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 Abstract - The paper defines some soft aggregation operators 
for combining results of Web searches, organized into 
information granules of distinct resolution. We propose to use 
them to perform personalized explorations of the contents 
retrieved by distinct queries to possibly distinct search engines 
on the Internet. These operators exploit the contents of the result 
lists retrieved by search engines to discover shared and 
correlated contents between web pages. We present their 
application within the meta-search system Matrioshka and 
discuss their semantics and utility. 
 
 

I.  INTRODUCTION 

 The motivation of this work is to optimize the search 
processes on the Internet, actually consisting of multiple query 
reformulations [9], by providing some means for analyzing the 
contents already retrieved by a query or a set of queries. The 
objective is improving the potential exploitation and 
comprehension of the contents retrieved by multiple Web 
searches to classic search engines. This is pursued by offering 
consultation indications alternative to the usual ranked list.  
It is well known that one drawbacks of the way users search 
information on the Internet by submitting queries to search 
engines is that they formulate vague requests, consisting of at 
most three terms [9] [10], and as a result they are overloaded 
with huge amounts of web pages dealing with diversified 
topics, that they rarely analyze below the second page of 
results. As a result of multiple searches with the same target, 
possibly submitted to several search engines, one needs to 
filter out the relevant documents among those already 
retrieved. Specifically, we provide users with some practical 
means for exploring the overall set of results of several web 
searches, to filter out their shared documents, shared contents, 
correlated documents and correlated contents. The 
highlighting of hidden relationships between documents 
retrieved by distinct queries, can help understanding the topics 
dealt with in the documents text, and thus gives new hints on 
their relevance [13][14][17].  In order to make this task 
feasible, it is not possible to exploit the full content of the 
documents retrieved by the query (that would require an 
HTTP access to the web pages in the reported result lists); on 
the contrary, our solution extracts the necessary information 
from within the texts (titles and snippets) reported in the result 
lists provided by the search engines [5][13][15]. The operators 

that we define are derived from relational algebra and are 
defined based on fuzzy set theory [18]. 
In the paper, we first introduce the information granules that 
are the objects that we combine by the operators. Then, we 
define the operators used to combine the information granules 
to identify their shared documents and contents. Finally, an 
example of application of the operators within the meta-search 
system Matrioshka and its results are discussed [2][3]. 
 

II. MULTI-GRANULAR WEB SEARCH RESULTS 

 In this section, we summarize the data model, first 
introduced in [1], i.e., the multi-granular organization of the 
results of web searches, which constitute the basic bricks of 
information that the soft operators can combine. 
We start by considering a query q submitted to a search 
engine; its result is a ranked list of web pages; an item 
represents a retrieved web page referred in the ranked list.   

Definition 1: Item 
An item i is the finest granule of information that the operators 
can manipulate. It represents (an instance of) a document 
retrieved by a web search. It is described by the following 
tuple of attributes: 

i : <Urii,Titlei,Snippeti, Bagi ,Iranki> 
Urii is the Uniform Resource Identifier of the ranked web 
document;  
Titlei and Snippeti are, respectively, the document title and 
snippet;  
Bagi is a bag of strings (single terms), each one weighted with 
a score in [0,1], expressing the significance of the string in 
representing the contents of the item; in Section 3, the 
procedure for the generation of Bagi is detailed; 
finally, Iranki is a score (in the range [0, 1]) that expresses the 
estimated relevance of the retrieved document w.r.t. the query 
and is computed as detailed in Section 3 (this is the reason 
why sometimes an item is named ranked item). 

Definition 2: Cluster  
A cluster c corresponds to an information granule composed 
of items, having a rank. It is defined by the tuple: 

c :  <Labelc,Contentc,Rankingsc,Crankc>. 
Labelc is a set of terms that semantically synthesize the main 
content of the cluster;  
Contentc is the set of items associated with the cluster;  



Rankingsc is a pool of values that measure (in the range [0, 1]) 
different properties of clusters, while Crankc is a user-defined 
combination of measures in Rankingsc (measures in Rankingsc 
and the way Crankc is computed was presented in [3]).  
Notice that Labelc, Rankingsc and Crankc are computed as 
functions of  Contentc. This ensures that whatever the cluster c 
was generated, if two clusters have the same content, they also 
have the same label, and rankings.  
A cluster can be generated by applying an operator combining 
two other clusters or by a clustering operation applied to a 
coarser information granule, a group, defined hereafter. 

