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Convolution operators defined by singular
measures on the motion group

Luca Brandolini Giacomo Gigante
Sundaram Thangavelu Giancarlo Travaglini
Abstract

This paper contains an LP improving result for convolution oper-
ators defined by singular measures associated to hypersurfaces on the
motion group. This needs only mild geometric properties of the sur-
faces, and it extends earlier results on Radon type transforms on R".
The proof relies on the harmonic analysis on the motion group.

1 Introduction
The following result has been proved in [7].

Theorem 1 Let I' be a convexr compact curve in the plane and let v be the
arc-length measure of I'. We identify 6 € [0,2n] with ¢ € S* (the unit cir-
cle). Let g be the rotated measure, i.e. [oo f(x)dye (z) = [ [ () dy ().
Consider the operator T defined by

Tf(z,0) = (f *g2 ) (z) ,

where x € R? and *p2denotes the convolution in R%. Then

T fll smexsty < cllfllpsreey -

The proof of this theorem relies on an estimate for the average decay
of the Fourier transform 7 proved by A.N. Podkorytov in [5] (see also [3]),
which has been extended to several variables in [2]. The following statement
is different from the one in [2], but it can be proved by a mild variation of
the original argument.



Theorem 2 Let I" be a compact convex submanifold of codimension 1 in R"
(i.e. T' can be seen as the graph of a convex function defined in a convex
domain in R"™'). Let v = xo where o is the surface measure on ' and x is
a smooth cutoff function supported in the interior of I'. Then

/ 7 (Rw)[* dw < eR~"Y,
Sn—1

where w is the normalized measure on the unit sphere S™1. Moreover the
constant ¢ depends only on x and the diameter of T".

The above theorem easily implies the following extension of Theorem 1
(see [1]). For k € SO(n) and v a measure on R", let v, be defined by

Jan fdve = Jgu f(ky)dy (y), so that 5 (€) = F(k7'E).

Theorem 3 Let I' be a compact convexr submanifold of codimension 1 in R™
and let v = xo where o is the surface measure on I' and x is a smooth cutoff
function supported in the interior of I'. Consider the operator T defined by

Tf (:E,k‘) = (f *Rn ’Vk) (x) )

where x € R™, k € SO(n) and *gndenotes the convolution in R™. Then

||Tf||L"+1(]Rn><SO(n)) <c ||f||L<n+1>/n(Rn) :

The operator T" in Theorem 3 can be seen as a convolution operator on the
motion group M, which is R" x SO(n) equipped with the group product
(z,k)(y,h) = (x + ky,kh) and unit (0,e). Indeed the convolution of two
functions F' and G on M, is defined by

(F*p, G) (2, k) = / F (:B — kh™ty, kh_l) G (y, h) dydh,

n

where dh is the Haar measure on SO(n).
Note that if F'(x,k) = f(x) and p denotes the measure on M,, defined
by
G(x,k)dp = G (x, k) dy (x) dk

My, My



we have

Fxyop(z, k) = / F(z—kh™ 'y, kh™") du(y, h) (1)

My

— [ F ety () dn

n

= [ f(z—Fky)dy(y)dh

My

=7 (@ = ky) dy (y) = (f *en ) (@) -

The above family {7} of hypersurfaces in R™ turns out to be a manifold
in R” x SO(n). Indeed for any kg € SO(n) the coset {(z,ko):x € R"}
contains the n — 1 dimensional manifold I'y,, i.e. the manifold I" rotated by
ko. The union of the manifolds I'y, is a hypersurface X in R" x SO(n).

When n = 2, the I'’s are convex curves and their union can be seen as
a 2-dimensional surface in R? x S': the picture shows this surface in the
particular case ' (t) = (¢,t*> + 1), together with the plane § = 7:

Y
““““lllllll=

In this paper we want to replace the above manifold X with a more
general manifold Y in R™ x SO(n), so that the action of I" as a convolution
operator on R" is averaged not only on rotations, but on a wider family of
transformations. In order to deal with this more general setting it is natural
to work in the Euclidean motion group M, rather than in R™ x SO(n) and
take advantage of the representation theory of M,.



2 Main result

The following is our main result. By (1) it is an extension of Theorem 3.

Theorem 4 Let n > 2 and let Y be a C' submanifold of codimension 1
in M,. Assume that Y can be locally represented as F (x,k) = 0 with
V.F (x,k) # 0. Assume furthermore that for every ko € SO(n) the in-
tersection Y N {(z, ko) : * € R"} is a convex hypersurface' in R™. Choose
X € C. (M,) and let ju be the measure on M, given by [, fdu = [, fxdo,
where o is the surface measure on'Y . Then, if Tf (z,k) = (f *u, dp) (z, k),
we have

ITFl nsr oty < nlFllpemsnrman,) (2)

Proof. Without loss of generality, we may assume that Y is the graph of
the function
x1 = (2 k),

where we use the notation z’ = (xs,...,x,). Thus

/ fdu = / / f (@2 k), o' kv (2, k) dkd,
M, ’Rr-1 JS0(m)

where v is the product of y by a Jacobian term. For every z € C, let 7, be
the distribution on R defined by

(iam) = %) / T

We define the family of distributions p* by
W= g, I,
where [, is the distribution defined by
L (x, k) =1, (z1) ® g (2) @ -+ ® g () ® 0 (k).

