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Change-Point Type Statistical Models

as Limiting Likelihood Ratios
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Abstract

Different change-point type models encountered in statistical in-
ference for stochastic processes give rise to different limiting likelihood
ratio processes. In a previous paper of one of the authors it was es-
tablished that one of these likelihood ratios, which is an exponential
functional of a two-sided Poisson process driven by some parameter,
can be approximated (for sufficiently small values of the parameter)
by another one, which is an exponential functional of a two-sided
Brownian motion. In this paper we consider yet another likelihood
ratio, which is the exponent of a two-sided compound Poisson process
driven by some parameter. We establish, that similarly to the Poisson
type one, the compound Poisson type likelihood ratio can be approx-
imated by the Brownian type one for sufficiently small values of the
parameter. We equally discuss the asymptotics for large values of the
parameter and illustrate the results by numerical simulations.
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1 Introduction

In this work we are interested by the asymptotic study of non-regular para-
metric statistical models encountered in statistical inference for stochastic
processes. An exhaustive exposition of the parameter estimation theory in
both regular and non-regular cases is given in the classical book [15] by Ibrag-
imov and Khasminskii. They have developed a general theory of estimation
based on the analysis of renormalized likelihood ratio. Their approach con-
sists in proving first that the renormalized likelihood ratio (with a properly
chosen renormalization rate) weekly converges to some non-degenerate limit:
the limiting likelihood ratio process. Thereafter, the properties of the es-
timators (namely their rate of convergence and limiting distributions) are
deduced. Finally, based on the estimators, one can also construct confidence
intervals, tests, and so on. Note that this approach also provides the conver-
gence of moments, allowing one to deduce equally the asymptotics of some
statistically important quantities, such as the mean squared errors of the
estimators.

It is well known that in the regular case the limiting likelihood ratio is
given by the LAN property and is the same for different models (the renor-
malization rate being usually 1/

√
n ). So, the classical estimators — the

maximum likelihood estimator and the Bayesian estimators — are consis-
tent, asymptotically normal (usually with rate 1/

√
n ) and asymptotically

efficient.

In non-regular cases the situation essentially changes: the renormalization
rate is usually better (for example, 1/n in change-point type models), but the
limiting likelihood ratio can be different in different models. So, the classical
estimators are still consistent, but may have different limiting distributions
(though with a better rate) and, in general, only the Bayesian estimators are
asymptotically efficient.

In [7] a relation between two different limiting likelihood ratios arising
in change-point type models was established by one of the authors. More
precisely, it was shown that the first one, which is an exponential functional of
a two-sided Poisson process driven by some parameter, can be approximated
(for sufficiently small values of the parameter) by the second one, defined
by

Z0(x) = exp

{

W (x) − 1

2
|x|
}

, x ∈ R, (1)

where W is a standard two-sided Brownian motion. In this paper we consider
yet another limiting likelihood ratio process arising in change-point type
models and show that it is related to Z0 in a similar way.
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The process Zγ,f

We introduce the random process Zγ,f on R as the exponent of a two-sided
compound Poisson process given by

lnZγ,f (x) =















∑Π+(x)
k=1 ln

f(ε+
k +γ)

f(ε+
k )

, if x > 0,

∑Π−(−x)
k=1 ln

f(ε−k −γ)

f(ε−k )
, if x 6 0,

(2)

where γ > 0, f is a strictly positive density of some random variable ε with
mean 0 and variance 1, Π+ and Π− are two independent Poisson processes
of intensity 1 on R+, ε±k are independent random variables with density f
which are also independent of Π±, and we use the convention

∑0
k=1 ak = 0.

We equally introduce the random variables

ζγ,f =

∫

R
xZγ,f (x) dx

∫

R
Zγ,f (x) dx

,

ξ−γ,f = inf
{

z : Zγ,f (z) = sup
x∈R

Zγ,f (x)
}

,

ξ+
γ,f = sup

{

z : Zγ,f (z) = sup
x∈R

Zγ,f (x)
}

,

ξα
γ,f = α ξ−γ,f + (1 − α) ξ+

γ,f , α ∈ [0, 1],

(3)

related to this process, as well as their second moments Bγ,f = Eζ2
γ,f and

Mα
γ,f = E(ξα

γ,f )
2.

An important particular case of this process is the one where the density
f is Gaussian, that is, ε ∼ N (0, 1). In this case we will omit the index f and
write Zγ instead of Zγ,f , ξ

α
γ instead of ξα

γ,f , and so on. Note that since

ln
f(ε± γ)

f(ε)
= ∓γε− γ2

2
∼ N (−γ2/2, γ2),

the process Zγ is symmetric and has Gaussian jumps.

