’s measure.

The chapter is organized as follows. In the next section, we describe the main

characteristics of the extended coverage option. In Section 7.3 we present the

pricing model and in Section 7.4 some numerical results are reported. Conclusive

remarks are summarized in the last section.

7.2 Option design

The extended coverage option can be considered with respect to several types of

life insurance contracts. However, we refer to an endowment life policy in which

the extended coverage option is embedded.

An endowment is a life insurance contract which provides coverage for a limited

period of time in exchange for premium payments. If the insured dies during the

term, the death benefit will be paid to the beneficiary; if the insured does not

dies during the term, the benefit is paid at the end of the period. If the extended

coverage option is embedded in the contract, the policyholder has the right to

extend the maturity of the contract for a certain period, postponing the payment

of the final payout according to the deferment period. During the deferment

period, the original contractual conditions are in force and the policyholder con-

tinues to benefit from the guarantees of the policy. The start date of the option

coincides with the issue date of the policy while the exercise time coincides with

its maturity date. Consequently, the maturity of the option coincides with the

end date of the contract in which the option is embedded.

If the extended coverage option is exercised by the policyholder, an additional
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premium has to be paid to the insurer in order to cover the additional guarantees

in force during the deferment period. The additional premium will be single or

periodic according to contractual conditions of the endowment contract.

Looking at the financial market, the extended coverage option can be considered

as a European call option. In the case of the extended coverage option, the buyer

is the policyholder, the seller is the insurer and the underlying is represented by

the endowment life policy. The option gives its holder the right, but not the

obligation, to enter in an endowment contract for a specified future time period

and for a certain premium.

It is important to note that the extended coverage option is knocked out if the

insured lapses the contract or deaths during the life of the option.

7.3 The proposed model

In order to evaluate the extended coverage option embedded in an endowment

policy, we assume that the underlying of the option is represented by a forward

start endowment contract. The start date of the forward contract coincides with

the maturity of the endowment contract in which the option is embedded (the

spot contract or the original contract) while the maturity is related to the defer-

ment period. The forward contract has the same contractual conditions of the

spot contract; the only difference is that the two contracts have different start

and maturity dates.

In the case of endowment policy with single premium, the extended coverage op-

tion can be viewed as a bond option. Assuming that the single premium of the

endowment is a lognormal martingale, we provide a closed-form pricing function

using the well-known Black’s model (1976) under an appropriate probability’s

measure. It is important to note that, unlike what occurs for the classical bond

option where the underlying is represented by the forward price of the bond, in

the case of the extended coverage option the underlying is represented by the

forward single premium of the endowment policy.

In the case of endowment policy with periodic premium, we follow the approach

suggested in Russo et al. (2011). We assume that a life insurance contract can

be viewed as a swap, such as interest rate swap (IRS) or credit default swap

(CDS). Consequently, an extended coverage option can be viewed as a European

swap option, the so-called swaption, or a European credit default swap option.

As in the previous case, we use the Black’s model (1976) to quantify the value of

the option assuming that the periodic premium is a lognormal martingale under

an appropriate probability’s measure. The approach we propose is similar to

that of Jamshidian (1997) for the pricing of swaptions. We refer also to Hull and

White (2003) and Schonbucher (2000) that propose a pricing model for the credit

default swap option. However, unlike what occurs for the swaptions and credit
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default swap options where the underlying is represented by a plain vanilla for-

ward start IRS o CDS, in the case of the extended coverage option, the underlying

is represented by the forward periodic premium of the endowment.

7.3.1 Assumptions

We refer to an endowment contract in which the extended coverage option is

embedded. We consider both cases in which policyholder pays a single premium

U or a constant periodic premium Q.3 We indicate by C the policy’s benefit

assuming that such benefit is constant. The quantity C represents the amount

of money that the insurer pays to the policyholder in the case of the insured’s

death or at the maturity of the contract. Despite the benefit of an endowment

policy is usually paid even if the policyholder decides to lapse the contract, we

do not consider this case. Consequently, to achieve analytic tractability of our

solution, we neglect the surrender option. Moreover, other characteristics of the

endowment contracts as the profit sharing and the minimum guaranteed option

are not considered.

The model we propose takes into account of interest rates and mortality rates as

the main risk factors that affect the valuation of the extended coverage option.

We assume that both interest rates and mortality rates are time-varying but de-

terministic. Furthermore, we use the convenient assumption that mortality rates

are independent by interest rates.

7.3.2 Notation

In order to describe the model, we introduce and define the following quantities:

• x = reference age of the insured;

• t = value date;

• T0 = issue date of the endowment contract, it coincides with the value date;

it is also the issue date of the extended coverage option;

• Tn = maturity date of the spot endowment contract; it is also the maturity

date of the extended coverage option; it coincides with the issue date of the

forward endowment contract;

• Tm = maturity date of the forward endowment contract;

• [Tn, Tm] = deferment period;

3Although this form of insurance can have a fixed payment or one that changes over time,
here we only consider the fixed payment case.
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• T0, T1, T1, ..., Ti, ..., Tn = stream of payment dates of the spot endowment

contract;

• Tn, Tn+1, Tn+2, ..., Ti, ..., Tm = stream of payment dates of the forward en-

dowment contract;

• Dx(t, Ti) = death probability; it is the probability in t that an individual

aged x dies within the period [t, Ti]; we have also that

Dx(Ti−1, Ti) = Dx(t, Ti)−Dx(t, Ti−1);

• Sx(t, Ti) = survival probability; it is the probability in t that an individual

aged x dies after Ti and is such that

Sx(t, Ti) = 1−Dx(t, Ti);

• P (t, Ti) = value of a risk-free zero coupon bond with maturity in Ti; the

zero coupon bond pays one unit of cash at the maturity date;

• P̄ (t, Ti) = value of a zero coupon longevity bond with maturity in Ti; with

reference to an individual aged x, the longevity zero coupon pays one unit

of cash at the maturity date in case of life and zero in case of death; it is

such that

P̄ (t, Ti) = P (t, Ti)Sx(t, Ti);

• τ(Ti, Ti+1) = time measure as a fraction of the year between the dates Ti
and Ti+1 computed according to some convention;

• A(t, Tn, x) = value of a temporary life annuity (at the beginning of the

period) with respect to an insured age x and a fixed benefit equal to one

unit of cash; the annuity starts at time t and matures at time Tn; it is such

that

A(t, Tn, x) = τ(T0, T1) +
n−1∑
i=1

τ(Ti, Ti+1)P (t, Ti)Sx(t, Ti)

= τ(T0, T1) +
n−1∑
i=1

τ(Ti, Ti+1)P̄ (t, Ti).

7.3.3 Endowment pricing

Spot endowment

We consider an endowment life policy related to an individual aged x. Following

the approach suggested in Russo et al. (2011), the expected present value of
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the endowment at time t is the difference between the expected present value of

the premium leg, denoted by Legpm(t, Tn, x), and the expected present value of

the protection leg, denoted by Legpr(t, Tn, x). The expected present value of the

endowment contract, viewed from the prospective of the insurance company and

denoted by E(c)(t, Tn, x), is

E(c)(t, Tn, x) = Legpm(t, Tn, x)− Legpr(t, Tn, x) = 0,

while from the prospective of the policyholder it is denoted by E(p)(t, Tn, x) and

is such that

E(p)(t, Tn, x) = Legpr(t, Tn, x)− Legpm(t, Tn, x) = 0.

The expected present value of the protection leg is

Legpr(t, Tn, x) = C
n∑
i=1

P (t, Ti)Dx(Ti−1, Ti) + P (t, Tn)Sx(t, Tn)C,

while the pricing function of the premium leg depends from the premium type.

In the case of periodic premiums, indicating by Q(t, Tn, x) the premium of the

endowment, the expected present value of the premium leg is

Legpm(t, Tn, x) = Q(t, Tn, x)τ(T0, T1) +Q(t, Tn, x)
n−1∑
i=1

P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti).

Consequently, the value of the periodic premium can be expressed as follows

Q(t, Tn, x) =
C
∑n

i=1 P (t, Ti)Dx(Ti−1, Ti) + P (t, Tn)Sx(t, Tn)C

τ(T0, T1) +
∑n−1

i=1 P (t, Ti)τ(Ti, Ti+1)Sx(t, Ti)
=
Legpr(t, Tn, x)

A(t, Tn, x)
.

Considering a contract with a single premium and denoting by U(t, Tn, x) the

premium of the endowment, it follows that

U(t, Tn, x) = Legpr(t, Tn, x).