Definition 3: Group  
A group g is the main element of the data model. It is the 
coarsest information granule composed of ordered clusters. It 
is described by the pair: 

g : <Labelg,Clustersg> 
Clustersg is the set of clusters belonging to the group. 
A group can be obtained from the ranked list of documents 
retrieved by a search engine, or can be generated by an 
operator working on groups.   
Labelg is the label of the group: it is a set of terms that 
semantically synthesize the main contents of the group. 
Labelg is generated based on a function of all the items in all 
clusters of the group. Specifically, for a group generated by a 
query to a search engine, it is the text of the query submitted 
to the search engine; otherwise it is the title of the ranked item 
most representative of the group, as defined in [1]. 
 

III.  DEFINITION OF THE SOFT OPERATORS FOR COMBINING 

INFORMATION GRANULES OF SEARCH RESULTS 

 Before we define the soft operators, we need to introduce 
some preliminary operations necessary to generate the 
information granules introduced in the previous section. 
 
A. Generation of items 
An item i is generated by parsing the list of ranked results 
returned by a search engine that evaluated a query.  
Notice that the same web page retrieved by different search 
engines (or by different queries) may be represented by 
distinct items in distinct result lists. In fact, in this case the 
document is uniquely identified by the same Urii, while it may 
have distinct Titlei, Snippeti , Bagi and Iranki.  
We compute Iranki as a function of the position Pos(i) of the 
item in the query result list, defined as follows: 

 
N

iPosN
Iranki

1
         (1) 

Where N is the number of ranked items in the result list. Thus, 
it is independent of the actual relevance score computed by 
the search engine. 
On the other side, distinct web pages have distinct Uris but 
may share the same or similar titles and snippets, because they 
are indeed duplicated documents at distinct web sites retrieved 
by the same query.  
A bag of weighted strings is defined by the fuzzy set: 

Bagi ={ s1/ws1, …, sn/wsn}, 

with s being a string and ws[0,1]. Bagi represents the main 
contents of an item i.  
The strings in Bagi are obtained by performing lexicographic 
analysis of the Urii, Titlei and Snippeti of item i by applying 
Lucene functions [12]: stop-words are removed, words 
stemming is applied, single terms are expanded with 
associated terms by using Wordnet [6]; finally, all the selected 
single terms are included in Bagi. Each string s in Bagi is 
weighted by its relative frequency ws: an occurrence in the Uri 
and title is considered as twice occurrences in the snippet, and 
the total number of occurrences of a string is then normalized 
w.r.t. the sum of all weights of all strings in Bagi so that it is 
ws [0,1]. 
 
B. Generation of Groups 
An immediate way to generate a group of ranked items is to 
perform a Web search by submitting a query q to a search 
engine SE through a call to the CQuery operator as follows: 
CQuery(q, SE). Further, the N top ranked items in the list of 
retrieved results are clustered, by applying a clustering 
algorithm as the one described hereafter. A group of ranked 
clusters containing the items is thus generated. 
 
C. Generation of Clusters 
The second operation that we introduce is the clustering of the 
results of each query. To this end, in the implemented 
prototypal system Matrioshka [3], the Lingo clustering 
algorithm [9] is used, which performs an efficient flat crisp 
clustering of the retrieved documents on the basis of the titles 
and of the snippets, expanded based on Wordnet.  
Since the label of a cluster must help the user to understand 
the main topic of the cluster, and since clusters are built in 
such a way clustered documents are similar as far as the 
content of title and snippet is concerned, the most relevant 
document w.r.t. the query is the one that best represents the 
main topic. For this reason, we decided that Labelc = Titlei, 
i.e., the title of item iContentc which is the most relevant 
item in the cluster. Notice that we do not need to access the 
text of the documents for extracting the features necessary to 
cluster them. We parse the result list provided by the search 
engine, containing the first N results, and extract all the 
information which constitutes the representation of a ranked 
item. 
 