The process Zγ,f , up to a linear time change, arises in some non-regular,
namely change-point type, statistical models as the limiting likelihood ratio
process, and the variables ζγ,f and ξα

γ,f as the limiting distributions of the
Bayesian estimators and of the appropriately chosen maximum likelihood
estimator, respectively. The maximum likelihood estimator being not unique
in the underlying models, the appropriate choice here is a linear combination
with weights α and 1− α of its minimal and maximal values. Moreover, the
quantities Bγ,f andMα

γ,f are the limiting mean squared errors (sometimes also

3



called limiting variances) of these estimators and, the Bayesian estimators
being asymptotically efficient, the ratio Eα

γ,f = Bγ,f/M
α
γ,f is the asymptotic

relative efficiency of this maximum likelihood estimator.

The examples include the two-phase regression model and the threshold
autoregressive (TAR) model. The linear case of the former was studied by
Koul and Qian in [16], while the non-linear one was investigated by Ciu-
perca in [6]. Concerning the TAR model, the first results were obtained by
K.S. Chan in [4], while a more recent study was performed by N.H. Chan and
Kutoyants in [5]. Note however, that the estimator studied in [4] is the least
squares estimator (which is, in the Gaussian case, equivalent to the maximum
likelihood estimator), while the model considered in [5] is the Gaussian TAR
model. So, only the processes Zγ are known to arise as limiting likelihood
ratios in the TAR model. Note also that in both models, the parameter γ of
the limiting likelihood ratio is related to the jump size of the model.

The process Z0

On the other hand, many change-point type statistical models encountered
in various fields of statistical inference for stochastic processes rather have
as limiting likelihood ratio process, up to a linear time change, the process
Z0 defined by (1). In this case, the limiting distributions of the Bayesian
estimators and of the maximum likelihood estimator are given by

ζ0 =

∫

R
xZ0(x) dx

∫

R
Z0(x) dx

and ξ0 = argsup
x∈R

Z0(x), (4)

respectively, while the limiting mean squared errors of these estimators are
B0 = Eζ2

0 and M0 = Eξ2
0 . The Bayesian estimators are still asymptotically

efficient, and the asymptotic relative efficiency of the maximum likelihood
estimator is E0 = B0/M0.

A well-known example is the model of a discontinuous signal in a white
Gaussian noise exhaustively studied by Ibragimov and Khasminskii in [14]
and [15, Chapter 7.2], but one can also cite change-point type models of
dynamical systems with small noise considered by Kutoyants in [18] and [19,
Chapter 5], those of ergodic diffusion processes examined by Kutoyants in
[20, Chapter 3], a change-point type model of delay equations analyzed by
Küchler and Kutoyants in [17], a model of a discontinuous periodic signal
in a time inhomogeneous diffusion investigated by Höpfner and Kutoyants
in [13], and so on.

Let us also note that Terent’yev in [22] determined the Laplace trans-
form of P

(

|ξ0| > t
)

and calculated the constant M0 = 26. Moreover, the
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explicit expression of the density of ξ0 was later successively provided by
Bhattacharya and Brockwell in [2], by Yao in [23] and by Fujii in [10]. Re-
garding the constant B0, Ibragimov and Khasminskii in [15, Chapter 7.3]
showed by means of numerical simulation that B0 = 19.5 ± 0.5, and so
E0 = 0.73 ± 0.03. Later in [12], Golubev expressed B0 in terms of the sec-
ond derivative (with respect to a parameter) of an improper integral of a
composite function of modified Hankel and Bessel functions. Finally in [21],
Rubin and Song obtained the exact values B0 = 16 ζ(3) and E0 = 8 ζ(3)/13,
where ζ is Riemann’s zeta function defined by ζ(s) =

∑∞
n=1 1/ns.

The results of the present paper

In this paper we establish that the limiting likelihood ratio processes Zγ,f

and Z0 are related. More precisely, under some regularity assumptions on f ,
we show that as γ → 0, the process Zγ,f (y/Iγ

2), y ∈ R, (where I is the Fisher
information related to f) converges weakly in the space D0(−∞,+∞) (the
Skorohod space of functions on R without discontinuities of the second kind
and vanishing at infinity) to the process Z0. Hence, the random variables
Iγ2ζγ,f and Iγ2ξα

γ,f converge weakly to the random variables ζ0 and ξ0, respec-
tively. We show equally that the convergence of moments of these random
variables holds and so, in particular, I2γ4Bγ,f → 16 ζ(3), I2γ4Mα

γ,f → 26
and Eα

γ,f → 8 ζ(3)/13. Besides their theoretical interest, these results have
also some practical implications. For example, they allow to construct tests
and confidence intervals on the base of the distributions of ζ0 and ξ0 (rather
than on the base of those of ζγ,f and ξα

γ,f , which depend on the density f and
are not known explicitly) in models having the process Zγ,f with a small γ
as a limiting likelihood ratio. Also, the limiting mean squared errors of the
estimators and the asymptotic relative efficiency of the maximum likelihood
estimator can be approximated as

Bγ,f ≈ 16 ζ(3)

I2γ4
, Mα

γ,f ≈ 26

I2γ4
and Eα

γ,f ≈ 8 ζ(3)

13

in such models.