Forward endowment

In order to evaluate the extended coverage option, we need to consider the value of

a forward start endowment policy. The value in t of a forward start endowment

with start date in Tn and maturity in Tm, viewed from the prospective of the

policyholder and denoted by Ep(t, Tn, Tm, x), is

Ep(t, Tn, Tm, x) = Legpr(t, Tn, Tm, x)− Legpm(t, Tn, Tm, x) = 0,

where the expected present value of the forward start protection leg is

Legpr(t, Tn, Tm, x) = C
m∑

i=n+1

P (t, Ti)Dx(Ti−1, Ti) + P (t, Tm)Sx(t, Tm)C.
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As in the previous case, the pricing function of the forward start premium leg

depends from the premium type. In the case of periodic premium, indicating

by Q(t, Tn, Tm, x) the forward periodic premium of the endowment, the expected

present value of the forward start premium leg is

Legpm(t, Tn, Tm, x) = Q(t, Tn, Tm, x)
m−1∑
i=n

τ(Ti, Ti+1)P̄ (t, Ti).

Consequently, it follows that

Q(t, Tn, Tm, x) =
C
∑m

i=n+1 P (t, Ti)Dx(Ti−1, Ti) + P (t, Tm)Sx(t, Tm)C∑m−1
i=n τ(Ti, Ti+1)P̄ (t, Ti)

.

Considering a contract with a single premium and denoting by U(t, Tn, Tm, x) the

forward single premium of the endowment, it follows that

U(t, Tn, Tm, x) =
Legpr(t, Tn, Tm, x)

P̄ (t, Tn)
.

7.3.4 Option pricing in closed-form

Single premium contract

We assume that a single premium is paid by the policyholder at the inception

date of the endowment contract. The extended coverage option is in-the-money

for the policyholder when[
Ep(Tn, Tn, Tm, x)

]+

=

[
Legpr(Tn, Tn, Tm, x)−K

]+

,

where K is the strike of the option and represents the premium leg of the forward

contract. The strike is equal to the single premium paid by the policyholder and

is fixed at the inception date of the contract. Since that

Legpr(Tn, Tn, Tm, x) = U(Tn, Tn, Tm, x),

it follows that[
Ep(Tn, Tn, Tm, x)

]+

=

[
U(Tn, Tn, Tm, x)−K

]+

.

In order to provide a pricing function for the extended coverage option, we as-

sume the value of a zero coupon longevity bond as numeraire and define by MP̄

the measure associated with this numeraire. Consequently, we compute the ex-

pectation of the above payoff under this measure

EP̄
[(
U(Tn, Tn, Tn, x)−K

)+]
.
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We denote by ECOU (t, Tn, Tm, x,K) the value in t of the extended coverage

option embedded in the endowment contract when a single premium is paid by

the policyholder and the insured is aged x. We have that

ECOU (t, Tn, Tm, x,K) = Sx(t, Tn)P (t, Tn)EP̄
[(
U(Tn, Tn, Tm, x)−K

)+]
= P̄ (t, Tn)EP̄

[(
U(Tn, Tn, Tm, x)−K

)+]
.

It is important to know that the option payoff is discounted using the price of

a risk-free zero-coupon bond and multiplied by the survival probability. In fact,

we consider the fact that the option is knocked out if the insured death during

the life of the option.

We assume that the endowment single premium is lognormal. We assume also

that, under the measure MP̄ , the premium is a martingale such that

dU(t, Tn, Tm, x) = U(t, Tn, Tm, x)σUdW
P̄ ,

where W P̄ is a Brownian motion under the measureMP̄ and σU is the volatility

of the single premium. Consequently, under the Black (1976) model, the value

at time t of the extended coverage option is

ECOU (t, Tn, Tm, x,K) = P̄ (t, Tn)

[
U(t, Tn, Tm, x)N(d1)−KN(d2)

]
,

where

d1 =

log

(
U(t,Tn,Tm,x)

K

)
+ 1

2σ
2
U (Tn − t)

σU
√

(Tn − t)
,

and

d2 = d1 − σU
√

(Tn − t).

Periodic premium contract

Now, we consider the case of an endowment contract with periodic premiums.

We assume that the extended coverage option is embedded in such contract. The

pricing model is analogous to the case of single premium but, in this case, we

have to consider a different numeraire. Since that the extended coverage option

is in-the-money for the policyholder when

Ep(Tn, Tn, Tm, x) > 0, (7.-25)

the payoff of the extended coverage option can be formalized as follows[
Ep(Tn, Tn, Tm, x)

]+

=

[
Legpr(Tn, Tn, Tm, x)−KA(Tn, Tn, Tm, x)

]+

,
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where K is the strike of the option. The strike is equal to the periodic premium

paid by the policyholder and is fixed at the inception date of the endowment

contract. Multiplying and dividing, in the above formula, the protection leg by

A(Tn, Tn, Tm, x) we have that[
Q(Tn, Tn, Tm, x)A(Tn, Tn, Tm, x)−KA(Tn, Tn, Tm, x)

]+

=

[
A(Tn, Tn, Tm, x)

(
Q(Tn, Tn, Tm, x)−K

)]+

= A(Tn, Tn, Tm, x)

[
Q(Tn, Tn, Tm, x)−K

]+

.

In order to provide a pricing function for the extended coverage option, we follow

(1) the approach of Jamshidian (1997) for the pricing of swaptions and (2) the

approaches of Hull and White (2003) and Schonbucher (2003) for the pricing

of CDS options. However, unlike what occurs for the pricing of swaptions and

credit default swap options, we assume the value of a temporary life annuity

as numeraire and define by MA the measure associated with this numeraire.

Consequently, we compute the expectation of the above payoff under this measure

EA
[(
Q(Tn, Tn, Tn, x)−K

)+]
.

Denoting by ECOQ(t, Tn, Tm, x,K) the value in t of the extended coverage option

embedded in the endowment contract when a periodic premium is paid, we have

that

ECOQ(t, Tn, Tm, x,K) = Sx(t, Tn)P (t, Tn)

×A(Tn, Tn, Tm, x)EA
[(
Q(Tn, Tn, Tm, x)−K

)+]
= P̄ (t, Tn)A(Tn, Tn, Tm, x)EA

[(
Q(Tn, Tn, Tm, x)−K

)+]
.

Under the new measure MA, the endowment periodic premium is a martingale

and under the assumption of log-normality it holds that

dQ(t, Tn, Tm, x) = Q(t, Tn, Tm, x)σQdW
A,

where WA is a Brownian motion under the measureMA and σQ is the volatility

of the periodic premium. Applying the Black (1976) model, the value at time t

of the extended coverage option is

ECOQ(t, Tn, Tm, x,K) = A(t, Tn, Tm, x)

[
Q(t, Tn, Tm, x)N(d1)−KN(d2)

]
,
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where

d1 =

log

(
Q(t,Tn,Tm,x)

K

)
+ 1

2σ
2
Q(Tn − t)

σQ
√

(Tn − t)
,

and

d2 = d1 − σQ
√

(Tn − t).

7.4 Numerical results

In order to provide some numerical results, we consider endowment policies that

mature, respectively, in 10 and 20 years. For each policy, we provide the results

with respect to insured aged 30, 40 and 50 years. Both single and periodic

premium (annual) are taken into account. We assume an insured amount equal

to 1, 000 EUR and, for the sake of simplicity, we did not allow for any costs. We

assume that the endowment policy can be extended for 5 and 10 years after the

maturity.

For our analysis, we use market data from October 31, 2011. The nominal term

structure of interest rate is derived from traded instruments in the cash, futures

and swap markets. We apply standard bootstrapping technique to derive the

zero rates from the traded market instruments. As regards the mortality risk,

we use the mortality rates bootstrapped using life insurance policies according

to the method described in Russo et al. (2011). Mortality rates are derived by

the term assurance pure premiums of Italian insurance companies in force during

2010.

We assume that the volatility of the endowment premium (single and periodic)

is equal to 1%. This value was chosen on the base of an empirical analysis of the

time series of the premiums related to Italian insurers.

Tables from 7.1 and 7.4 show the results. We have reported the value of the

premium (single or periodic) of the endowment policy for both 10 and 20 years

and with respect to the different ages. In the last column of the tables, the results

on the pricing of the extended coverage option are reported for the two different

level of maturity’s extension. Moreover, we have reported strike level and forward

premium’s value. As in the case of the policy’s premium, the option’s value are

expressed in Euro. It is worth to note that the option value is always a single

value apart from the policy premium is single or periodic.

From the results arises that the value of this option is substantial. In particular,

we can note that the option price is higher for older insured. We can note also

that the option’s value, mantaining constant the insured’s age, increases with the

maturity of the underlying contract.
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Table 7.1: Endowment that matured in 10 years with single premium.

Age Endowment’s Maturity’s Strike Forward Option’s
premium extension premium value

30 781,12 5 909,63 841,07 0,05
40 780,57 5 909,14 840,97 0,05
50 779,57 5 907,28 841,73 0,06
30 781,12 10 781,12 726,84 0,07
40 780,57 10 780,57 728,07 0,09
50 779,57 10 779,57 733,24 0,18

Table 7.2: Endowment that matured in 20 years with single premium.