D. Comparing Items 
Two functions are defined to compare pairs of ranked items, 
that serve distinct purposes.  
The first one, named match performs and exact matching of 
the Uris of two items i and j: 

match(i,j)=1 if Urii = Urij else 0   (2) 

This function is used to verify if the two items i and j refer 
indeed the same web page, assuming as unique identifier of 
the page its Uri. The rationale of this assumption is the fact 
that the same document, retrieved by two different search 



engines, may have different title and snippet, but have the 
same Uri. 
Nevertheless, it can happen that the same web page is 
duplicated at distinct sites, or its contents are near duplicates, 
so two web pages may differ just for their Uris while they may 
have very similar contents. This motivates the introduction of 
other matching functions which do not identify an item by its 
Uri but by its bag of string Bagi, regarded as a fuzzy set. Then, 
the comparison of two items is formalized by partial matching 
functions defined as fuzzy relations between fuzzy sets.  
The first function is a weak fuzzy inclusion, indicated by I

F 
computing a degree of subsethood of the first argument i in 
the second argument j, respectively [11] [14]: 
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I
F(i,j) [0,1] and we assume that, when a string s of Bagi is 

not present in Bagj its weight is zero. This subsethood 
measure gets the value zero when the bags of strings Bagi and 
Bagj do not have any common string; it gets the maximum 
value 1 when all the strings in Bagi are also present with a 
greater-equal weight in Bagj; it gets intermediate values in 
(0,1) when the two bags have some common entry. This 
function satisfies these properties [11]: 

I
F (i, i) = 1; 

I
F (i, k) = 1 iff  Bagi   Bagk    

I
F (i, k) = 0 iff   Bagi   Bagk   =  

if Bagi    Bagk    

    it is I
F (s, i)  I

F (s, k)  I
F (i, s)  I

F (k, s) 
Notice that this fuzzy inclusion is not TZ transitive, i.e. it does 
not satisfy the following: 

 TZ( I
F (i, j), I

F (j, k) )  I
F (i, k)  

in which TZ  is the Zadeh T-norm defined as the min [6]. 
This function is used to evaluate how much the contents of an 
item i are also dealt by another item j. The degree it computes 
is interpreted as the extent of the relative specificity of the 
contents dealt with by i w.r.t. the contents dealt with by j. 

Another matching function is the similarity between two 
items, computed based on the generalized Jaccard coefficient: 
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It was proved that this function is reflexive, symmetric, and 
TW-transitive (where TW is the Luckasiewicz T-norm  
TW(x, y)=max(x + y - 1, 0) [5]: 

sim(i, i) = 1;  
sim(i, j) = sim(j, i); 
TW(sim(i, j), sim(j, k))  sim(i, k)  

This function is used to estimate the percentage of shared 
contents between two items. 
 
E. Operations between Clusters 
In this context, we regard a cluster as a fuzzy set of web 
pages; Irank is the membership degree of the web page  
identified  by its Uri. A ranked item represents the contents of 

a web page.  
We define the intersection and union operations between 
clusters in two different forms.  
The ranked intersection, RIntersection, and the ranked union,  
RUnion, are defined as classic operators between fuzzy sets 
because they perform an exact matching between the Uris of 
the items that uniquely identify the web pages.  
The soft intersection, SIntersection, and the soft union, 
SUnion, are named soft operators because they identify the 
ranked items through their bags of weighted strings, which 
represent the contents of the web pages and that are fuzzy 
subsets of strings. These soft operators are defined to combine 
fuzzy sets of fuzzy sets.  

Definion 4: Ranked Intersection 
Consider the ranked intersection of two clusters c1 and c2, 
denoted by  : 

c = RIntersection(c1, c2) = R(c1, c2)             (6) 
i ContentR(c1,c2)   

iff   i1Contentc1   i2Contentc2 | match(i1, i2), for which 

if  (Iranki1  Iranki2) then 
(in this case i1 and i2 have distinct Irank but identify the same 
web page retrieved by two distinct searches or search engines) 

Iranki  = min(Iranki1 , Iranki2) 
Urii = Urii1 
Titlei  = ArgminTitlek{Titlei1, Titlei2} (Irankk) 
Snippeti  = ArgminSnippetk{Snippeti1, Snippeti2} (Irankk) 
Bagi  = ArgminBagk{Bagi1, Bagi2} (Irankk) 

else   
(in the case i1 and i2 have the same Irank but identify the same 
web page too) 

Iranki  = Iranki1  
Urii = Uri1 
Titlei  = shortest(Titlei1 , Titlei2 ) 
Snippeti  = shortest (Snippeti1 , Snippeti2 ) 
Bagi  = Bagi1  Bagi2  

 
where function shortest returns the shortest argument and match is 
defined as in (2) and returns 1 when   Urii1 = Urii2. 
This definition is consistent when we regard a cluster as a 
fuzzy set of items, and consider the Irank of an item as its 
membership degree to the cluster [12]. Labelc Rankingsc and 
Crankc are computed as functions of Contentc. 