These are the main results of the present paper, and they are presented
in Section 2, where we also briefly discuss the second possible asymptotics
γ → +∞ and present some numerical simulations of the quantities Bγ, M

α
γ

and Eα
γ for γ ∈ ]0,∞[. Finally, the proofs of the necessary lemmas are carried

out in Section 3.

Concluding the introduction let us note that a preliminary exposition (in
the particular Gaussian case) of the results of the present paper can be found
in [8] and [9].
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2 Asymptotics of Zγ,f

Let γ > 0, and let f be a strictly positive density of some random variable ε
with mean 0 and variance 1.

Regularity assumptions

We will always suppose that
√
f is continuously differentiable in L2, that is,

there exists ψ ∈ L2 satisfying
∫

R

(√

f(x+ h)−
√

f(x)− hψ(x)
)2
dx = o(h2)

and
∫

R

(

ψ(x+ h) − ψ(x)
)2
dx = o(1), as well as that ‖ψ‖ > 0.

Note that under this assumptions, the model of i.i.d. observations with
density f(x + θ) is, in particular, LAN at θ = 0 with Fisher information
I = 4 ‖ψ‖2 = 4

∫

R
ψ2(x) dx

(

see, for example, [15, Chapter 2.1]
)

and so,
using characteristic functions, we have

lim
n→∞

(

Eeit ln
f(ε+u/

√

n)
f(ε)

)n

= ei(− Iu2

2 )t− 1
2
Iu2t2

and, more generally,

lim
γ→0

(

Eeit ln
f(ε+γ)

f(ε)

)1/γ2

= ei(− I
2)t− 1

2
It2 (5)

for all t ∈ R.

Note also, that only the convergence (5) will be needed in our consider-
ations. So, one can rather assume it directly, or make any other regularity
assumptions sufficient for it as, for example, Hájek’s conditions: f is differ-

entiable and the Fisher information I =
∫

R
f−1(x)

(

f ′(x)
)2
dx is finite and

strictly positive
(

see, for example, [15, Chapter 2.2]
)

.

Note finally, that in the Gaussian case the regularity assumptions clearly
hold and we have I = 1.

The asymptotics γ → 0

Let us consider the process Xγ,f (y) = Zγ,f (y/Iγ
2), y ∈ R, where Zγ,f is

defined by (2). Note that

∫

R
y Xγ,f (y) dy

∫

R
Xγ,f (y) dy

= Iγ2ζγ,f ,

inf
{

z : Xγ,f (z) = sup
y∈R

Xγ,f (y)
}

= Iγ2ξ−γ,f

6



and

sup
{

z : Xγ,f (z) = sup
y∈R

Xγ,f (y)
}

= Iγ2ξ+
γ,f ,

where the random variables ζγ,f and ξ±γ,f are defined by (3). Remind also
the process Z0 on R defined by (1) and the random variables ζ0 and ξ0
defined by (4). Recall finally the quantities Bγ,f = Eζ2

γ,f , M
α
γ,f = E(ξα

γ,f )
2,

Eα
γ,f = Bγ,f/M

α
γ,f , as well as B0 = Eζ2

0 = 16 ζ(3), M0 = Eξ2
0 = 26 and

E0 = B0/M0 = 8 ζ(3)/13. Now we can state the main result of the present
paper.

Theorem 1 The process Xγ,f converges weakly in the space D0(−∞,+∞) to

the process Z0 as γ → 0. In particular, the random variable Iγ2ζγ,f converges

weakly to the random variable ζ0 and, for any α ∈ [0, 1], the random variable

Iγ2ξα
γ,f converges weakly to the random variable ξ0. Moreover, for any k > 0

we have

Ikγ2k Eζk
γ,f → Eζk

0 and Ikγ2k E(ξα
γ,f )

k → Eξk
0 .

In particular, I2γ4Bγ,f → 16 ζ(3), I2γ4Mα
γ,f → 26 and Eα

γ,f → 8 ζ(3)/13.

The results concerning the random variable ζγ,f are direct consequence
of [15, Theorem 1.10.2] and the following three lemmas.

Lemma 2 The finite-dimensional distributions of the process Xγ,f converge

to those of Z0 as γ → 0.

