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On the Koksma-Hlawka inequality

L. Brandolini L. Colzani G. Gigante G. Travaglini

Abstract

The classical Koksma-Hlawka inequality does not apply to func-
tions with simple discontinuities. Here we state a Koksma-Hlawka
type inequality which applies to piecewise smooth functions f�A, with
f smooth and A a Borel subset of [0; 1]d:

CCCCCC
N�1

NX

j=1

(f�A) (xj)�
Z

A
f(x)dx

CCCCCC
� D (A; xj)V(f);

where D (A; xj) is the discrepancy

D (A; xj) = 2d sup
I�[0;1]d

8
<
:

CCCCCC
N�1

NX

j=1

�A\I (xj)� jA \ Ij

CCCCCC

9
=
; ;

the supremum is over all d-dimensional intervals, and V(f) is the total
variation

V(f) =
X

B2f0;1gd
2d�jBj

Z

[0;1]d

CCCC
�
@

@x

�B
f (x)

CCCC dx:

We state similar results with variation and discrepancy measured by
Lp and Lq norms, 1=p + 1=q = 1, and we also give extensions to
compact manifolds.

1 Introduction

Koksma�s inequality is a neat bound for the error in a numerical integration:

CCCCCN
�1

NX

j=1

f (xj)�
Z 1

0

f(x)dx

CCCCC � D (xj)V (f) :
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In this inequality D (xj) is the discrepancy of the points 0 � xj � 1 and
V (f) is the total variation of the function f ,

D (xj) = sup
0�t�1

(CCCCCN
�1

NX

j=1

�[0;t] (xj)� t

CCCCC

)
;

V (f) = sup
0=y0<y1<y2<:::<yn=1

(
nX

k=1

jf (yk)� f (yk�1)j
)
:

See [10]. We may say that Koksma�s inequality is a simple machine which
turns the discrepancy for a small family of functions, characteristic functions
of intervals, into the discrepancy for a larger family, functions of bounded
variation. The extension to several variables is a more delicate problem,
yet it is of some relevance in numerical analysis. See e.g. [8], [9], [10],
[12], [13], [17]. A classical approach starts with the de�nitions of Vitali and
Hardy-Krause variations. A partition of [0; 1]d is a set of d �nite sequences
0 = � (k; 0) < � (k; 1) < ::: < � (k; nk) = 1, with k = 1; 2; :::; d, and this
partition splits [0; 1]d into d-dimensional intervals which are products of the
1-dimensional intervals [� (k; j) ; � (k; j + 1)]. For a function f on [0; 1]d and
for every d-dimensional interval I in [0; 1]d with edges parallel to the axes,
let �(f; I) be an alternating sum of the values of f at the vertices of I. The
Vitali variation is

V (f) = sup
R

(
X

I2R
j�(f; I)j

)
;

where the supremum is over all �nite partitions R of [0; 1]d. The Hardy-
Krause variation is

V (f) =
X

k

Vk (f) ;

where the sum is over the Vitali variations Vk (f) of the restrictions of f to
all faces of all dimensions of [0; 1]d. The discrepancy of a �nite point set
fxjgNj=1 in [0; 1]

d is de�ned by

D (xj) = sup
I

(CCCCCN
�1

NX

j=1

�I (xj)� jIj
CCCCC

)
;

where I is an interval of the form [0; t1]� [0; t2]� : : :� [0; td] with 0 � tk � 1,
and jIj = t1t2:::td is its measure. The classical Koksma-Hlawka inequality
states that if f has bounded Hardy-Krause variation, then

CCCCCN
�1

NX

j=1

f (xj)�
Z

[0;1]d
f(x)dx

CCCCC � D (xj)V (f) :
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See [10, 2.5], [12, 1.4], [13, 2.2]. The assumptions required in the 1-dimensional
Koksma inequality are satis�ed by many familiar functions and are usually
easy to verify. On the contrary, the Hardy-Krause condition in the Koksma-
Hlawka inequality seems to be rather strict. It works well for smooth func-
tions, but it cannot be applied to most functions with simple discontinuities.
For example, the characteristic function of a convex polyhedron has bounded
Hardy-Krause variation only if the polyhedron is a d-dimensional interval.
For this and other reasons, several variants of the Koksma-Hlawka inequality
have been proposed. In particular, in [7] the small family consists of char-
acteristic functions of convex sets and the large family is given by functions
with super level sets which are di¤erences of �nite unions of convex sets.
See also [6, p.162], [12], [16]. Finally, a general and systematic approach to
Koksma-Hlawka inequalities is via reproducing kernel Hilbert spaces. See
e.g. [1] and [8]. However, in some of these approaches the geometric mean-
ing of the discrepancy is somehow hidden. The aim of this paper is to state
Koksma-Hlawka inequalities with explicit geometric discrepancies, which ap-
ply to piecewise smooth functions, that is, smooth functions f restricted to
arbitrary Borel sets A. In one of these inequalities, Theorem 1, the error
in the numerical integration of f�A is controlled by a variation of f de�ned
in terms of derivatives, times the discrepancy of the intersection of A with
translates of intervals I with edges parallel to the axes. In another version,
Theorem 7, the discrepancy is with respect to the intersection of A with
cubes, and in a further version, Theorem 9, the discrepancy is with respect
to the intersection of A with balls. These results are �rst stated and proved
when the underlying space is a torus, then they are extended to compact
manifolds, Theorem 10, and, in particular, spheres, Theorem 13.