Definion 5: Ranked Union 
The ranked union, denoted by RUnion, is defined as follows: 

c = RUnion(c1, c2) =  R(c1, c2):   (7) 
i ContentR(c1,c2)   

if  i1 Contentc1     i2 Contentc2 |  
match(i1,i2), then i=i1   

else (there exists a i2 with the same Uri) 
if  (Iranki1  Iranki2)  then 

Iranki  = max(Iranki1 , Iranki2) 
Urii = ArgmaxUrik{Urii1, Urii2} (Irankk) 
Titlei  = ArgmaxTitlek{Titlei1, Titlei2} (Irankk) 
Snippeti  = ArgmaxSnippetk{Snippeti1, Snippeti2} (Irankk) 
Bagi  = ArgmaxBagk{Bagi1, Bagi2} (Irankk) 

  else (Iranki1 = Iranki2)  
Iranki  = Iranki1  



Urii = Urii1 
Titlei  = longest(Titlei1 , Titlei2 ) 
Snippeti  = longest(Snippeti1 , Snippeti2 ) 
Bagi  = Bagi1  Bagi2  

if  i2 Contentc2 | match(i1, i2), i1  Contentc1 

then i=i2  
  

where function longest returns the longest argument and match is 
defined in (2). 
Labelc Rankingsc and Crankc are computed as functions of 
Contentc . 
The Iranki of ic is the maximum Irank value of i1 and i2, 
assuming that Iranki1 = 0 (resp. Iranki2 = 0) when no item with 
that Uri belongs to c1 (resp. c2).   
To obtain the Title, the Snippet and the Bag of the items 
belonging to the resulting cluster, we select, as resulting Title, 
Snippet and Bag, those belonging to the document having the 
smallest (in the case of Ranked Intersection) or the greatest (in 
the case of Ranked Union) value of Irank, without making any 
change. The rationale of this choice is the fact that, in the 
aggregation based on the intersection (resp. union), we want 
to represent the document by its worst (resp. best) 
representative, in accordance with the modeling of the AND 
and the OR within fuzzy set theory [12]. When their Uris and 
Iranks are equal, which can occur when the same web page is 
retrieved in the same position of two ranked lists by distinct 
queries, we take the shortest (longest) titles and snippets in the 
case of intersection (union) and generate a bag that is the 
intersection (union) of the two bags.  
Since an item ultimately identifies a web page, a cluster can be 
regarded as a fuzzy set of web pages, and thus R and R are 
indeed the intersection and union of fuzzy sets. It follows 
from the properties of the intersection and union of fuzzy sets 
based on the min and max that are idempotent, that also R 
and R satisfy the idempotency, commutativity, associativity, 
distributivity properties: 
R(c, c)  = c     R(c, c)  = c   
R(c1, c2) = R(c2, c1)   R(c1, c2)  = R(c2, c1)   
R(R(c1, c2),  c3 ) = R(c1 , R(c2, c3) ) 
R(R(c1, c2),  c3 ) = R(c1 , R(c2, c3) ) 
R(R(c1, c2), R(c1, c3) ) = R(c1, R(c2, c3))   
R(R(c1, c2), R(c1, c3) ) = R(c1, R(c2, c3))  
Further  R  (c , cc )         R  (c , cc ) = (R  (c ,cc)c    