Lemma 3 For any C > 1/4 we have

E
∣

∣

∣
X

1/2
γ,f (y1) −X

1/2
γ,f (y2)

∣

∣

∣

2

6 C |y1 − y2|

for all sufficiently small γ and all y1, y2 ∈ R.

Lemma 4 For any c ∈ ] 0 , 1/8 [ we have

EX
1/2
γ,f (y) 6 exp

(

−c |y|
)

for all sufficiently small γ and all y ∈ R.

Note that these lemmas are not sufficient to establish the weak conver-
gence of the process Xγ,f in the space D0(−∞,+∞) and the results con-
cerning the random variable ξα

γ,f . However, the increments of the process
lnXγ,f being independent, the convergence of its restrictions (and hence of
those of Xγ,f ) on finite intervals [A,B] ⊂ R

(

that is, convergence in the
Skorohod space D[A,B] of functions on [A,B] without discontinuities of the
second kind

)

follows from [11, Theorem 6.5.5], Lemma 2 and the following
lemma.

7



Lemma 5 For any δ > 0 we have

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣lnXγ,f (y1) − lnXγ,f (y2)
∣

∣ > δ
}

= 0.

Now, Theorem 1 follows from the following estimate on the tails of the
process Xγ,f by standard argument

(

see, for example, [15]
)

.

Lemma 6 For any b ∈ ] 0 , 1/12 [ we have

P

{

sup
|y|>A

Xγ,f (y) > e−bA

}

6 4 e−bA

for all sufficiently small γ and all A > 0.

The proofs of all these lemmas will be given in Section 3.

The asymptotics γ → +∞

Now let us discuss the second possible asymptotics γ → +∞. It can be shown
that in this case, the process Zγ,f converges weakly in the space D0(−∞,+∞)
to the process Z∞(x) = 1{−η<x<τ}, x ∈ R, where η and τ are two independent
exponential random variables with parameter 1. So, the random variables
ζγ,f , ξ

−
γ,f , ξ

+
γ,f and ξα

γ,f converge weakly to the random variables

ζ∞ =

∫

R
xZ∞(x) dx

∫

R
Z∞(x) dx

=
τ − η

2
,

ξ−∞ = inf
{

z : Z∞(z) = sup
x∈R

Z∞(x)
}

= −η,

ξ+
∞ = sup

{

z : Z∞(z) = sup
x∈R

Z∞(x)
}

= τ

and

ξα
∞ = α ξ−∞ + (1 − α) ξ+

∞ = (1 − α) τ − α η,

respectively. It can be equally shown that, moreover, for any k > 0 we
have

Eζk
γ,f → Eζk

∞ and E(ξα
γ,f )

k → E(ξα
∞)k.

8



In particular, denoting B∞ = Eζ2
∞, Mα

∞ = E(ξα
∞)2 and Eα

∞ = B∞/M
α
∞, we

finally have

Bγ,f → B∞ = E
(τ − η

2

)2

=
1

2
,

Mα
γ,f →Mα

∞ = E
(

(1 − α) τ − α η
)2

= 6

(

α− 1

2

)2

+
1

2
(6)

and

Eα
γ,f → Eα

∞ =
1

12
(

α− 1
2

)2
+ 1

. (7)

Let us note that these convergences are natural, since the process Z∞ can
be considered as a particular case of the process Zγ,f with γ = +∞ under
natural conventions f(ε±∞) = 0 and ln 0 = −∞.

Note also, that Z∞ is the limiting likelihood ratio process in the problem
of estimating the parameter θ by i.i.d. uniform observations on [θ, θ+1]. So,
in this problem, the variables ζ∞ and ξα

∞ are the limiting distributions of the
Bayesian estimators and of the appropriately chosen maximum likelihood
estimator, respectively, while B∞ and Mα

∞ are the limiting mean squared
errors of these estimators and, the Bayesian estimators being asymptotically
efficient, Eα

∞ is the asymptotic relative efficiency of this maximum likelihood
estimator.

Finally observe, that the formulae (6) and (7) clearly imply that in the
latter problem (as well as in any problem having Z∞ as limiting likelihood
ratio) the best choice of the maximum likelihood estimator is α = 1/2, and
that the so chosen maximum likelihood estimator is asymptotically efficient.
This choice was also suggested for TAR model (which has limiting likelihood
ratio Zγ) by Chan and Kutoyants in [5]. For large values of γ this suggestion
is confirmed by our asymptotic results. However, we see that for small values
of γ the choice of α will not be so important, since the limits in Theorem 1
do not depend on α.