2 Koksma-Hlawka inequalities on a torus

In what follows we consider functions f , measures �, and distributions on the
torus Td = Rd=Zd = [0; 1)d, that is, functions, measures, and distributions on
R
d which are Zd periodic, and Borel sets A in Rd, non necessarily periodic.

Theorem 1 If f is a continuous function on Td, if � is a �nite complex
valued Borel measure on Td, if A is a bounded Borel subset of Rd, and if
1 � p; q � +1 with 1=p+ 1=q = 1, then

CCCC
Z

A

f(x)d�(x)

CCCC � Dq (A; �)Vp(f);
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where Dq (A; �) is the Lq discrepancy

Dq (A; �) =
Z

[0;1]d

(Z

Td

CCCCC
X

n2Zd
� ((x+ n� I (t)) \ A)

CCCCC

q

dx

)1=q
dt;

with t = (t1; : : : ; td), 0 � tk � 1, I(t) = [0; t1]� : : :� [0; td], x+n�I (t) is the
set of all points y with x+ n� y in I(t), and Vp(f) is the Lp total variation

Vp(f) =
X

B2f0;1gd
2d�jBj

�Z

Td

CCCC
�
@

@x

�B
f (x)

CCCC
p

dx

�1=p
;

where the sum is over all the multiindices B which take only the values 0 and
1, jBj is the number of 1�s, and (@=@x)B = (@=@x1)B1 ::: (@=@xd)Bd.

The assumption Vp(f) < +1 already implies that f is almost every-
where equal to a continuous function. Since the measure � may have a
singular part, it is necessary to �x a representative for f , and the canonical
choice is the continuous representative. When p = 1 the theorem holds also
when (@=@x)B f (x) are �nite measures, with

R
Td
j(@=@x)B f (x)j dx replaced

by the total mass of these measures, but in this case the continuity of the
function is not automatic and it has to be assumed. Also observe that less
than d integrable derivatives are not enough to guarantee the boundedness
and continuity of the function. Hence, if the measure � is concentrated on
the singularities of the function f , then the integral

R
A
f(x)d�(x) may be

not de�ned. The variation Vp(f) decreases with p, but if p decreases then q
increases, and the discrepancy Dq (A; �) increases. Hence a gain in p corre-
sponds to a loss in q, and the optimal choice of these indices is the one that
minimizes the product Dq (A; �)Vp(f). When A is contained in [0; 1]d, the
L1 discrepancy is dominated as follows:

D1 (A; �) � 2d sup
I�[0;1]d

fj� (I \ A)jg :

This re�ects the di¤erence between the discrepancy in a torus and the one
in a cube, and it is due to the fact that an interval in Td can be split into at
most 2d intervals in [0; 1]d. In the classical Koksma-Hlawka inequality, and in
most of discrepancy theory, the measure � is the di¤erence between masses
Exj concentrated at some points xj and the uniformly distributed measure
dx:

d� = N�1
NX

j=1

Exj � dx:

4



For this measure and when p = 1 and A = [0; 1]d the above theorem is
essentially equivalent to the classical Koksma-Hlawka inequality with respect
to the Hardy-Krause variation. The proof of the theorem can be split into
a sequence of easy lemmas. The �rst one is a Fourier analog of a multi-
dimensional integration by parts in [17]. See also the examples in [1]. In

what follows bf (n) =
Z

Td

f(x)e�2�in�xdx denotes the Fourier transform and

g ��(x) =
Z

Td

g(x� y)d�(y) the convolution, and these operators are applied
also to distributions.

Lemma 2 Let ' be a non vanishing complex sequence on Zd, and assume
that both ' and 1=' have tempered growth in Zd. Also let f be a smooth
function on Td. De�ne

g (x) =
X

n2Zd
' (n)�1e2�in�x;

Df (x) =
X

n2Zd
' (n) bf (n) e2�in�x:

Finally, let � be a �nite measure on Td. Then the following identity holds:
Z

Td

f(x)d�(x) =

Z

Td

Df (x) g � � (x)dx:

Proof. The assumptions on the growth of ' and 1=' guarantee that Df is
a smooth function and g is a tempered distribution. Moreover

Z

Td

f(x)d�(x) =
X

n2Zd

bf (n) b� (n)

=
X

n2Zd

�
' (n) bf (n)

��
' (n)�1 b� (n)

�
=

Z

Td

Df (x) g � � (x)dx:

Suitable choices of ' and � will make the above abstract lemma more
explicit and interesting. In particular, ' will be the Fourier transform of a
di¤erential integral operator and 1=' the Fourier transform of a superposition
of characteristic functions.