Age Endowment’s Maturity’s Strike Forward Option’s
premium extension premium value

30 570,20 5 909,63 883,97 3,46
40 572,97 5 909,14 883,96 3,35
50 583,71 5 907,28 884,49 3,17
30 570,20 10 781,12 795,67 12,32
40 572,97 10 780,57 805,62 15,60
50 583,71 10 779,57 834,35 24,87

Table 7.3: Endowment that matured in 10 years with periodic premium.

Age Endowment’s Maturity’s Strike Forward Option’s
premium extension premium value

30 79,21 5 158,35 153,13 1,55
40 79,48 5 158,53 154,11 2,09
50 80,58 5 159,24 157,07 4,30
30 79,21 10 79,21 78,31 4,37
40 79,48 10 79,48 79,70 7,76
50 80,58 10 80,58 83,79 21,53

Table 7.4: Endowment that matured in 20 years with periodic premium.

Age Endowment’s Maturity’s Strike Forward Option’s
premium extension premium value

30 35,07 5 158,35 153,13 8,31
40 35,73 5 158,53 161,30 12,65
50 37,97 5 159,24 171,04 27,60
30 35,07 10 79,21 90,12 52,70
40 35,73 10 79,48 94,20 65,29
50 37,97 10 80,58 107,11 92,13
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7.5 Conclusion

In this chapter, we have presented a pricing model for the extended coverage

options embedded in endowment life insurance contracts.

The extended coverage option gives to the policyholder the right to extend the

term of the policy after the original maturity maintaining the contractual condi-

tions as valid. This type of option is common in the European insurance market

but literature’s references related to the evaluation of such type of option are

very poor.

We have proposed a pricing model taking into account interest rates and mortal-

ity rates as the main risk factors of the option. We provide an evaluation method

in closed-form in which the well-known Black (1976) option pricing formula is

used with the assumption that the premiums (single or periodic) of life insurance

contracts are lognormal martingales under an appropriate probability’s measure.

In the case of endowment with single premium, we assume the extended coverage

option can be viewed as a bond option. In the case of endowment with periodic

premium, we assume insurance contracts as a swap, as in the case of an interest

rate swap (IRS) or credit default swap (CDS), following the approach of Russo

et al. (2011). Consequently, we consider the analogy between the extended cov-

erage option and the options diffused in the financial markets such as swaptions

or credit default swap options. In this case we follow the approach of Jamshidian

(1997), Hull and White (2003), and Schonbucher (2000). However, unlike what

occurs for the classical financial options, where the underlying is represented by

the forward price of the bond or the premium of IRS/CDS, in the case of the

extended coverage option the underlying is represented by the forward premium

(single or periodic) of the endowment life insurance policy.

With respect to the case of endowment contracts where the extended cover-

age option is embedded, some numerical results are presented. From the results

arises that the value of this option is substantial. An important issue is that the

value of the option increases with the age of the insured and the maturity of the

underlying contract.

Under the new IAS/IFRS market-consistent accounting for insurance contracts

(to be approval) and the risk-based Solvency II requirements for the European

insurance market (enforcement to begin in 2013), insurance companies will have

to identify all material contractual options embedded in life insurance policies.

Consequently, the proposed model could be useful under the new accounting and

solvency regimes in order to evaluate the extended coverage option.
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Chapter 8

Market-consistent approach for

with-profit life insurance

contracts and embedded options:

a closed formula for the Italian

policies

8.1 Introduction

Recently, market-consistent valuation of insurance liabilities are becoming rele-

vant for accounting and solvency purposes. Being insurance liabilities not traded,

insurance companies have to provide the market-consistent value of the policies

by means of quantitative models applying the fair value principle.

Looking at the approaches proposed by the Solvency II requirements (enforce-

ment to begin in 2013) and the new IAS/IFRS principles (to be approval), the

value of the insurance contracts can be computed as expected present value of

future cash flows (including the value of embedded options and guarantees), the

so-called best estimate of liabilities (BEL), plus one or more additional margins.

According to the Solvency II directive,1 the economic value of the technical pro-

visions have to be calculated as sum of the best estimate and the risk margin.

The best estimate corresponds to the probability weighted average of future cash

flows taking into account of the time value of money. The risk margin is defined

as the cost of providing an amount of eligible own funds equal to the Solvency

1See European Community (2009).
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Capital Requirement2 (SCR) computed with respect to the non-hedgeable risks.3

Furthermore, significant improvements to the IAS/IFRS principles related to

the insurance contracts are expected by the International Accounting Standards

Board (IASB) with the so-called IFRS 4 (Phase 2) project. According to the

IASB proposal,4 insurance companies should computing the balance-sheet value

of the insurance liabilities quantifying (1) a current estimate of the future cash

flows (taking into account a discount rate that adjusts those cash flows for the

time value of money), (2) an explicit risk adjustment and (3) a residual margin.

Considering the life insurance business, very common life insurance policies are

the so-called with-profit policies also known as participating or profit-sharing poli-

cies. In these type of policies, the benefits of the contract increase across time

according to a return that is related to the performance of an asset’s portfolio,

the so-called segregated fund. An important issue is that with-profits policies

provide guaranteed benefits which protect the policyholder against the volatility

of the financial markets. Consequently, such contracts are characterized by a low

risk for the policyholders and a competitive return with respect to other financial

or insurance products. In this case, financial guarantees are embedded in the

contract and such guarantees are in the form of financial options.

The market-consistent valuation of such policies involves considering many as-

pects in their pricing depending by the nature of these liabilities. In the recent ac-

tuarial literature, a growing attention has been devoted to the market-consistent

valuation of with-profit life insurance contracts.5 With reference to the Ital-

ian policies, several models have been proposed by Bacinello (2001), Bacinello

(2003a), Bacinello (2003b), Pacati (2003), Andreatta e Corradin (2003), Baione

et al. (2006), Castellani et al. (2007), Floreani (2007).

In this chapter, we propose a closed formula to provide the market-consistent

value for the Italian with-profit life insurance policies. We focus on the expected

present value of the cash flows, the so-called best estimate of liabilities (BEL).

Moreover, we provide the market-consistent value for the financial options embed-

ded in these contracts. In particular, we are able to evaluate in closed-form the

2According to the Solvency II directive, insurers should hold an amount of capital, the so-
called Solvency Capital Requirement, that enables them to absorb unexpected losses and meet
their obligations to policyholders. The calculation of this requirement must be made on the
basis of the value at risk (VaR) with a confidence level of 99.5% over a time horizon of one year.

3Insurance liabilities are considered as non-hedgeable if the future cash-flows associated with
those obligations cannot be replicated using financial instruments.

4See International Accounting Standards Board (2010).
5 Several contributions addressing fair valuation of with-profit policies with guarantees have

been suggested by Briys and De Varenne (1997), Grosen and Jorgenses (2000), Jensen et al.
(2001), Hansen and Miltersen (2002), Miltersen and Persson (2003), Tanskanen and Lukkarinen
(2003), Bernard et al. (2005), Ballotta (2005), Ballotta et al. (2006), Bauer et al. (2006).
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minimum guaranteed option (MGO) embedded in the Italian with-profit policies.

It is worth to compute separately the value of the minimum guaranteed option

because insurance companies need to quantify the risk arising from the minimum

guaranteed level defined contractually. Greater is the option’s value, greater is

the risk for the insurer to not match the obligations towards the policyholders.

In addition, according to the new IAS/IFRS accounting principles and Solvency

II requirements, insurance companies have to identify and quantify all material

contractual options and financial guarantees embedded in their contracts. We are

able to compute in closed-form also the expected present value of the so-called fu-

ture discretionary benefits (FDB) as requested by the Solvency II requirements.6

According to the Solvency II requirements, the future discretionary benefits rep-

resent a specific component of the best estimate of liablities and it has to be

computed separately. As requested by the Solvency II regime, in calculating the

best estimate insurance companies should take into account future discretionary

benefits which are expected to be made, whether or not those payments are con-

tractually guaranteed.

The model we propose consists in a valuation method simpler than the commonly

used benchmark or reference models. We propose a simplified model following

the approaches of Bacinello (2001) and Castellani et al. (2007) where the classical

Black and Scholes framework is applied for the evaluation of Italian participating

policies. However, the drawback of this approach is that the classical Black and

Scholes framework is appropriate when the asset’s fund is composed by equities

while in the case of Italian with-profit policies asset’s funds are composed mainly

by fixed income instruments. In order to take into account the main features of

the segregated fund, we propose a stochastic dynamic where the effective asset

allocation of the fund is taken into account (i.e. fixed income instruments for the

main part and equities) according to the method proposed by Vellekoop et al.