Numerical simulations

Here we present some numerical simulations (in the Gaussian case) of the
quantities Bγ, M

α
γ and Eα

γ for γ ∈ ]0,∞[. Besides giving approximate values
of these quantities, the simulation results illustrate both the asymptotics

Bγ =
B0

γ4
+ o(γ−4), Mα

γ =
M0

γ4
+ o(γ−4) and Eα

γ → E0 as γ → 0,

9



with B0 = 16 ζ(3) ≈ 19.2329, M0 = 26 and E0 = 8 ζ(3)/13 ≈ 0.7397, and

Bγ → B∞, Mα
γ →Mα

∞ and Eα
γ → Eα

∞ as γ → ∞,

with B∞ = 0.5, Mα
∞ = 6 (α− 0.5)2 +0.5 and Eα

∞ = 1/
(

12 (α− 0.5)2 +1
)

.

First, we simulate the events x+
1 , x

+
2 , . . . of the Poisson process Π+ and

the events x−1 , x
−
2 , . . . of the Poisson process Π−

(

both of intensity 1
)

, as
well as the partial sums S+

1 , S
+
2 , . . . of the i.i.d. N (0, 1) sequence ε+

1 , ε
+
2 , . . .

and the partial sums S−
1 , S

−
2 , . . . of the i.i.d. N (0, 1) sequence ε−1 , ε

−
2 , . . . . For

convenience we also put x+
0 = x−0 = S+

0 = S−
0 = 0.

Then we calculate

ζγ =

∫

R
xZγ(x) dx

∫

R
Zγ(x) dx

=

∞
∑

i=0

1
2
eS+

i

(

(x+
i+1)

2 − (x+
i )

2)−
∞
∑

i=0

1
2
eS−

i

(

(x−i+1)
2 − (x−i )

2)

∞
∑

i=0

eS+
i (x+

i+1 − x+
i ) +

∞
∑

i=0

eS−

i (x−i+1 − x−i )
,

ξ−γ = inf
{

z : Zγ(z) = sup
x∈R

Zγ(x)
}

=

{

x+
k , if S+

k > S−
ℓ ,

−x−ℓ+1, otherwise,

ξ+
γ = sup

{

z : Zγ(z) = sup
x∈R

Zγ(x)
}

=

{

x+
k+1, if S+

k > S−
ℓ ,

−x−ℓ , otherwise,

and

ξα
γ = α ξ−γ + (1 − α) ξ+

γ ,

where
k = argmax

i>0
S+

i and ℓ = argmax
i>0

S−
i ,

and we use the values 1/2, 1/4 and 0 for α. Note that in this Gaussian case
(due to the symmetry of the process Zγ) the random variable ξ1−α

γ has the
same law as the variable −ξα

γ , that’s why we use for α only values less or
equal than 1/2.

Finally, repeating these simulations 107 times (for each value of γ), we
approximate Bγ = Eζ2

γ and Mα
γ = E(ξα

γ )2 by the empirical second moments,
and Eα

γ = Bγ/M
α
γ by their ratio.

The results of the numerical simulations are presented in Figures 1–3.
The γ → 0 asymptotics of the limiting mean squared errors is illustrated

10



in Figure 1, where we rather plotted the functions γ4Bγ and γ4Mα
γ , making

apparent the constants B0 ≈ 19.2329 and M0 = 26. One can observe here
that the choice α = 1/2 is the best one, though its advantage diminishes as γ
approaches 0 and seems negligible for γ < 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100

γ4M0
γ

γ4M1/4
γ

γ4M1/2
γ

γ4Bγ

Figure 1: γ4Bγ and γ4Mα
γ (γ → 0 asymptotics)

In Figure 2 we illustrate the γ → ∞ asymptotics of the limiting mean
squared errors by plotting the functions Bγ and Mα

γ themselves. Here the
advantage of the choice α = 1/2 is obvious, and one can observe that for
γ > 5 this choice makes negligible the loss of efficiency resulting from the use
of the maximum likelihood estimator instead of the asymptotically efficient
Bayesian estimators.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M0
γ

M1/4
γ

M1/2
γ

Bγ

Figure 2: Bγ and Mα
γ (γ → ∞ asymptotics)

Finally, in Figure 3 we illustrate the behavior both at 0 and at ∞ of
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the asymptotic relative efficiency of the maximum likelihood estimators by
plotting the functions Eα

γ . All the observations made above can be once
more noticed in this figure. Note also that as γ increases from 0 to ∞, the
asymptotic relative efficiency seems first to decrease from E0 ≈ 0.7397 for
all the maximum likelihood estimators, before increasing back to Eα

∞ for the
maximum likelihood estimators with α close to the optimal value 1/2.
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Figure 3: Eα
γ (both asymptotics)

3 Proofs of the lemmas

For the sake of clarity, for each lemma we will first give the proof in the
particular Gaussian case (in which it is more explicit) and then explain how
it can be extended to the general one.