Lemma 3 Let the function h on Rd be the superposition of the characteristic
functions of all intervals I(t) = [0; t1]� : : :� [0; td] with 0 � tk � 1, and let
g(x) be the Zd periodization of h,

h(x) =

Z

[0;1]d
�I(t) (x) dt; g (x) =

X

n2Zd
h (x+ n) :
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Then the function g has Fourier expansion

g (x) =
X

n2Zd

 
dY

k=1

(2E (nk) + 2�ink)
�1
!
e2�in�x;

where n = (n1; :::; nd), E (nk) = 1 if nk = 0 and E (nk) = 0 if nk 6= 0.
Proof. Observe that if x = (x1; :::; xd), then

h(x) =

dY

k=1

Z 1

0

�[0;tk] (xk) dtk =

dY

k=1

(1� xk)�[0;1] (xk) :

Now compute the Fourier coe¢cients,

bg (n) =
Z

Td

g(x)e�2�in�xdx

=

dY

k=1

�Z 1

0

(1� xk) e
�2�inkxkdxk

�
=

dY

k=1

(2E (nk) + 2�ink)
�1 :

Lemma 4 If f is a smooth function on Td, then

Df(x) =
X

n2Zd

 
dY

k=1

(2E (nk)� 2�ink)
!
bf (n) e2�inx

=
X

B;C2f0;1gd; B+C=(1;:::;1)

(�1)jBj 2jCj
Z

[0;1]jCj

�
@

@x

�B
f
�
x+ yC

�
dyC:

We are using the notation (@=@x)B = (@=@x1)
B1 ::: (@=@xd)

Bd and yC =Pd
j=1 y

Cj
j ej, where fejgdj=1 is the canonical basis of Rd, and dyC = dy

C1
1 : : : dy

Cd
d .

Proof. In order to avoid a heavy notation and to make the proof transparent,
we consider only the case d = 2 and we write (x; y) and (m;n) in place of x
and n respectively.

Df(x; y) =
X

m2Z

X

n2Z
(2E (m)� 2�im) (2E (n)� 2�in) bf (m;n) e2�i(mx+ny)

= 4 bf (0; 0)� 2
X

m2Z
2�im bf (m; 0) e2�imx � 2

X

n2Z
2�in bf (0; n) e2�iny

+
X

m2Z

X

n2Z
(2�im) (2�in) bf (m;n) e2�i(mx+ny)

= 4

Z 1

0

Z 1

0

f(x; y)dxdy � 2
Z 1

0

@f

@x
(x; y)dy � 2

Z 1

0

@f

@y
(x; y)dx+

@2f

@x@y
(x; y):
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Proof of Theorem 1. By a limit argument, one can assume that f is
smooth. Otherwise, it su¢ces to consider a sequence of smooth functions
ffng, with

lim
n!+1

�Z

Td

jfn (x)� f (x)j d j�j (x)
�
= 0;

lim
n!+1

�Z

Td

CCCC
�
@

@x

�B
(fn (x)� f (x))

CCCC
p

dx

�1=p
= 0:

We have to integrate a periodic smooth function f against a periodic
measure � over an arbitrary non periodic Borel set A in Rd. By Lemma 2
applied to the periodization � of the measure �A�, and by Hölder inequality,
with g and Df de�ned as in Lemma 3 and Lemma 4 respectively,

CCCC
Z

A

f(x)d�(x)

CCCC =
CCCCC

Z

Td

f(x)

 
X

n2Zd
�A (x+ n)

!
d�(x)

CCCCC

=

CCCC
Z

Td

f(x)d�(x)

CCCC � kDfkLp(Td) kg � �kLq(Td) :

The estimate for kDfkLp(Td) follows from Lemma 4,

�Z

Td

jDf (x)jp dx
�1=p

�
X

B2f0;1gd
2d�jBj

�Z

Td

CCCC
�
@

@x

�B
f (x)

CCCC
p

dx

�1=p
:

The estimate for kg � �kLq(Td) follows from Lemma 3,

�Z

Td

jg � �(x)jq dx
�1=q

=

(Z

Td

CCCCC

Z

Td

 
X

m2Zd

Z

[0;1]d
�I(t) (x� y +m) dt

! 
X

n2Zd
�A (y + n)

!
d�(y)

CCCCC

q

dx

)1=q

=

(Z

Td

CCCCC

Z

[0;1]d

 
X

n2Zd

Z

Rd

�I(t) (x+ n� z)�A (z) d�(z)

!
dt

CCCCC

q

dx

)1=q

=

(Z

Td

CCCCC

Z

[0;1]d

 
X

n2Zd
� ((x+ n� I (t)) \ A)

!
dt

CCCCC

q

dx

)1=q

�
Z

[0;1]d

(Z

Td

CCCCC
X

n2Zd
� ((x+ n� I (t)) \ A)

CCCCC

q

dx

)1=q
dt:
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The following are a few applications.