For any k € SO(n) define the measure p on R"™ by
/ gdpuy = / g(® (2 k), 2" v (d k) da'.
n Rn—1

Then define the distribution £, on R™ by

B, (z) =i, (1) ® do (¥2) @ -+ - ® o ()

!This means that the above intersection is the graph of a convex function on a convex
set (after choosing suitable coordinates in R"~1).

4



and let pj = py *gn E,. Then it can be easily shown that

£ (k) dp (k) = / o o T R ()

Mn

W P = [ Gk )
SO(n)
We introduce the analytic family of operators
T f = fxu”.

Then the proof follows from Stein’s complex interpolation theorem and the
following result.

Lemma 5 For every real s we have
T LY (M) — L (M) (3)
T (n—1)/2+1is . L2 (Mn> N LZ (Mn) ] (4)

Proof of the Lemma. Let us prove (3) first. Indeed for g € L' (M,,)

< 1+Zs;g>M ,u*Mn -[1+zsag> <Il+i57g *M,, ﬁ>Mn
1 +o00 B
_m/ (9 %ar, 71) (21,0,...,0,€) a¥d,

+o0
’LS _1
1+zs / / (21,0,...,0,€) (y1, .., yn, k) )

du(yl,---,ym ) da;
+o00
1+ZS / /n xl’ ? ,0,6) (yh y Yny ))

dlu’ (yh s Jyn7k) dIl

1 too
:F(1+7Js)/ Ty / g1+ Y1, y2, - Yns k) dp (yn, - Yy k) d
0 n

1 o0 4
I L0y k) k) 2y (), k) dkdy'd
Fr L L 9 R R R iy,

(where p is defined by an y, k) dp (y, k fM (v, ) du (y, k) ).
The substitution y; = 2 + (I> (v, k), along with the boundedness of v,

immediately gives

‘<M1+is7g>Mn‘ S ¢ Hg”Ll(Mn) )

bt



so that !t € L> (M,). This proves (3).

Now we turn to the proof of (4). We need first to recall a few facts from
the representation theory of M,,.

The unitary dual M, (n > 2) can be described in the following way (here
[8] is a reference for the representation theory of M, see also [9]). Let L =
SO (n — 1), considered as a subgroup of SO(n). For each o € L realised on a
Hilbert space V, of dimension d,, consider the space L? (SO(n), o) consisting
of functions ¢ on SO(n) taking values in C%*%  the space of d, x d, complex
matrices, satisfying the condition

e (lk)=0c)p(k), teL, keSO(n)

which are also square integrable on SO(n):

[ deltar= [ o )dr< oo,
SO(n) SO(n)

Note that L? (SO(n), o) is a Hilbert space under the inner product
(p,¥) = / tr (o (k)" (k) dk .
SO(n)

For each A > 0 and ¢ € L we define a representation my, of M, on
L% (SO(n), o) as follows. For ¢ € L?(SO(n), o) and (z,k) € M, let

Tae (2,k) o (0) = exp (2miM" ey - z) ¢ (k) |

where e; = (1,0,...,0) and £ € SO(n). If ¢; (k) are the column vectors
of ¢ € L?(SO(n),0) then ¢; (k) = o () p; (k) for all £ € L. Therefore
L?*(S0(n),o) can be written as a direct sum of d, copies of H (SO(n), o)
which is defined to be the space of square integrable ¢ : SO(n) — Cd
satisfying

o (lk)=0)p(k), telL.

It can be shown that 7y, restricted to H (SO(n), o) is an irreducible repre-
sentation of M,,. Moreover, any infinite dimensional irreducible unitary rep-
resentation of M,, is unitarily equivalent to one and only one 7, ,. Finite di-
mensional irreducible unitary representations of SO(n) also yield irreducible
unitary representations of M,. As they do not appear in the Plancherel
formula we neglect them. We remark that when n = 2 the unitary dual L
contains only the trivial representation.

Given f € L' (M,)N L? (M,) we define the group Fourier transform of f
by

o (f) = | fla k) m, (2, k)" dodk .