Proof of Lemma 2

Note that the restrictions of the process lnXγ(y) = lnZγ(y/γ
2), y ∈ R, (as

well as those of the process lnZ0) on R+ and on R− are mutually indepen-
dent processes with stationary and independent increments. So, to obtain
the convergence of all the finite-dimensional distributions, it is sufficient to
show the convergence of one-dimensional distributions only, that is, the weak
convergence of lnXγ(y) to

lnZ0(y) = W (y) − |y|
2

∼ N
(

−|y|
2
, |y|
)

12



for all y ∈ R. Moreover, these processes being symmetric, it is sufficient to
consider y ∈ R+ only.

The characteristic function ϕγ(t) of lnXγ(y) is

ϕγ(t) = E eit ln Xγ(y) = E e−itγ
PΠ+(y/γ2)

k=1 ε+
k −it γ2

2
Π+(y/γ2)

= EE
(

e−itγ
PΠ+(y/γ2)

k=1 ε+
k −it γ2

2
Π+(y/γ2)

∣

∣

∣ FΠ+

)

= E

(

e−it γ2

2
Π+(y/γ2)

Π+(y/γ2)
∏

k=1

E e−itγε+
k

)

= E e−it γ2

2
Π+(y/γ2)− t2γ2

2
Π+(y/γ2) = E e−

γ2

2
(it+t2)Π+(y/γ2)

where we have denoted FΠ+ the σ-algebra related to the Poisson process Π+,

used the independence of ε+
k and Π+ and recalled that E eitε = e−t2/2.

Then, noting that Π+(y/γ2) is a Poisson random variable of parameter
y/γ2 with moment generating function E etΠ+(y/γ2) = exp

(

y
γ2 (e

t − 1)
)

, we
get

lnϕγ(t) =
y

γ2

(

e−
γ2

2
(it+t2) − 1

)

=
y

γ2

(

−γ
2

2
(it+ t2) + o(γ2)

)

= −y
2
(it+ t2) + o(1) → −y

2
(it+ t2) = lnE eit ln Z0(y)

as γ → 0 and so, in the Gaussian case Lemma 2 is proved.

In the general case, proceeding similarly we get

ϕγ(t) = E eit ln Xγ,f (y) = E e
it

PΠ+(y/Iγ2)
k=1 ln

f(ε+
k

+γ)

f(ε+
k

)

= E

(

(

E eit ln
f(ε+γ)

f(ε)

)Π+(y/Iγ2)
)

→ ei(− y
2 )t− 1

2
yt2 = E eit ln Z0(y)

by dominated convergence theorem, since

(

E eit ln
f(ε+γ)

f(ε)

)1/γ2

→ ei(− I
2)t− 1

2
It2

by (5), and γ2 Π+(y/Iγ2) converges clearly to y/I in L2 (and hence in prob-
ability).

13



Proof of Lemma 4

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after).
For y > 0 we have

EX1/2
γ (y) = EE

(

e−
γ
2

PΠ+(y/γ2)
k=1 ε+

k − γ2

4
Π+(y/γ2)

∣

∣

∣
FΠ+

)

= E e−
γ2

4
Π+(y/γ2)+ γ2

8
Π+(y/γ2) = E e−

γ2

8
Π+(y/γ2)

= exp

(

y

γ2

(

e−
γ2

8 − 1
)

)

.

The process Xγ being symmetric, we have

EX1/2
γ (y) = exp

( |y|
γ2

(

e−
γ2

8 − 1
)

)

(8)

for all y ∈ R and, since

1

γ2

(

e−
γ2

8 − 1
)

=
1

γ2

(

−γ
2

8
+ o(γ2)

)

→ −1

8

as γ → 0, for any c ∈ ] 0 , 1/8 [ we have EX
1/2
γ (y) 6 exp

(

−c |y|
)

for all
sufficiently small γ and all y ∈ R. So, in the Gaussian case Lemma 4 is
proved.

In the general case, equality (8) becomes EX
1/2
γ,f (y) = exp

(

|y| (Iγ−1)/Iγ2
)

with

Iγ = E

√

f(ε+ γ)

f(ε)
6

√

E
f(ε+ γ)

f(ε)
= 1.

Recall the convergence (5) of characteristic functions and note that I
1/γ2

γ are
the corresponding moment generating functions at point 1/2. The conver-
gence of these moment generating functions (at any point smaller than 1)
follows from the fact that for all γ they are equal 1 at point 1 (which pro-

vides uniform integrability). Thus we have I
1/γ2

γ → e−I/8, which implies
(ln Iγ)/γ

2 → −I/8, and so (Iγ − 1)/Iγ2 → −1/8.