Corollary 5 Let D = 4 if d = 2, D = 3=2 if d = 3, D = 2=(d + 1) if d � 4.
Then there is a constant c depending only on the dimension d such that for
every N � 2 there exists a �nite sequence of points fxjgNj=1 in [0; 1]d with the
following property: For every convex set A contained in [0; 1]d and for every
smooth function f on Td,

CCCCCN
�1

NX

j=1

�A (xj) f (xj)�
Z

A

f (x) dx

CCCCC

� cN�2=(d+1) logD (N)
X

B2f0;1gd

Z

[0;1]d

CCCC
�
@

@x

�B
f (x)

CCCC dx:

Proof. Apply Theorem 1 to the measure d� = N�1PN
j=1 Exj�dx with p = 1

and q = +1. By results in [2] and [15], there exist sequences of points with
isotropic discrepancy, that is, discrepancy of convex sets,

sup
convex A�[0;1]d

(CCCCCN
�1

NX

j=1

�A (xj)� jAj
CCCCC

)
� cN�2=(d+1) logD (N) :

Any discrepancy is measured with respect to a given family of bodies,
and of course reducing this family decreases the discrepancy. If the class
of all convex bodies is replaced by the class of convex polyhedra with faces
perpendicular to a given �nite set of directions, then one can �nd sequences
with a signi�cantly smaller discrepancy.

Corollary 6 Let D = 1 if d = 2 and D = d if d � 3. Then for every �nite
set of directions � there exists a constant c with the following property: For
every prime number N � 2 there exists a �nite sequence of points fxjgNj=1 in
[0; 1]d such that for every convex polyhedron A contained in [0; 1]d and with
faces perpendicular to directions in �, and for every smooth function f on
T
d,

CCCCCN
�1

NX

j=1

�A (xj) f (xj)�
Z

A

f (x) dx

CCCCC

� cN�1 logD (N)
X

B2f0;1gd

Z

[0;1]d

CCCC
�
@

@x

�B
f (x)

CCCC dx:

8



Proof. Add the directions of the coordinate axes to the set �. Then for
every interval I with edges parallel to the axes, all the faces of the polyhedra
I \ A are perpendicular to some of the directions in this new set. Then one
can apply Corollary 2.11 in [5] and deduce the existence of a �nite sequence
fxjgNj=1 with discrepancy

sup
I�[0;1]d

(CCCCCN
�1

NX

j=1

�I\A (xj)� jI \ Aj
CCCCC

)
� cN�1 logd (N) :

When d = 2, Theorem 1 in [4] gives the better estimate cN�1 log (N).
The following is another analog of Theorem 1, with a larger variation but

a smaller discrepancy.

Theorem 7 If 0 < a < 1 is an irrational number and if there exist E > 0
and D � 2 with the property that ja� h=kj � Ek�D for every rational h=k,
then there exists a constant c > 0, which depends explicitly on E, D, d, with
the following property: If A = [�a=2; a=2]d is the cube centered at the origin
with side length a, if A is a Borel set in Rd, if � is a periodic Borel measure,
and if f is a periodic smooth function, then

CCCC
Z

A

f (x) d�(x)

CCCC

� c

8
<
:

Z

Td

CCCCC
X

n2Zd
� ((x+ n� A) \ A)

CCCCC

2

dx

9
=
;

1=2

�
(
X

n2Zd

 
dY

k=1

(1 + jnkj)2D
!CCC bf (n)

CCC
2
)1=2

:

Proof. The periodization of �A has Fourier expansion

g(x) =
X

n2Zd

 
dY

k=1

sin (�ank)

�nk

!
e2�in�x:

By Lemma 2 applied to the periodization � of the measure �A�,

CCCC
Z

A

f(x)d�(x)

CCCC �
�Z

Td

jg � �(x)j2 dx
�1=2

�

8
<
:

Z

Td

CCCCCC

X

n2Zd

 
dY

k=1

sin (�ank)

�nk

!�1
bf (n) e2�in�x

CCCCCC

2

dx

9
=
;

1=2

:
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As in the proof of Theorem 1,

�Z

Td

jg � �(x)j2 dx
�1=2

=

8
<
:

Z

Td

CCCCC
X

n2Zd
� ((x+ n� A) \ A)

CCCCC

2

dx

9
=
;

1=2

:

By the assumptions, jsin (�ank)j � c jnkj1�D when nk 6= 0. Then
CCCCC

dY

k=1

sin (�ank)

�nk

CCCCC

�1

� c

dY

k=1

(1 + jnkj)D :

Hence, by Parseval�s equality,
8
<
:

Z

Td

CCCCCC

X

n2Zd

 
dY

k=1

sin (�ank)

�nk

!�1
bf (n) e2�in�x

CCCCCC

2

dx

9
=
;

1=2

=

8
<
:
X

n2Zd

CCCCCC

 
dY

k=1

sin (�ank)

�nk

!�1
bf (n)

CCCCCC

29=
;

1=2

� c

(
X

n2Zd

 
dY

k=1

(1 + jnkj)2D
!CCC bf (n)

CCC
2
)1=2

:

Note that the last term can be seen as the L2 norm of a fractional deriva-
tive of order Dd. If a is a quadratic irrational one can take D = 2 and E can be
made explicit, and the variation of the function can be controlled by square
norms of derivatives up to the order 2d. This variation is larger than the one
in the proof of Theorem 1, which is controlled by derivatives of order d. On
the other hand, the discrepancy associated with the family of all intervals in
Theorem 1 is larger than the discrepancy associated with the translates of a
single cube in Theorem 7. Finally, there is an analog of the above theorem
with balls instead of cubes. The zeros of Fourier transforms of characteristic
functions of cubes play a crucial role in the above theorem. The Fourier
transforms of balls can be expressed in terms of Bessel functions, and the
following lemma is about the zeros of Bessel functions. For a reference on
these special functions see [11] and [14].