Mp



It can be shown that 7, , (f) is a Hilbert-Schmidt operator on H (SO(n), o)
and we have the Plancherel formula

—+o00
Z/ Wmmﬁwmwz%/u@@mmh
~J0
o€l

n

where ||-|| ;5 denotes the Hilbert-Schmidt norm.
Applying Plancherel formula to 7~ D/24s f we get

—(n— 18 2
T2 f o,

= ||f *as, 1 o 1/QHSHH (My)
+o00
3 [ o D s () 2
o€l
<en 3 [ s G s (N,
oel

where |[-||,p is the operator norm on H (SO(n),o). We shall show below

that
—(n—1)/2+1is

|70 (1 MNop < cn (5)

uniformly in A and o, so that

+oo
—(n— is 2 2 n— 2
T gy < e Y / 100 (s A" = e 122, -

o€l

We now prove (5). For p,v € H (SO(n),o) we have
e ((, k:)_l) ¢ (u) = exp (—2midu""er - k') p (uk™) .

Assume for a moment Re z > 0, then p* is a measure and

Z

T (,u

A4” 07" @ () die* ()

n

/ exp (—2midu""er - k') o (uk™h) dp® (2, k).
M,

n



Therefore
(Tr0 (1°) ¢>H(So(n),o)

- / (rro (1) 0 (0) 8 ()} gy
SO(n)

= / / exp (—2midu""er - k7'x) (p (k™) 0 (u)>cd0 dp® (z, k) du
SO(n) n

= / / / exp (—27m')\ku’161 . x) <g0 (uk’l) 0 (u)>(cda
SO(n) JSO(n) n

X dj (v) dudk

/ / ,uk (Meu"er) {p (uk™) 0 (u)><cda dudk

SO(n) JSO(n)

— / / ,uk )\k u’lel) E\Z ()\k: u’lel) <g0 (uk’l) ) (u)>(cda dudk.
SO(n) JSO(n)

By analytic continuation, the equality
TD‘O' (10 w H(SO(n),0)

/ / e (Aeuler) E, (Meu"er) {p (uk™") 0 (u)>cda dudk
SO(n) JSO(n

holds also for z = — (n — 1) /2 +is. By Cauchy-Schwarz inequality

/SO( )Hk ()\ku 61) (n—1)/2+is ()\ku 1) <90 (Uk_l) X (u)><cda du
< [ (uk™) ¥ (u)

>(Cd0 HL2 O(n),du)
X H//L; ()\ku_ 61) E,(nfl)/pris ()\ku 61)

L2(S0(n),du)

By [4, Ch. 2] we know that

‘E (n—1)/2+is ()\ku ! ) >~




Now
exp (~2ri€ - 7) djuy ()

/
_ /R exp (=2mi - (@ (. k), 7)) v («/, ) da’
/

n—1 + ”

X1+ [V (2!, k) Pda’

:/ exp (—2mi€ - x)

v(x' k)
V1+ V@ (@, k)

where d(; is the surface measure of the convex hypersurface in R given by
the intersection Y N {(x, k) : z € R"}. By Theorem 2 we get

d¢ (),

N 2
Hﬂ; ()\k‘u_lel) E_(n—1)/2+is ()\ku )‘ L2(50(n).du)

Sc)\”_l/ ’,uk )\/{:u eq ’ du <
SO(n

To end the proof we observe that

/ 1o (k) 4 (1))t oy ) 0
SO(n)

:/.S’O(n {/ [{p (k) , ) (u )><cda’2dU}1/2dk

By Fubini’s theorem and the invariance of the Haar measure on SO(n) we
get

/S o 162 ) ) s @ < Wellasosyon 19sor

This ends the proof of the Lemma. Hence Theorem 4 is proved.



Remark 6 For functions on M, which are independent of the rotational
variable, i.e. for functions F such that F (x,k) = f(x), Theorem j can be
obtained from Theorem 3. Indeed

1/(n+1)
{/ |F sepr, oz, k)™ dzdk}
SO(n) JR™
1 1/(n+1)
/ / / / (z — k77 'y) dp, (y )dT dzxdk
som) Jrn |Jsom) Jrn
_— 1/(n+1)
/ / / [z =kt "y) dus (y) dzdk dr
SO SO(n) Jrr |JRn
il 1/(n+1)
/ / / f(x—oy)du, (y)| dxdo dr
SO(n) SO(n) n [JR™

1/(n+1)
— / / |f *rn fhro (T )\”H dxda} dr
SO(n SO(n) n

s/ Nl st gy = s,
SO(n) T (Mn)

where [, , denotes the measure i, rotated by o. This yields a weaker version
of Theorem 4. For a general F' let F (x,k) = sup,cgom) |F (x, kT)| then

[[E7 % pu]

= ¢||F|| .
Mn) Lo™ (Lge(Mn))

< C‘
Ln+1(Mn

L1 (M) < HF*,U‘

Remark 7 It is interesting to compare Theorem 4 with Theorem 1.1 in [6]
where it s shown that the LP improving property of a measure is related to
the fact that the supporting manifold generates the full group.
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