Proof of Lemma 3

First we consider the case y1, y2 ∈ R+ (say y1 > y2). Using (8) and taking
into account the stationarity and the independence of the increments of the

14



process lnXγ on R+, we can write

E
∣

∣X1/2
γ (y1) −X1/2

γ (y2)
∣

∣

2
= EXγ(y1) + EXγ(y2) − 2EX1/2

γ (y1)X
1/2
γ (y2)

= 2 − 2EXγ(y2)E
X

1/2
γ (y1)

X
1/2
γ (y2)

= 2 − 2EX1/2
γ

(

|y1 − y2|
)

= 2 − 2 exp

( |y1 − y2|
γ2

(

e−
γ2

8 − 1
)

)

6 −2
|y1 − y2|

γ2

(

e−
γ2

8 − 1
)

6
1

4
|y1 − y2| .

The process Xγ being symmetric, we have the same result for the case
y1, y2 ∈ R−.

Finally, if y1y2 6 0 (say y2 6 0 6 y1), we have

E
∣

∣X1/2
γ (y1) −X1/2

γ (y2)
∣

∣

2
= 2 − 2EX1/2

γ (y1)EX
1/2
γ (y2)

= 2 − 2 exp

( |y1|
γ2

(

e−
γ2

8 − 1
)

+
|y2|
γ2

(

e−
γ2

8 − 1
)

)

= 2 − 2 exp

( |y1 − y2|
γ2

(

e−
γ2

8 − 1
)

)

6
1

4
|y1 − y2| ,

and so, in the Gaussian case we obtain even more than the assertion of
Lemma 3.

In the general case, proceeding similarly we get

E
∣

∣

∣
X

1/2
γ,f (y1) −X

1/2
γ,f (y2)

∣

∣

∣

2

6 −2
|y1 − y2|
Iγ2

(Iγ − 1)

and, since −2(Iγ − 1)/Iγ2 → 1/4, the proof is concluded.

Proof of Lemma 5

First let y1, y2 ∈ R+ (say y1 > y2) such that ∆ = |y1 − y2| < h. Then, noting
that conditionally to FΠ+ the random variable

lnXγ(∆) = −γ
Π+(∆/γ2)
∑

k=1

ε+
k − γ2

2
Π+(∆/γ2)

15



is Gaussian with mean −γ2

2
Π+(∆/γ2) and variance γ2Π+(∆/γ2), we get

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

6
1

δ2
E
∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣

2

=
1

δ2
E
∣

∣lnXγ(∆)
∣

∣

2

=
1

δ2
EE

(

(

lnXγ(∆)
)2
∣

∣

∣ FΠ+

)

=
1

δ2
E

(

γ2Π+(∆/γ2) +
γ4

4

(

Π+(∆/γ2)
)2
)

=
1

δ2

(

∆ +
γ4

4

(

∆

γ2
+

∆2

γ4

)

)

=
1

δ2

(

(1 + γ2/4)∆ + ∆2/4
)

<
1

δ2

(

β(γ)h+ h2/4
)

where β(γ) = 1 + γ2/4 → 1 as γ → 0. So, we have

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

6 lim
γ→0

1

δ2

(

β(γ)h+ h2/4
)

=
1

δ2

(

h+
h2

4

)

,

and hence

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

= 0,

where the supremum is taken only over y1, y2 ∈ R+.

The process Xγ being symmetric, we have the same conclusion with the
supremum taken over y1, y2 ∈ R−.

Finally, for y1y2 6 0 (say y2 6 0 6 y1) such that |y1 − y2| < h, using the
elementary inequality (a− b)2 6 2(a2 + b2) we get

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

6
1

δ2
E
∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣

2

6
2

δ2

(

E
∣

∣lnXγ(y1)
∣

∣

2
+ E

∣

∣

∣
lnXγ

(

|y2|
)

∣

∣

∣

2
)

=
2

δ2

(

β(γ)y1 + y2
1/4 + β(γ) |y2| + |y2|2 /4

)

<
2

δ2

(

β(γ)h+ h2/4
)

,
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which again yields the desired conclusion. So, in the Gaussian case Lemma 5
is proved.

Another way to prove this lemma, is to notice first that the weak con-
vergence of lnXγ(y) to lnZ0(y) (established in Lemma 2) is uniform with
respect to y ∈ K for any compact K ⊂ R. Indeed, the uniformity of the
convergence of the characteristic functions in the proof of Lemma 2 is obvi-
ous, and so one can apply, for example, Theorem 7 from Appendix I of [15],
whose remaining conditions are easily checked.

Second, using this uniformity we obtain

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

= lim
γ→0

sup
|y|<h

P
{

∣

∣lnXγ(y)
∣

∣ > δ
}

= sup
|y|<h

P
{

∣

∣lnZ0(y)
∣

∣ > δ
}

where the supremum is taken over y1, y2 ∈ R such that y1y2 > 0, and

lim
γ→0

sup
|y1−y2|<h

P
{

∣

∣lnXγ(y1) − lnXγ(y2)
∣

∣ > δ
}

6 2 sup
|y|<h

P
{

∣

∣lnZ0(y)
∣

∣ >
δ

2

}

where the supremum is taken over y1, y2 ∈ R such that y1y2 6 0.