Lemma 8 If JB is the Bessel function of �rst kind of order B � �1=2, if
C > 5=4, and if 0 < a < b, then there exist c > 0 and a < r < b with the
property that for every positive integer k,

CCCJB
�
r
p
k
�CCC � ck�C:
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Proof. The zeros of JB (t) are simple, with the possible exception of t = 0.
If " < 1 then jJB (t)j�" is locally integrable in t > 0 and, by the asymptotic
expansion of Bessel functions,

Z b

a

CCCC
q
r
p
kJB

�
r
p
k
�CCCC
�"
dr = k�1=2

Z b
p
k

a
p
k

CCC
p
tJB (t)

CCC
�"
dt

= k�1=2
Z b

p
k

a
p
k

CCC
p
2=� cos (t� B�=2� �=4) +O

�
t�1
�CCC
�"
dt � c:

Hence, if " < 1 and � > 1 + "=4,

Z b

a

 
+1X

k=1

k��
CCCJB
�
r
p
k
�CCC
�"
!
dr

� b"=2
+1X

k=1

k"=4��

 Z b

a

CCCC
q
r
p
kJB

�
r
p
k
�CCCC
�"
dr

!
< +1:

Hence the series
P+1

k=1 k
��
CCCJB
�
r
p
k
�CCC
�"
converges for almost every r.

Then, for almost every r there exists c > 0 such that

CCCJB
�
r
p
k
�CCC � ck��=":

We believe that the lower bound C > 5=4 in the statement of the above
lemma is not the best possible. Anyhow, the following argument shows that
the lemma does not hold with C < 3=4. Assume that the interval r

p
k � t �

r
p
k + 1 contains a zero of JB (t), that is JB

�
r
p
k + "

�
= 0 with 0 � " � 1.

Then for some 0 � � � ",

CCCJB
�
r
p
k
�CCC

=
CCCJB
�
r
p
k + "

�
� JB

�
r
p
k
�CCC

=
CCCJ 0B
�
r
p
k + �

��
r
p
k + "� r

p
k
�CCC

=
CCC2�1

�
JB�1

�
r
p
k + �

�
� JB+1

�
r
p
k + �

���
r
p
k + "� r

p
k
�CCC

� 2�1
�
sup
0<�<1

CCCJB�1
�
r
p
k + �

�CCC+ sup
0<�<1

CCCJB+1
�
r
p
k + �

�CCC
��

r
p
k + 1� r

p
k
�

� c
p
rk�3=4:
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Theorem 9 For every 0 < a < b and D > d=2 + 5=4, there exist a constant
c > 0 and a radius a < r < b with the following properties: If B = fjxj � rg
is the ball centered at the origin with radius r, if A is a Borel set in Rd, if �
is a periodic Borel measure, and if f is a periodic smooth function, then

CCCC
Z

A

f (x) d�(x)

CCCC

� c

8
<
:

Z

Td

CCCCC
X

n2Zd
� ((x+ n�B) \ A)

CCCCC

2

dx

9
=
;

1=2(
X

n2Zd

�
1 + jnj2

�D CCC bf (n)
CCC
2
)1=2

:

Proof. The Fourier transform of the characteristic function of a ball is a
Bessel function, and the periodization of �B has Fourier expansion

g(x) =
X

n2Zd
rd=2 jnj�d=2 Jd=2 (2�r jnj) e2�in�x:

See Theorem 4.15 in Chapter IV of [14]. By Lemma 2 applied to the
periodization � of the measure �A�,

CCCC
Z

A

f(x)d�(x)

CCCC �
�Z

Td

jg � �(x)j2 dx
�1=2

�

8
<
:

Z

Td

CCCCC
X

n2Zd

�
rd=2 jnj�d=2 Jd=2 (2�r jnj)

��1 bf (n) e2�in�x
CCCCC

2

dx

9
=
;

1=2

:

As in the proof of Theorem 1,

�Z

Td

jg � �(x)j2 dx
�1=2

=

8
<
:

Z

Td

CCCCC
X

n2Zd
� ((x+ n�B) \ A)

CCCCC

2

dx

9
=
;

1=2

:

Moreover, by Parseval�s equality and Lemma 8, one can choose r so that

8
<
:

Z

Td

CCCCC
X

n2Zd

�
rd=2 jnj�d=2 Jd=2 (2�r jnj)

��1 bf (n) e2�in�x
CCCCC

2

dx

9
=
;

1=2

=

(
X

n2Zd

CCCC
�
rd=2 jnj�d=2 Jd=2 (2�r jnj)

��1 bf (n)
CCCC
2
)1=2

� c

(
X

n2Zd

�
1 + jnj2

�D CCC bf (n)
CCC
2
)1=2

:
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Since less than d=2 square integrable derivatives are not enough to guar-
antee the boundedness of a function, in the above theorem the assumption
D > d=2 + 5=4 is not too far from being best possible.