(2005). Then, we derive a new closed form approach under the Black and Scholes

framework where the volatility to put in the formula is computed as a function

of the effective asset allocation of the segregated fund.

In summary our model consists in: (1) defining the functional form of the typi-

cal payoff for the Italian policies; (2) assuming a specific stochastic dynamic for

the segregated fund to which the policies are linked; (3) assuming a Black and

Scholes pricing framework; (4) deriving the volatility to put in the pricing model

as a function of the effective asset allocation of the segregated fund; (5) deriving

the closed-form for best estimate of liabilities, minimum guaranteed option and

future discretionary benefits.

Being the proposed model based on a simplified approach, it could be used in

6See European Community (2009) and European Commission (2010).
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order to quantify the best estimate and the related embedded options under

Solvency II when simplifications are allowed according to the principle of propor-

tionality. In fact, according to the Solvency II principles, in order to compute

the best estimate undertakings should apply actuarial and statistical methodolo-

gies that are proportionate to the nature, scale and complexity of the underlying

risks.7 In addition, it could be apply in order to evaluate the expected present

value of the future cash flows when the new IAS/IFRS principles related to the

insurance contracts will be in force.

The chapter is organized as follows. In the next section, we describe the charac-

teristics of the Italian with-profit life insurance policies while in Section 8.3, we

present the model. In Section 8.4, the calibration method for the model is dis-

cussed while in the Section 8.5 some numerical results are reported. Conclusive

remarks are summarized in the last section.

8.2 Contract design

Looking at the Italian insurance market, with-profit policies represent a large

component of the life insurance business.

In these type of policies, the premium paid by the policyholders is invested in an

asset’s portfolio, the segregated fund, for which life insurance company bears the

investment’s risk. The contractual benefits are paid to the policyholder at the

maturity date of the contract or if the insured dies within the contract’s term.

The benefits can be paid also if the policyholder decides to lapse the contract

when the lapse option is included in the contract.

The benefits of the contract are linked to the return of the segregated fund that

is internally managed by the insurance company and not directly traded on the

financial markets. The segregated fund is usually composed, for the main part, by

fixed income instruments and it is totally managed by the insurer. Consequently,

the performance of the asset’s portfolio depends, unless market conditions, by

the company’s investment approach in terms of market views, asset allocation,

etc...

The profits deriving from the asset’s portfolio are shared between the insurer and

the policyholder and periodically an interest rate is credited to the policy on the

base of a specific distribution mechanism. This mechanism obviously plays a cru-

cial role in the determination of the value of the contract. In the Italian policies,

the return credited to the policyholders in a specified period is computed as a

function of the net income and the average book value of the segregated fund

in the period. Consequently, the benefits of the contracts are revaluated using a

7See European Community (2009) and European Commission (2010).
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return rate that is not market-based.8

An important issue is that with-profits life insurance policies offer usually a guar-

anteed minimum interest rate. The policyholder receives the positive difference

between the return of the segregated fund and the minimum guaranteed rate.

This means that if the return of the segregated fund exceeds the minimum inter-

est rate, the policyholder receives a percentage of that excess rate and the interest

rate credited to the policyholder is ensured not to fall below some specified guar-

anteed level. In this case, a financial guarantee is embedded in the contract.

Such guarantee is in the form of a financial option, the so-called minimum guar-

anteed option (MGO).9 From a financial point of view, with-profit policies can

be considered as a derivative contracts, where the underlying is the return of the

segregated fund.

Looking at the Solvency II regime, it is worth to note that the present value of

the excess returns which are expected to credit to the policyholders corresponds

to the so-called future discretionary benefits (FDB). Under Solvency II, when the

best estimate for the with-profit contracts is computed, insurance companies have

to estimate separately the value of the future discretionary benefits as a specific

component of the entire stochastic reserve.10

Usually, two types of financial guarantees are embedded in the Italian Insurance

life contracts: (1) the annual or multi-period guarantees and (2) the maturity

guarantees.

In the annual or multi-period guarantees, the minimum rate of return is credited

during every period, and not only at maturity. From a financial point of view,

the option embedded in the contract is an option of forward start cliquet (or

ratchet) type where the indexation rule is applied every year, consolidating the

benefit level reached by the revaluation occurred in previous one. In this case,

the benefit is gradually distributed at the end of a determined period of time;

any excess return in previous periods can be used to build up a reserve for bad

times. This type of guarantee is embedded in the so-called cliquet policies.

In the maturity guarantees, the minimum rate of return is credited only at ma-

turity of the policy; any excess return realized in early period cannot be used

in bad periods. This type of guarantee is embedded in the the so-called best of

policies.

In the case of annual guarantess, denoted by C(Ti) the policy’s benefit accrued

8This is established in detail by the Italian insurance authority (ISVAP). See ISVAP (1986)
n.71/1986.

9Usually, other types of contractual options are embedded in the Italian policies besides the
minimum guaranteed option. In fact, in such policies can be included also the surrender option,
the paid up option, the annuity conversion option, the extended coverage option.

10See European Community (2009) and European Commission (2010).
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at time Ti, for i = 1, 2, ..., n, the profit sharing rule is defined by the following

recurrent equation

C(Ti) = C(Ti−1)
[
1 +W (Ti−1, Ti)

]
,

where W (Ti−1, Ti) is the so-called revaluation rate and [1 + W (Ti−1, Ti)
]

is the

so-called revaluation factor. Usually, the revaluation rate is defined as

W (Ti−1, Ti) =

max

[
min

[
βY (Ti−1, Ti);Y (Ti−1, Ti)− α

]
; g

]
− h

1 + h
,

where

• Y (Ti−1, Ti) = it is the return of the segregated fund related to the period

[Ti−1, Ti],

• α ≥ 0 = it is the minimum return retained by the insurer,

• β ∈ (0, 1] = it is the participation coefficient,

• g ≥ 0 = it is the guaranteed minimum interest rate for the policyholder,

• h ≥ 0 = it is the technical interest rate.

Consequently, in case of annual guarantees,

• the benefit accrued to the policyholder at the maturity of the contract is

C(Tn) = C(T0)
n∏
i=1

[
1 +W (Ti−1, Ti)

]
;

• indicating with Td the death time11 such that T0 < Td < Tn, the benefit

accrued to the policyholder, if the insured dies before the maturity, is

C(Td) = C(T0)
d∏
i=1

[
1 +W (Ti−1, Ti)

]
;

• indicating with Tl the lapse time12 such that T0 < Tl < Tn, the benefit

accrued to the policyholder, if the policy is lapsed, is

C(Tl) = C(T0)
l∏

i=1

[
1 +W (Ti−1, Ti)

]
.

11We assume that if the effective death time is comprised in the period [Ti−1, Ti], the death
benefit is accrued at time Ti. Consequently, Td = Ti.

12We assume that if the effective lapse time is comprised in the period [Ti−1, Ti], the lapse
benefit is accrued at time Ti. Consequently, Tl = Ti.
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In the case of maturity guarantees, the revaluation mechanism is a function of

(1) the revaluation rate computed without considering the guaranteed minimum

rate and (2) the revaluation rate computed taking into account the guaranteed

minimum rate only. In the first case, the revaluation rate becomes

WY (Ti−1, Ti) =
min

[
βY (Ti−1, Ti);Y (Ti−1, Ti)− α

]
− h

1 + h
,

while, in the second case, we have

Wg(Ti−1, Ti) =
g − h
1 + h

.

Consequently, in case of maturity guarantees

• the benefit accrued to the policyholder at the maturity of the contract is

C(Tn) = C(T0) max

{ n∏
i=1

[
1 +WY (Ti−1, Ti)

]
;
n∏
i=1

[
1 +Wg(Ti−1, Ti)

]}
;

• indicating with Td the death time such that T0 < Td < Tn, the benefit

accrued to the policyholder, if the insured dies before the maturity, is

C(Td) = C(T0) max

{ d∏
i=1

[
1 +WY (Ti−1, Ti)

]
;

d∏
i=1

[
1 +Wg(Ti−1, Ti)

]}
;

• indicating with Tl the lapse time such that T0 < Tl < Tn, the benefit

accrued to the policyholder, if the policy is lapsed, is

C(Tl) = C(T0) max

{ l∏
i=1

[
1 +WY (Ti−1, Ti)

]
;

l∏
i=1

[
1 +Wg(Ti−1, Ti)

]}
.

8.3 The proposed model

We propose a pricing model for the Italian with-profit life insurance policies where

a simplified approach in closed-form is implemented. Despite the return credited

to the policyholders is computed as a function of the net income and the average

book value,13 we assume the performance of the fund to be market-based. We

follow the approach proposed in Bacinello (2001) and Castellani (2007) where

such simplification is adopted in the calculation of the segregated fund’s return.