Finally, reminding that lnZ0(y) ∼ N
(

− |y| /2 , |y|
)

and denoting Φ the
distribution function of the standard Gaussian law, we get

P
{

∣

∣lnZ0(y)
∣

∣ > δ
}

= Φ

(

− δ
√

|y|
+

√

|y|
2

)

+ 1 − Φ

(

δ
√

|y|
+

√

|y|
2

)

6 Φ

(

− δ√
h

+

√
h

2

)

+ 1 − Φ

(

δ√
h

)

for |y| < h. The last expression does not depend on y and clearly converges
to 0 as h→ 0, so the assertion of the lemma follows.

It remains to observe that this second proof does not use any particularity
of the process Xγ and, hence, is trivially extendable to the general case.
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Proof of Lemma 6

Taking into account the symmetry of the process lnXγ, as well as the sta-
tionarity and the independence of its increments on R+, we obtain

P

{

sup
|y|>A

Xγ(y) > e−bA

}

6 2P

{

sup
y>A

Xγ(y) > e−bA

}

6 2 e bA/2 E sup
y>A

X1/2
γ (y)

= 2 e bA/2 EX1/2
γ (A) E sup

y>A

X
1/2
γ (y)

X
1/2
γ (A)

= 2 e bA/2 EX1/2
γ (A) E sup

z>0
X1/2

γ (z).

(9)

In order to estimate the last factor we write

E sup
z>0

X1/2
γ (z) = E exp





1

2
sup
z>0

(

−γ
Π+(z/γ2)
∑

k=1

ε+
k − γ2

2
Π+(z/γ2)

)





= E exp

(

1

2
sup
n∈N

(

−γ
n
∑

k=1

ε+
k − nγ2

2

)

)

.

Now, let us observe that the random walk Sn = −∑n
k=1 ε

+
k , n ∈ N, has the

same law as the restriction on N of a standard Brownian motion W . So,

E sup
z>0

X1/2
γ (z) = E exp

(

1

2
sup
n∈N

(

γW (n) − nγ2/2
)

)

= E exp

(

1

2
sup
n∈N

(

W (nγ2) − nγ2/2
)

)

6 E exp

(

1

2
sup
t>0

(

W (t) − t/2
)

)

= E exp

(

1

2
M

)

with an evident notation. It is known that the random variable M is expo-
nential of parameter 1

(

see, for example, [3]
)

and hence, using its moment
generating function E etM = (1 − t)−1, we get

E sup
z>0

X1/2
γ (z) 6 2. (10)

Finally, taking b ∈ ] 0 , 1/12 [ we have 3b/2 ∈ ] 0 , 1/8 [ and, combining (9),
(10) and using Lemma 4, we finally obtain

P

{

sup
|y|>A

Xγ(y) > e−bA

}

6 4 e bA/2 exp
(

−3b

2
A
)

= 4 e−bA
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for all sufficiently small γ and all A > 0, which concludes the proof in the
Gaussian case.

In the general case the proof is almost the same. Note that we have no
longer the symmetry of the process Xγ,f , so we need to consider the cases
y > A and y < −A separately. Besides that, the only difference is in the
derivation of the bound (10). Here we get

E sup
z>0

X
1/2
γ,f (z) = E exp

(

1

2
M

)

,

where M is the supremum of the random walk Sn =
∑n

k=1Xk, n ∈ N, with

Xk = ln
f(ε+

k +γ)

f(ε+
k )

. Note that

E eX1 = E
f(ε+ γ)

f(ε)
= 1,

and so, the cummulant generating function k(t) = ln(E etX1) of X1 admits
a strictly positive zero t0 = 1. Hence, by the well-known Cramér-Lundberg
bound on the tail probabilities of M

(

see, for example, Theorem 5.1 from
Chapter XIII of [1]

)

, we have

P(M > x) 6 e−t0 x = e−x

for all x > 0. Finally, denoting F the distribution function of M and using
this bound we obtain

E exp

(

1

2
M

)

=

∫

R

ex/2 dF (x)

=
[

ex/2
(

F (x) − 1
)

]+∞

−∞
− 1

2

∫

R

ex/2
(

F (x) − 1
)

dx

=
1

2

∫

R−

ex/2 dx+
1

2

∫

R+

ex/2
(

1 − F (x)
)

dx

6 1 +
1

2

∫

R+

e−x/2 dx = 2,

which concludes the proof.
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