3 Koksma-Hlawka inequalities on manifolds

The results in the previous section are of local nature and with a change of
variables they can be easily transferred from cubes to compact manifolds. Let
M be a smooth compact d-dimensional manifold with a normalized measure
dx. Choose a family of local charts f'kgKk=1, 'k : [0; 1]

d !M, and a smooth

partition of unity f kgKk=1 subordinate to these charts. The Sobolev spaces
W n;p (M) can be de�ned by the norms

kfkWn;p(M) =
X

1�k�K

X

jBj�n

�Z

[0;1]d

CCCC
@B

@xB
( k ('k(x)) f ('k(x)))

CCCC
p

dx

�1=p
:

One can de�ne an interval inM as the image under a local chart of an
interval in [0; 1]d, say U = 'k (I). The discrepancy of a �nite Borel measure
� onM with respect to the collection A of all intervals inM is

D (�) = sup
U2A

CCCC
Z

U

d�(y)

CCCC :

Theorem 10 There exists a constant c > 0, which depends on the local
charts but not on the function f or the measure �, such that

CCCC
Z

M
f(y)d� (y)

CCCC � cD (�) kfkW d;1(M) :

Proof. It su¢ces to prove the theorem for a function with support in the
image of a single local chart ' : [0; 1]d ! M. If the measure � is the pull
back on [0; 1]d of the measure � onM then, by Theorem 1,

CCCC
Z

M
f(y)d� (y)

CCCC =
CCCC
Z

[0;1]d
f (' (x)) d� (x)

CCCC

� 2d
(
sup

I�[0;1]d

CCCC
Z

[0;1]d
�I (x) d� (x)

CCCC

)

�

8
<
:

X

B2f0;1gd
2d�jBj

Z

[0;1]d

CCCC
�
@

@x

�B
f (' (x))

CCCC dx

9
=
; :
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The �rst factor is dominated by the discrepancy,

sup
I�[0;1]d

�CCCC
Z

[0;1]d
�I (x) d� (x)

CCCC
�
� sup

U2A

�CCCC
Z

M
�U(y)d� (y)

CCCC
�
:

The second factor is dominated by the Sobolev norm,

X

B2f0;1gd
2d�jBj

Z

[0;1]d

CCCC
�
@

@x

�B
f (' (x))

CCCC dx � c kfkW d;1(M) :

As an example, consider the 2-dimensional sphere. If the local charts are
gnomonic projections, that is central projections from the tangent planes to
the sphere, then the straight lines on the tangent planes are mapped into
the great circles of the sphere. In particular, since a quadrilateral is the
union of two triangles, the discrepancy with respect to quadrilaterals can be
controlled by the discrepancy with respect to geodesic triangles. Finally, as in
Theorem 9, one can consider a Koksma-Hlawka inequality on the sphere, with
spherical cap discrepancy. The zonal polynomials Zn (x � y) on the sphere
S = fx 2 R3 : jxj = 1g are the reproducing kernels of the spaces of harmonic
polynomials of degree n. If Qn(x) is a harmonic polynomial of degree n, then

Qn(x) =

Z

S
Zn (x � y)Qn(y)dy:

Every distribution f on the sphere has a spherical harmonic expansion

f (x) =

+1X

n=0

Z

S
Zn (x � y) f (y) dy =

+1X

n=0

bf (n; x) :

The series converges in the topology of distributions. If f is square inte-
grable, the series converges in the square norm, and if it is smooth, it also
converges absolutely and uniformly. As a reference on the harmonic analysis
on the sphere and for the properties of the zonal polynomials that will be
needed in what follows, see [11] and [14]. The following is a spherical analog
of Lemma 2.

Lemma 11 Let f be a smooth function and � a �nite measure on the sphere.
Also let '(n) be a non vanishing complex sequence on N, and assume that
both '(n) and 1='(n) have tempered growth. De�ne

Df (x) =

+1X

n=0

' (n) bf (n; x) ;

g (x � y) =
+1X

n=0

' (n)�1Zn (x � y) :

14



Then
CCCC
Z

S
f(x)d�(x)

CCCC �
(Z

S

CCCC
Z

S
g (x � y) d�(y)

CCCC
2

dx

)1=2�Z

S
jDf (x)j2 dx

�1=2
:

Proof. By the spherical harmonic expansions of f and �,
CCCC
Z

S
f(x)d�(x)

CCCC

=

CCCCC

+1X

n=0

Z

S
bf (n; x) b� (n; x)dx

CCCCC

�

8
<
:

Z

S

CCCCC

+1X

n=0

' (n) bf (n; x)
CCCCC

2

dx

9
=
;

1=2

�

8
<
:

Z

S

CCCCC

Z

S

 
+1X

n=0

' (n)�1Zn (x � y)
!
d�(y)

CCCCC

2

dx

9
=
;

1=2

:

Here we consider two speci�c examples of sequences ' and functions g.
The following is an analog of Lemma 8, with Legendre polynomials in place
of Bessel functions.