In particular, Bacinello (2001) and Castellani et al. (2007) have proposed a

13Grosen and Jorgensen (2000), Jensen et al (2001), Taskanen and Lukkarinen (2003) and
Bauer et al (2006) have proposed pricing models for participating policies where the interest rate
credited to the policyholders depends on the book value of the reference portfolio. In particular,
Floreani (2009) have suggested an approach based on the book value specifically for the Italian
with-profit policies.
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market-based approach approximating the return of the Italian segregated fund

as a percentage return of the segregated fund’s market value. Assuming that such

market value can be model by a standard geometric Brownian motion, they have

proposed closed-form solution under the well-known Black and Scholes frame-

work. However, the drawback of this approach is that the Black and Scholes

pricing formula is appropriate when the underlying value considered as input of

the pricing formula is an equity or a portfolio of equities. In the case of the Ital-

ian policies, instead, the classical Black and Scholes framework is not adequate

because segregated funds are composed mainly by fixed income instruments and

the equity component is marginal.

Following Vellekoop et al. (2005), we present a pricing model in which a particu-

lar stochastic dynamic is adopted in order to take into account the effective asset

allocation of the Italian segregated fund. In particular, we develop a model in

which a new functional form for the volatility is considered in the option pricing

formula. The volatility we compute is able to take into account the features of the

segregated fund in terms of the effective duration of the fixed income component

and the weight of the equity component.

8.3.1 Model assumptions

In order to explain the features of the Italian with-profit policies, we consider a

contract that starts at time t = T0 and expires in t = Tn, with Tn > T0. We

consider the case in which the policyholder pays to the insurer a single premium

U at time t = T0. We indicate by C(Ti) the policy’s benefit accrued at time

Ti, for i = 1, 2, ..., n,. The benefit accrued at time Ti is equal to the capital

accrued at time Ti−1 revaluated applying an interest rate that is the greater

value between the guaranteed minimum rate and the return of the segregated

fund. The return of the reference fund is computed taking into account the

profit sharing mechanism and the technical interest rate. The quantity C(Tn)

represents the amount of money that the insurer pays to the policyholder taking

into account the revaluation rule at the maturity of the contract. Although in the

Italian with-profit policies the contract’s benefits are paid also in the case of the

insured’s death or in the case the contract is lapsed, we assume that the benefit

is paid only at the maturity of the contract. Consequently, to achieve analytic

tractability of our solution, we neglect the mortality risk and the surrender option.

Moreover, also other types of option usually embedded in the Italian contracts,

other than the minimum guaranteed option, are not considered.

We assume the performance of the fund to be market-based and computed as

percentage return of the segregated fund’s market value.14 Denoting by V (Ti) the

14The percentage return represents an approximation with respect to the real case. In fact,
the segregated fund’s return is computed as a function of the net income and the book value of
the asset’s portfolio.
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market value of the fund at time Ti, we assume that the return of the segregated

fund over the time interval [Ti−1, Ti] is computed as

Y (Ti−1, Ti) =
V (Ti)− V (Ti−1)

V (Ti−1)
=

V (Ti)

V (Ti−1)
− 1.

8.3.2 Payoff functions

We consider four different cases for the payoff of the Italian with-profit policies:

• annual guarantees with partecipation coefficient,

• annual guarantees with minimum return reteined by the insurer,

• maturity guarantees with partecipation coefficient,

• maturity guarantees with minimum return reteined by the insurer.

For each payoff, we provide a closed-formula thanks to which it it possible to

compute the market consitent value of the contract.

Annual guarantees with partecipation coefficient

In the case of with-profit policies with annual guarantees and partecipation coef-

ficient, the revaluation factor is

1 +Wβ(Ti−1, Ti) = 1 +
max

[
βY (Ti−1, Ti); g

]
− h

1 + h
.

For single premium policies, the insured amount C(Ti) raises according to the

revaluation rate on the base of the following recursive equation,

C(Ti) = C(Ti−1)
[
1 +Wβ(Ti−1, Ti)

]
.

Consequently, the insured amount C(Tn) is

C(Tn) = C(T0)

n∏
i=1

[
1 +Wβ(Ti−1, Ti)

]
.

At time Ti, the revaluation factor can be computed as

1 +Wβ(Ti−1, Ti) = 1 +
max

[
βY (Ti−1, Ti); g

]
− h

1 + h
=

1 + max
[
βY (Ti−1, Ti); g

]
1 + h

=
1 + max

[
βY (Ti−1, Ti)− g; 0

]
+ g

1 + h
=

1

1 + h

[
β

(
Y (Ti−1, Ti)−

g

β

)+

+ 1 + g

]
=

1

1 + h

[
β

(
V (Ti)

V (Ti−1)
− 1− g

β

)+

+ 1 + g

]
.
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Setting,

K = 1 +
g

β
,

it follows that,

C(Tn) = C(T0)

(
1

1 + h

)n n∏
i=1

[
β

(
V (Ti)

V (Ti−1)
−K

)+

+ 1 + g

]
.

Following Bacinello (2001), we assume the stochastic independence ofWβ(Ti−1, Ti).

Consequently, in order to compute the value of the contract at time t < T1, we

consider the following payoff

Ĉ(Tn) = C(T0)
n∏
i=1

ETi
[
1 +Wβ(Ti−1, Ti)

]

= C(T0)

(
1

1 + h

)n n∏
i=1

{
βETi

[(
V (Ti)

V (Ti−1)
−K

)+∣∣∣∣Ft

]
+ 1 + g

}
,

where ETi refers to the Ti-forward risk-adjusted measure while Ft is the sigma-

field generated up to time t.

Annual guarantees with minimum return reteined by the insurer

In the case of with-profit policies with annual guarantees and minimum return

reteined by the insurer, the revaluation factor is

1 +Wα(Ti−1, Ti) = 1 +
max

[
Y (Ti−1, Ti)− α; g

]
− h

1 + h
,

Also in this case, for single premium policies, the insured amount C(Ti) raises

according to the revaluation rate on the base of the following recursive equation,

C(Ti) = C(Ti−1)
[
1 +Wα(Ti−1, Ti)

]
.

Consequently, the insured amount C(Tn) is

C(Tn) = C(T0)
n∏
i=1

[
1 +Wα(Ti−1, Ti)

]
.

At time Ti, the revaluation factor can be computed as

1 +Wα(Ti−1, Ti) = 1 +
max

[
Y (Ti−1, Ti)− α; g

]
− h

1 + h
=

1 + max
[
Y (Ti−1, Ti)− α; g

]
1 + h

=
1 + max

[
Y (Ti−1, Ti)− α− g; 0

]
+ g

1 + h
=

1

1 + h

[(
Y (Ti−1, Ti)− α− g

)+

+ 1 + g

]
=

1

1 + h

[(
V (Ti)

V (Ti−1)
− 1− α− g

)+

+ 1 + g

]
.
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Setting,

K = 1 + α+ g,

it follows that,

C(Tn) = C(T0)

(
1

1 + h

)n n∏
i=1

[(
V (Ti)

V (Ti−1)
−K

)+

+ 1 + g

]
.

In order to compute the value of the contract at time t < T1, we have to consider

the following payoff,

Ĉ(Tn) = C(T0)

n∏
i=1

ETi
[
1 +Wα(Ti−1, Ti)

]

= C(T0)

(
1

1 + h

)n n∏
i=1

{
ETi
[(

V (Ti)

V (Ti−1)
−K

)+∣∣∣∣Ft

]
+ 1 + g

}
.

Maturity guarantees with partecipation coefficient

The case of maturity guarantees is quite typical in the Italian bancassurance

companies.

For single premium policies, the insured amount C(Tn) is such that,

C(Tn) = C(T0) max

[ n∏
i=1

[
1 +WY,β(Ti−1, Ti)

]
;
n∏
i=1

[
1 +Wg(Ti−1, Ti)

]]
,

where,

n∏
i=1

[
1 +Wg(Ti−1, Ti)

]
=

n∏
i=1

(
1 +

g − h
1 + h

)
=

(
1 +

g − h
1 + h

)n
=

(
1 + g

1 + h

)n
,

and
n∏
i=1

[
1 +WY,β(Ti−1, Ti)

]
=

n∏
i=1

(
1 +

βY (Ti−1, Ti)− h
1 + h

)
=

n∏
i=1

(
1 + βY (Ti−1, Ti)

1 + h

)

=

(
1

1 + h

)n n∏
i=1

(
1 + βY (Ti−1, Ti)

)
=

(
β

1 + h

)n n∏
i=1

(
1

β
+ Y (Ti−1, Ti)

)

=

(
β

1 + h

)n n∏
i=1

(
1

β
+

V (Ti)

V (Ti−1)
− 1

)

=

(
β

1 + h

)n n∏
i=1

(
V (Ti)

V (Ti−1)
+

1− β
β

)
.