Lemma 12 (1) Let

�fx�y�cos(#)g (x � y) =
+1X

n=0

'(n)�1Zn (x � y)

be the spherical harmonic expansion of the characteristic function of the
spherical cap fx � y � cos (#)g on the 2-dimensional sphere. Then for every
D > 5=2 and for almost every 0 < # < � there exist positive constants c1 and
c2 such that for every positive integer n,

c1n
3=2 � j'(n)j � c2n

D:

(2) Let

�fx�y�cos(#)g (x � y) + i�fx�y�cos(2#)g (x � y) =
+1X

n=0

'(n)�1Zn (x � y) :

Then for almost every 0 < # < �=2 there exist positive constants c1 and c2
such that for every positive integer n,

c1n
3=2 � j'(n)j � c2n

3=2:

15



Proof. The zonal polynomials on the sphere are multiples of Legendre poly-
nomials,

Zn (x � y) = (2n+ 1)Pn (x � y) ;

Pn (z) =
dn

dzn
(z2 � 1)n

2nn!
:

The characteristic function of the spherical cap fx � y � cos (#)g has the
expansion,

�fx�y�cos(#)g (x � y)

=
+1X

n=0

�
(n+ 1=2)

Z 1

cos(#)

Pn (z) dz

�
Pn (x � y)

=
1� cos (#)

2
+

+1X

n=1

Pn�1 (cos (#))� Pn+1 (cos (#))

2
Pn (x � y)

=
1� cos (#)

2
Z0 (x � y) +

+1X

n=1

Pn�1 (cos (#))� Pn+1 (cos (#))

2 (2n+ 1)
Zn (x � y) :

See [11, 4.8]. This follows from the identities

Zn (z) = (2n+ 1)Pn (z) = P
0

n+1 (z)� P 0n�1 (z) :

Therefore '(0)�1 = (1� cos (#)) =2 and, if n = 1; 2; 3; :::

'(n)�1 =
Pn�1 (cos (#))� Pn+1 (cos (#))

2 (2n+ 1)
:

The Legendre polynomials in 0 < a < # < b < � have the asymptotic
expansion

Pn (cos (#)) =

s
2

�n sin (#)
cos ((n+ 1=2)#+ �=4) +O

�
n�3=2

�
:
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See [11, 4.6]. Hence

Pn�1 (cos (#))� Pn+1 (cos (#))

=

s
2

� (n� 1) sin (#) cos ((n� 1=2)#+ �=4)

�
s

2

� (n+ 1) sin (#)
cos ((n+ 3=2)#+ �=4) +O

�
n�3=2

�

=

s
2

�n sin (#)
(cos ((n� 1=2)#+ �=4)� cos ((n+ 3=2)#+ �=4)) +O

�
n�3=2

�

=

s
2

�n sin (#)
2 sin (#) sin ((n+ 1=2)#+ �=4) +O

�
n�3=2

�
:

Actually, we need a slightly more precise estimate. Observe that the
above polynomial vanishes only when (n+ 1=2)#+�=4 is close to a multiple
of �, but at these points the derivative is large,

d

d#
(Pn�1 (cos (#))� Pn+1 (cos (#)))

= (2n+ 1) sin (#)Pn (cos (#))

= (2n+ 1)

r
2 sin (#)

�n
cos ((n+ 1=2)#+ �=4) +O

�
n�1=2

�
:

In particular, if n is large, say n � N , and 0 < a < # < b < � then the
zeros are simple. This implies that

'(n)�1 =

p
2 sin (#) (sin ((n+ 1=2)#+ �=4) +O (1=n))p

�n (2n+ 1)
:

It follows from these estimates that j'(n)�1j � cn�3=2 for every #, that is
j'(n)j � cn3=2. Finally, in order to prove a reverse inequality one can argue
as in the proof of Lemma 8. If " < 1 and � > 1 + 3"=2, then

Z b

a

 
+1X

n=N

n�� j'(n)j"
!
d# < +1:

Hence, the series
P+1

n=1 n
�� j'(n)j" converges for almost every #, then for

almost every # there exists c > 0 such that

j'(n)j � cn�=":
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This proves (1). The proof of (2) is a bit di¤erent. Let

�fx�y�cos(#)g (x � y) + i�fx�y�cos(2#)g (x � y) =
+1X

n=0

'(n)�1Zn (x � y) :

Then, if n = 1; 2; 3; :::,

j'(n)j

=

CCCC
Pn�1 (cos (#))� Pn+1 (cos (#))

2 (2n+ 1)
+ i

Pn�1 (cos (2#))� Pn+1 (cos (2#))

2 (2n+ 1)

CCCC
�1

=

 CCCC
Pn�1 (cos (#))� Pn+1 (cos (#))

2 (2n+ 1)

CCCC
2

+

CCCC
Pn�1 (cos (2#))� Pn+1 (cos (2#))

2 (2n+ 1)

CCCC
2
!�1=2

=
p
�n=2 (2n+ 1)

�
jsin (#)j sin2 ((n+ 1=2)#+ �=4)

+ jsin (2#)j sin2 ((2n+ 1)#+ �=4) +O (1=n)
��1=2

:

If 0 < a < # < b < �=2 and if n is large, then

jsin (#)j sin2 ((n+ 1=2)#+ �=4) + jsin (2#)j sin2 ((2n+ 1)#+ �=4) +O (1=n)
� c

�
sin2 ((n+ 1=2)#+ �=4) + sin2 ((2n+ 1)#+ �=4)

�
+O (1=n)

� c min
0�!��

�
sin2 (!) + sin2 (2! � �=4)

	
+O (1=n) � c > 0:

In particular, there exists N such that for every n � N and every 0 <
a < # < b < �=2, one has j'(n)j � cn3=2. Moreover, the equations '(n) = 0
for some n < N have a �nite number of solutions in 0 < a < # < b < �=2.
Hence, if # is not one of these solutions, then it satis�es (2).

Theorem 13 (1) For every D > 5=2 and almost every 0 < # < � there exists
a constant c > 0 with the following property: If B (x; #) = fx � y � cos (#)g
are the spherical caps with center x and radius #, if A is a Borel set, if � is
a Borel measure, and if f is a smooth function in S, then

CCCC
Z

A

f (x) d�(x)

CCCC

� c

�Z

S
j� (B (x; #) \ A)j2 dx

�1=2(+1X

n=0

�
1 + n2

�D
Z

S

CCC bf (n; x)
CCC
2

dx

)1=2
:
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(2) For almost every radius 0 < # < �=2 there exists a constant c > 0
with the property that

CCCC
Z

A

f (x) d�(x)

CCCC

� c

(
+1X

n=0

�
1 + n2

�3=2
Z

S

CCC bf (n; x)
CCC
2

dx

)1=2

�
 �Z

S
j� (B (x; #) \ A)j2 dx

�1=2
+

�Z

S
j� (B (x; 2#) \ A)j2 dx

�1=2!
:

Proof. If g (x � y) = �fx�y�cos(#)g (x � y) and if � is the restriction of the
measure � to the set A,

(Z

S

CCCC
Z

S
g (x � y) d�(y)

CCCC
2

dx

)1=2
=

�Z

S
j� (B (x; #) \ A)j2 dx

�1=2
:

Then (1) follows from Lemma 11 and Lemma 12 (1). If g (x � y) =
�fx�y�cos(#)g (x � y)+ i�fx�y�cos(2#)g (x � y) and if � is the restriction of the mea-
sure � to the set A,

(Z

S

CCCC
Z

S
g (x � y) d�(y)

CCCC
2

dx

)1=2

�
(Z

S

CCCC
Z

S
�fx�y�cos(#)g (x � y) d�(y)

CCCC
2

dx

)1=2

+

(Z

S

CCCC
Z

S
�fx�y�cos(2#)g (x � y) d�(y)

CCCC
2

dx

)1=2

=

�Z

S
j� (B (x; #) \ A)j2 dx

�1=2
+

�Z

S
j� (B (x; 2#) \ A)j2 dx

�1=2
:

Then, as before, (2) follows from Lemma 11 and Lemma 12 (2).
Observe that the indices D > 9=4 in Theorem 9 with d = 2 and D > 5=2

in Theorem 13 (1) are di¤erent. Anyhow, it is likely that both indices are
not best possible. Finally, an analog of Theorem 13 (1) holds on spheres of
dimension d > 2 with D > (d+ 3) =2.
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4 An application

In order to test the quality of the above results, we reconsider an example in
[7]. Let

f (x1; x2; : : : ; xd) =
1

x1x2 � � �xd (1� x1 � x2 � : : :� xd)
:

Also, for " > 0 small, let � be the simplex

� =
�
(x1; : : : ; xd) 2 Rd : x1 � : : : � xd � "; 1� x1 � : : :� xd � "

	
:

One can show that

X

jBj�d

Z

�

CCCC
�
@

@x

�B
f (x)

CCCC dx � c"�d:

By Corollary 5 there exists a �nite sequence fxjgNj=1 in [0; 1]
d such that

for all convex sets A contained in �,

CCCCCN
�1

NX

j=1

(f�A) (xj)�
Z

A

f (x) dx

CCCCC � c"�dN�2=(d+1) logD (N) :

This agrees with the result in [7]. However, in the case A = �, Corollary
6 gives the better estimate

CCCCCN
�1

NX

j=1

(f��) (xj)�
Z

�

f (x) dx

CCCCC � c"�dN�1 logd (N) :
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