In order to simplify the payoff function, we adopt the following approximation15

n∏
i=1

(
V (Ti)

V (Ti−1)
+

1− β
β

)
∼=
V (Tn)

V (T0)

n∑
j=0

(
n

j

)(
1− β
β

)j
.

15We use the binomial theorem in order to approximate the payoff’s function.
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Consequently,

C(Tn) = C(T0) max

[ n∏
i=1

WY,β(Ti−1, Ti);
n∏
i=1

Wg(Ti−1, Ti)

]

= C(T0)

{
max

[(
β

1 + h

)nV (Tn)

V (T0)

n∑
j=0

(
n

j

)(
1− β
β

)j
−
(

1 + g

1 + h

)n
; 0

]
+

(
1 + g

1 + h

)n}

= C(T0)

{(
β

1 + h

)n n∑
j=0

(
n

j

)(
1− β
β

)j
×max

[
V (Tn)

V (T0)
− (1 + g)n

βn
∑n

j=0

(
n
j

)(1−β
β

)j ; 0

]
+

(
1 + g

1 + h

)n}
.

Setting,

K =
(1 + g)n

βn
∑n

j=0

(
n
j

)(1−β
β

)j , (8.-41)

it follows that,

C(Tn) = C(T0)

[(
β

1 + h

)n n∑
j=0

(
n

j

)(
1− β
β

)j(V (Tn)

V (T0)
−K

)+

+

(
1 + g

1 + h

)n]
.

In order to compute the value of the contract at time t < T1, we have to consider

the following payoff,

Ĉ(Tn) = C(T0)

{(
β

1 + h

)n n∑
j=0

(
n

j

)(
1− β
β

)j
×ETi

[(
V (Tn)

V (T0)
−K

)+∣∣∣∣Ft

]
+

(
1 + g

1 + h

)n}
.

Maturity guarantees with minimum reteined by the insurer

For single premium policies, the insured amount C(Tn) is such that

C(Tn) = C(T0) max

[ n∏
i=1

[
1 +WY,α(Ti−1, Ti)

]
;
n∏
i=1

[
1 +Wg(Ti−1, Ti)

]]
,

where
n∏
i=1

[
1 +WY,α(Ti−1, Ti)

]
=

n∏
i=1

(
1 +

Y (Ti−1, Ti)− α− h
1 + h

)
=

n∏
i=1

(
1 + Y (Ti−1, Ti)− α

1 + h

)

=

(
1

1 + h

)n n∏
i=1

(
1 + Y (Ti−1, Ti)− α

)
=

(
1

1 + h

)n n∏
i=1

(
1 +

V (Ti)

V (Ti−1)
− 1− α

)

=

(
1

1 + h

)n n∏
i=1

(
V (Ti)

V (Ti−1)
− α

)
.
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In order to simplify the payoff function, we adopt the following approximation,16

n∏
i=1

(
V (Ti)

V (Ti−1)
− α

)
∼=
V (Tn)

V (T0)

n∑
j=0

(
n

j

)(
− α

)j
.

Consequently,

C(Tn) = C(T0) max

[ n∏
i=1

WY,α(Ti−1, Ti);
n∏
i=1

Wg(Ti−1, Ti)

]

= C(T0)

{
max

[(
1

1 + h

)nV (Tn)

V (T0)

n∑
j=0

(
n

j

)(
− α

)j − (1 + g

1 + h

)n
; 0

]
+

(
1 + g

1 + h

)n}

= C(T0)

{(
1

1 + h

)n n∑
j=0

(
n

j

)(
− α

)j
×max

[
V (Tn)

V (T0)
− (1 + g)n∑n

j=0

(
n
j

)(
− α

)j ; 0

]
+

(
1 + g

1 + h

)n}
.

Setting,

K =
(1 + g)n∑n

j=0

(
n
j

)(
− α

)j ,
it follows that,

C(Tn) = C(T0)

[(
1

1 + h

)n n∑
j=0

(
n

j

)(
− α

)j(V (Tn)

V (T0)
−K

)+

+

(
1 + g

1 + h

)n]
.

In order to compute the value of the contract at time t < T1, we have to consider

the following payoff,

Ĉ(Tn) = C(T0)

{(
1

1 + h

)n n∑
j=0

(
n

j

)(
− α

)j
×ETi

[(
V (Tn)

V (T0)
−K

)+∣∣∣∣Ft

]
+

(
1 + g

1 + h

)n}
.

8.3.3 Asset allocation and stochastic dynamic for the segregated fund

We consider that case in which the segregated fund is composed by bonds and

equities.17

Denoting the bond’s portfolio by Bp(t), we assume that the fund is managed in

such a way that the sensitivity with respect to the interest rates is deterministic

16We use the binomial theorem in order to approximate the payoff’s function.
17This is a realistic assumption. In fact, the Italian segregated fund are usually composed by

bonds for the 80/90% and equities for the remain part.



146

CHAPTER 8. MARKET-CONSISTENT APPROACH FOR WITH-PROFIT LIFE
INSURANCE CONTRACTS AND EMBEDDED OPTIONS: A CLOSED FORMULA

FOR THE ITALIAN POLICIES

but time-varying. We use the effective duration as sensitivity measure as defined

in Fabozzi (1996). We denote the effective duration by δ. In order to indicate

the value of the effective duration across the time we denote it by δ(t).

We indicate by Ep(t) the market value of the equity’s portfolio and denote by ω

the equity’s percentage in the segregated fund. We assume that ω is deterministic

but time-varying indicating by ω(t) the equity’s weight at time t.

Following Vellekoop et al. (2005), we assume that, under the T -forward risk-

adjusted measure denoted by MT , the value of the segregated fund evolves ac-

cording to the following stochastic dynamic

dV (t)

V (t)
=
[
1− ω(t)

]dB(t)

B(t)
+ ω(t)

dE(t)

E(t)

= r(t)dt−
[
1− ω(t)

]
δ(t)σdW T (t) + ω(t)νdZT (t),

where

• r(t) = it is instantaneous short rate,

• σ = it is the volatility of the short rate,

• δ(t) = it is the effective duration at time t,

• ν = it is the volatility of the equities,

• ω(t) = it is the equity’s weight at time t,

and where W T and ZT are correlated Brownian motions. Considering indepen-

dent Brownian motions, we have

dW T (t) = dW̃ T (t),

dZT (t) = ρdW̃ T (t) +
√

1− ρ2dZ̃T (t),

where W̃ T and Z̃T are independent and ρ is the correlation coefficient between

interest rates and equities.

Consequently, we have that

dV (t)

V (t)
= [1− ω(t)]

dB(t)

B(t)
+ ω(t)

dE(t)

E(t)

= r(t)dt− [1− ω(t)]δ(t)σdZ1(t) + ω(t)νρdW̃ T (t) + ω(t)ν
√

1− ρ2dZ̃T (t).

We assume also that interest rates are stochastic. In particular, we assume that

under the T -forward risk-adjusted measure the dynamic of the instantaneous

short rate is given by the Hull and White model18. Consequently,

r(t) = ϕ(t) + x(t),

dx(t) = −ax(t)dt+ σdW T (t), x(0) = 0,
18See Hull and White (1990).
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where k and σ are positive constants while the deterministic function ϕ(t) is such

that

ϕ(t) = fM (0, t) +
σ2

2a2

(
1− e−at

)2
.

The quantity fM (0, t) is the market instantaneous forward rate at time 0 for the

maturity t defined as

f(0, t) = −δ logP (0, t)

δt
,

where PM (0, t) is the market value at time 0 for a zero-coupon bond that expires

in t. Under the Hull-White model, the dynamic of the zero coupon bond price is

dP (t, T )

P (t, T )
= r(t)dt−H(t, T )σdW T (t),

where

H(t, T ) =
1

k

[
1− e−a(T−t)

]
.

In conclusion, the model we use to define the stochastic dynamic for the segre-

gated fund can be summarized as

dV (t)

V (t)
= r(t)dt− [1− ω(t)]δ(t)σdZ1(t) + ω(t)νρdW̃ T (t) + ω(t)ν

√
1− ρ2dZ̃T (t)

r(t) = ϕ(t) + x(t)

dx(t) = −ax(t)dt+ σdW T (t)

dP (t, T )

P (t, T )
= r(t)dt−H(t, T )σdW T (t).

8.3.4 Closed-form solution

In order to provide the market-consistent value for with profit policies, we have

to compute the following expectation

ETi
[(

V (Ti)

V (Ti−1)
−K

)+∣∣∣∣Ft

]
.

Since that the ratio V (Ti)/V (Ti−1) conditional on Ft is lognormally distributed

under the Ti-forward risk-adjusted measure denoted byMTi , the expected value

can be derived from the properties of the lognormal distribution. In fact, if log(X)

is normally distributed with E[X] = m and V[ln(X)] = s2, adopting the well-

known Black-Scholes standard approach used for pricing of financial options19,

we have

E[X −K]+ = mΦ

[
log m

K + 1
2s

2

s

]
−KΦ

[
log m

K −
1
2s

2

s

]
.

19See Black and Scholes (1973).



148

CHAPTER 8. MARKET-CONSISTENT APPROACH FOR WITH-PROFIT LIFE
INSURANCE CONTRACTS AND EMBEDDED OPTIONS: A CLOSED FORMULA

FOR THE ITALIAN POLICIES

In order to use the previous formula for the pricing of with-profit policies, we

have to compute the expected value and the variance of the ratio V (Ti)/V (Ti−1)

under the Ti-forward risk-adjusted measure.

The expected value can be immediately obtained as

m = ETi
[
V (Ti)

V (Ti−1)

∣∣∣∣Ft

]
=
P (t, Ti−1)

P (t, Ti)
,

while the variance is

s2 = VTi
[

log
V (Ti)

V (Ti−1)

∣∣∣∣Ft

]
= Σ2

V (t, Ti−1, Ti).

Consequently, we solve the expected value as

ETi
[(

V (Ti)

V (Ti−1)
−K

)+∣∣∣∣Ft

]
=

[
P (t, Ti−1)

P (t, Ti)
Φ(d1)−KΦ(d2)

]
,

where

d1 =

log

[
P (t,Ti−1)
P (t,Ti)

1
K

]
+ 1

2Σ2
V (t, Ti−1, Ti)

ΣV (t, Ti−1 − Ti)
,

and

d2 =

log

[
P (t,Ti−1)
P (t,Ti)

1
K

]
− 1

2Σ2
V (t, Ti−1, Ti)

ΣV (t, Ti−1, Ti)
.

For what concerns the variance of the logarithm of the ratio V (Ti)/V (Ti−1),

we need to compute such variance under the T -forward risk-adjusted measure.

However, it can be computed under the risk-neutral measure since that the change

of measure produces only a deterministic additive term which has no impact in

the variance calculation.20 We find that

Σ2
V (t, Ti−1, Ti) =

∫ Ti

Ti−1

σ2
V/P (u, T )du+

∫ Ti−1

t

[
σP (u, Ti)− σP (u, Ti−1)

]2

du,

where the first integral is the variance under the risk-neutral measure and the

second one represents the deterministic additive term.

In order to solve the integrals, it results that

σ2
V |P (t, T ) = σ2

V + σ2
P (t, T )− 2σV σP (t, T ),

20We use the approach used in Brigo and Mercurio (2006) for the pricing of the Inflation-
Indexed Caplets/Floorlets using the Jarrow Yildirim model.
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where the variance of the zero-coupon bond is

σ2
P (t, T ) =

σ2

a2

[
1− exp

[
− a(T − t)

]]2

,

while the variance of the segregated fund consists in

σ2
V =

[
ρω(Ti−1)ν − [1− ω(Ti−1)]δ(Ti−1)σ

]2
+ (1− ρ2)ω(Ti−1)2ν2

= [1− ω(Ti−1)]2δ(Ti−1)2σ2 − 2ρω(Ti−1)[1− ω(Ti−1)]νδ(Ti−1)σ + ω(Ti−1)2ν2.

Consequently, we have that

Σ2
V (t, Ti−1, Ti)

=

∫ Ti

Ti−1

σ2
V du+

∫ Ti

Ti−1

σ2
P (t, T )du− 2

∫ Ti

Ti−1

σV σP (t, T )du+

∫ Ti−1

t
σ2
P (u, Ti)du

+

∫ Ti−1

t
σ2
P (u, Ti−1)du− 2

∫ Ti−1

t
σP (u, Ti)σP (u, Ti−1)du.

Substituting and integrating, it follows that,

Σ2
V (t, Ti−1, Ti)

= ω(Ti−1)2ν2(Ti − Ti−1) + 2ρω(Ti−1)ν
σ

a

[
Ti − Ti−1 −

1− exp[−a(Ti − Ti−1)]

a

]
−2ρω(Ti−1)[1− ω(Ti−1)]νδ(Ti−1)σ(Ti − Ti−1)

+
σ2

a2

[
Ti − Ti−1 +

2

a
exp[−a(Ti − Ti−1)]− 1

2a
exp[−2a(Ti − Ti−1)]− 3

2a

]
+[1− ω(Ti−1)]2δ(Ti−1)2σ2(Ti − Ti−1)

−2[1− ω(Ti−1)]δ(Ti−1)σ
σ

a

[
Ti − Ti−1 −

1− exp[−a(Ti − Ti−1)]

a

]
+
σ2

2a3

[
1− exp[−a(Ti − Ti−1)]

]2[
1− exp[−2a(Ti−1 − t)]

]
.

8.3.5 Best estimate of liabilities (BEL) for Italian with-profit policies

Using the proposed model, we provide a closed-formula for the best estimate of

liabilities in the case of Italian with-profit policies. In this section, we consider

the case of annual guarantees and partecipation coefficient. Analogous results

can be found for the other types of payoff we have presented.

Standard no-arbitrage pricing theory implies that the best estimate of liabilities

computed at time t < Ti−1 for the maturity Tn, denoted by BEL(t, Tn), is

BEL(t, Tn) = P (t, Tn)Ĉ(Tn) = P (t, Tn)C(T0)

n∏
i=1

{
ETi
[
1 +Wβ(Ti−1, Ti)

]}

= P (t, Tn)C(T0)

(
1

1 + h

)n n∏
i=1

{
βETi

[(
V (Ti)

V (Ti−1)
−K

)+∣∣∣∣Ft

]
+ 1 + g

}
.
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Applying the proposed model, the BEL of the contract can be computed as,

BEL(t, Tn) = P (t, Tn)Ĉ(Tn) = P (t, Tn)C(T0)

n∏
i=1

{
ETi
[
1 +W (Ti−1, Ti)

]}

= P (t, Tn)C(T0)

(
1

1 + h

)n n∏
i=1

{
β

[
P (t, Ti−1)

P (t, Ti)
Φ(d1)−KΦ(d2)

]
+ 1 + g

}
.

8.3.6 Embedded options

We use the proposed model to compute the market-consistent value of the finan-

cial options embedded in the Italian with-profit life insurance contracts.

In order to compute the value of the minimum guaranteed option, we adopt the

so-called put option approach according to which it is possible to decompose the

best estimate of the contract into two part: (1) the contract’s value where the

minimum guaranteed option is not considered (2) an additional value reflecting

the fact that the the benefit for the policyholder is subject to a certain minimum

value. The optional component (put) is the minimum guaranteed option. This

approach is discussed in a paper of the Financial Service Authority21 (FSA) and

its application for the Italian policies is due to De Felice and Moriconi (2002).

An alternative approach, known as call option approach, consists in consider-

ing the entire contract’s value as the sum of a guaranteed component and an

optional component that represents the cost of a call option. The optional com-

ponent (call) represents the excess of assets return over contractual guarantees

and corresponds to the future discretionary benefits. This alternative approach

is discussed in Hare et al. (2003) and Dullaway and Needleman (2003) while the

application to the Italian policies is due to De Felice and Moriconi (2002). We

adopt this approach to quantify the expected present value of the future discre-

tionary benefits, namely the fair value of the call option embedded in the Italian

contracts.

In summary, the payoff representing the benefits for the policyholders can be

expressed as (1) a non guaranteed benefit plus a put option representing the pro-

tection, or (2) a minimum guaranteed benefit plus a call option representing the

extra benefits.

Minimum guaranteed option

We consider a with-profit policy with annual guarantee and partecipation coef-

ficient. According to the put option approach, the value of the option is the

difference between the value of the contract where the benefits are revaluated

according to the contractual conditions and the value in which the revaluation

factor does not take into account the guarantee.

21See Financial Service Authority (2003).
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Consequently, we have to consider the quantity

BELY (t, Tn) = P (t, Tn)Ĉ(Tn) = P (t, Tn)C(T0)

n∏
i=1

{
ETi
[
1 +WY,β(Ti−1, Ti)

]}
,

where [
1 +WY,β(Ti−1, Ti)

]
=

(
1 +

βY (Ti−1, Ti)− h
1 + h

)
=

(
1 + βY (Ti−1, Ti)

1 + h

)
=

β

1 + h

(
V (Ti)

V (Ti−1)
+

1− β
β

)
.

Denoting by MGO(t, Tn) the value of the minimum guaranteed option computed

at time t < Ti−1 for the maturity Tn, we have

MGO(t, Tn) = BEL(t, Tn)−BELY (t, Tn).

Future discretionary benefits

As in the previous case, we assume annual guarantee and partecipation coeffi-

cient. According to the call option approach, we compute the value of the future

discretionary benefits as difference between two quantities. In particular, the

value of FDB is obtained as difference between the value of the contract where

the benefits are revaluated according to the contractual conditions and the value

of the contract revaluated taking into account the minimum garanteed only. In

formula, it holds that

FDB(t, Tn) = BEL(t, Tn)−BELg(t, Tn),

where

BELg(t, Tn) =

n∏
i=1

[
1 +Wg(Ti−1, Ti)

]
=

n∏
i=1

(
1 +

g − h
1 + h

)
=

(
1 +

g − h
1 + h

)n
=

(
1 + g

1 + h

)n
.

8.4 Calibration

In this section, we show how our model can be calibrated to market data. The

objective of calibration is to choose the model parameters in such a way that the

model prices are consistent with the market prices of simple instruments. The

calibration process is then a matter of choosing particular values for the param-

eters and fitting them so as to match the prices of selected market instruments.

The first stage in the calibration process is to derive the initial term structures of

interest rates. The term structure is derived from traded instruments quoted in
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the cash, futures and swap markets. We apply standard bootstrapping technique

to derive the zero rates from the traded market instruments. In order to derive

the interest rates volatility parameters, we calibrate our model using caps quoted

in the market. The calibration to caps is done by choosing the values of a and

σ so as to minimize the sum of the square difference between market and model

cap prices using the goodness-of-fit measure

arg min
a,σ

n∑
i=1

(
CapMi − Capi

)2
,

where CapMi is the value of the caps quoted by the market while Capi represents

the cap formula implied by Hull-White model. The number of calibrated instru-

ments is n.

For the equity’s component, we use the ATM volatility implied in the options

quoted on the FTSE Mib index. We use the longest maturity available in the

market. To quantify the effect deriving from the correlation between stock and

interest rates we derive the correlation coefficient by historical estimation.

In order to provide numerical results, we have calibrated our model on the market

data as at October 31, 2011. The results are the following

- a = 0, 4487,

- σ = 0, 0224,

- ν = 0, 4,

- ρ = 0, 1.

8.5 Numerical results

We consider with-profit policies with participation coefficient where both annual

and maturity guarantees are taken into account. A single premium and a matu-

rity of 10 years are assumed. We consider also different levels of partecipating

coefficient and minimum guaranteed rate for each contract with and an initial

insured amount of Euro 100.

With reference to the asset allocation of the segregated fund, we provide different

values for effective duration and equity’s weight.

For each case, we provide the expected present value for the entire contract (BEL)

and separated values for the minimum guaranteed option (MGO) and future dis-

cretionary benefits (FDB). The results are reported in the Tables from 8.1 to 8.6.

We can appreciate that BEL, MGO and FDB are affected by the contractual

parameters such as minimum guaranteed rate and participation coefficient. It
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Table 8.1: Numerical results for a with-profit policy with annual guarantee and
partecipation coefficient - technical rate of 0% - maturity of 10 years.

β g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
1 0 3 0 135,45 78,10 57,35 100 35,45

0,9 0 3 0 128,37 78,10 50,27 97,59 30,78
0,9 0,01 3 0 133,97 86,28 47,68 97,59 36,38
0,9 0,01 5 0 148,26 86,28 61,98 97,59 50,67
0,8 0,01 5 0,2 140,65 86,28 54,36 95,23 45,42
0,8 0,02 6 0,3 159,82 95,23 64,59 95,23 64,59

Table 8.2: Numerical results for a with-profit policy with annual guarantee and
partecipation coefficient - technical rate of 4% - maturity of 10 years.

β g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
1 0 3 0 91,51 52,74 38,77 67,56 23,95

0,9 0 3 0 86,72 52,74 33,98 65,93 20,79
0,9 0,01 3 0 90,50 58,26 32,24 65,93 24,58
0,9 0,01 5 0 100,16 58,26 41,90 65,93 34,23
0,8 0,01 5 0,2 95,02 58,26 36,75 64,33 30,68
0,8 0,02 6 0,3 107,97 64,30 43,66 64,33 43,63

Table 8.3: Numerical results for a with-profit policy with annual guarantee and
minimum reteined - technical rate of 0% - maturity of 10 years.

α g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
0 0 3 0 135,45 78,10 57,35 100 35,45

0,01 0 3 0 128,53 78,10 50,43 90,66 37,87
0,01 0,01 3 0 134,58 86,28 48,30 90,66 43,92
0,01 0,01 5 0 150,78 86,28 64,50 90,66 60,12
0,015 0,01 5 0,2 149,54 86,28 63,26 86,29 63,25
0,015 0,02 6 0,3 173,73 95,23 78,50 86,29 87,44

is important to note that the expected present value of the contract and option

values are significantly influenced also by the asset allocation parameters such as

effective duration and equity’s weight.

8.6 Conclusion

We have developed a closed formula to provide the market-consistent value for

the Italian with-profit life insurance policies. We focus on the expected present

value of the cash flows, the so-called best estimate of liabilities (BEL). Further-

more, we have provided closed formula for financial options embedded in these

contracts. In particular, we are able to evaluate separately the minimum guar-

anteed option (MGO) and the future discretionary benefits (FDB) embedded in

the Italian with-profit life policies.

Our approach could be used in order to quantify the technical provisions for Sol-

vency II (enforcement to begin in 2013) purposes. In addition, it could be useful
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Table 8.4: Numerical results for a with-profit policy with annual guarantee and
minimum reteined - technical rate of 4% - maturity of 10 years.

α g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
0 0 3 0 91,51 52,74 38,77 67,56 23,95

0,01 0 3 0 86,83 52,74 34,09 61,25 25,58
0,01 0,01 3 0 90,92 58,26 32,65 61,25 29,67
0,01 0,01 5 0 101,86 58,26 43,60 61,25 40,61
0,015 0,01 5 0,2 101,03 58,26 42,76 58,30 42,73
0,015 0,02 6 0,3 117,36 64,30 53,06 58,30 59,07

Table 8.5: Numerical results for a with-profit policy with maturity guarantee and
partecipation coefficient - technical rate of 0% - maturity of 10 years.

β g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
1 0 3 0 100,11 78,10 22,01 100 0,11

0,9 0 3 0 100,11 78,10 22,01 100 0,11
0,9 0,01 3 0 100,72 86,28 14,44 100 0,72
0,9 0,01 5 0 103,92 86,28 17,64 100 3,92
0,8 0,01 5 0,2 105,55 86,28 19,26 100 5,55
0,8 0,02 6 0,3 113,64 95,23 18,41 100 13,64

Table 8.6: Numerical results for a with-profit policy with maturity guarantee and
minimum reteined - technical rate of 0% - maturity of 10 years.

α g δ(t) ω(t) BEL(t, Tn) BELg(t, Tn) FDB(t, Tn) BELY (t, Tn) MGO(t, Tn)
0 0 3 0 100,11 78,10 22,01 100 0,11

0,01 0 3 0 91,10 78,10 13,00 90,44 0,67
0,01 0,01 3 0 93,15 86,28 6,87 90,44 2,71
0,01 0,01 5 0 97,26 86,28 10,97 90,44 6,82
0,015 0,01 5 0,2 96,39 86,28 10,11 85,97 10,42
0,015 0,02 6 0,3 105,82 95,23 10,59 85,97 19,84

under the new IAS/IFRS principles for insurance contracts (to be approval).

We assume a specific stochastic dynamic for the segregated fund such that the

effective asset allocation of the fund can be taken into account. Then, we derive a

closed-form approach under the well-known Black and Scholes framework where

the volatility is computed as a function of the effective asset allocation of the

segregated fund. In summary our model consists in: (1) defining the functional

form of the typical payoff for the Italian policies; (2) assuming a specific stochas-

tic dynamic for the segregated fund to which the policies are linked; (3) assuming

a Black and Scholes pricing framework; (4) deriving the volatility to put in the

pricing model as a function of the effective asset allocation of the segregated fund;

(5) deriving the closed-form for best estimate of liabilities, minimum guaranteed

option and future discretionary benefits.

To achieve analytic tractability in our model, we have made certain simplifying

assumptions with respect to the interest rate crediting scheme. Moreover, we
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have neglected of mortality risk and surrender option.

It is important to note that thank to our pricing model in closed-form it is pos-

sible to quantify the BEL as a function of the contractual parameters and asset

allocation parameters of the segregated fund.

We have describe the model calibration procedure and provide some numerical

results for the value of Italian with-profit life contracts and related embedded op-

tions. The pricing behaviors of Italian participating policies have been explored

examining the impact of various parameters. We have found that the value of the

contract is affected by the guaranteed minimum interest rate and the crediting

scheme and that it is significantly influenced by the effective asset allocation of

the segregated fund.
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