where cc  is the complement of cluster c defined so as to 
contain the same items of c but with a membership degree:  
cc (i)=1-c(i) 
Let us make an example considering the items in clusters c1 
and c2 reported in Table 1.  
R(c1,c2)={u2/0,7} where u2.title=”Italian costal tourist 
centers” and Bag=Bagc1.u2  Bagc2.u2 = {Venice/0,9} since u2 
is the only item having the same Uri and Irank in c1 and c2. 
R(c1, c2 )={u1/0,8; u3/0,9; u2/0,7} where u2.title=”Italian 
costal tourist centers” an Bag=Bagc1.u2Bagc2.u2={ Venice/1; 
laguna/0,8; Genoa/0,8; Rome/0,5  Capri/0,9 } 
With such a strict definition of the intersection between 
clusters, the ranked items that represent duplicated web pages 

are filtered out from the result since their Uris are different (in 
the example items u1 and u3). In particular situations, this 
could be a limitation, since one would like to identify ranked 
items dealing with similar and duplicated topics. Let us 
consider, for example, the page of Expedia of the same hotel 
but retrieved in two different searches with two different dates 
of booking. They refer to the same hotel in the same Web site, 
but they have different Uris. With the RIntersection operator, 
these web pages are considered distinct, even if their 
semantics is the same.  
In order to overcome this limitation, we defined the Soft 
Intersection between clusters. As a result, it yields a cluster c 
generated considering the shared contents between the set of 
titles and snippets of the ranked items belonging to the input 
clusters. Then, it identifies topics that represent shared 
contents between clusters.  
On the other side, the ranked union duplicates items that 
correspond to near duplicated web pages (in the example 
items u1 an u3) while in these cases it would be desirable to 
obtain just one item. To cope with this limitation of the ranked 
union, we defined the Soft Union operator. 
 

Table 1: ranked items 
cl uri title bag Irank 
c1 u1 Mediterranean 

tourist points of 
interest 

{ Athens/1; Zante/0,9; 
Creta/1; Capri/1; 

Portofino/0,8; 
Venice/1; Palma de 
Mallorca/1; Saint-

Tropez/1; 
Monaco/0,8; Zara/1 } 

0,8 

 u2 Italian costal 
tourist centers 

{ Venice/1; 
laguna/0,8;} 

0,7 

c2 u3 Mediterranean 
tourist cities  

{ Athens/1; Venice/1; 
Monaco/0,8; Zara/1 } 

0,8 

 u2 Italian costal 
tourist centers 

{ Venice/0,9; 
Genoa/0,8; Rome/0,5  

Capri/0,9; } 

0,7 

Definition 6: Soft Intersection 
The soft intersection operation SIntersection, denoted by S, 
performs the content intersection of two clusters c1 and c2 of 
ranked items and returns a new cluster c of ranked items.  
To define it, we uniquely represent an item i by its bag of 
strings Bagi, that is, by a fuzzy subset of all possible strings. 
Then, the definition of the Soft Intersection (and Soft Union) 
is the intersection (and union) of fuzzy sets of fuzzy sets. 
Notice that this is different from the intersection (and union) 
of type-2 fuzzy sets [4]. In our context, the items refer to web 
pages, and the operators must return references to web pages 
associated with the items in the input clusters. In order to do 
this, we first apply a partial matching between the Bags of 
any pairs of items in the two input clusters to identify items 
sharing similar contents. Then, once these items pairs are 
identified, from them we select those that are most specific 
w.r.t. the contents of their most similar items in the other 
cluster. S is defined as follows: 

c = SIntersection(c1, c2) = S (c1, c2)     (8) 



j  ContentR(c1,c2)  i  ContentS(c1,c2)   | i=j  

i1Contentc1  i2Contentc2 | i1 ContentR(c1,c2)  
  i2= Argmax ikContentc2 | (sim(i1,ik)  match(i1,ik)) (sim(i1,ik)), 

  ! i  ContentS(c1,c2)  |  Iranki = min(Iranki1, Iranki2) for which  
 if  ((I

F(i1, i2)) > (I
F(i2, i1))   

  (I
F(i1, i2) = I

F(i2, i1)  (Iranki1 < Iranki2)), then 
Urii = Urii1 
Titlei  = Titlei1  
Snippetii  = Snippeti1  
Bagi  = Bagi1  

  else if  (
I
F(i1, i2) = I

F(i2, i1)  Iranki1=Iranki2)), then 
Urii = Urii1 
Titlei  = shortest(Titlei1 , Titlei2) 
Snippeti  = shortest (Snippeti1 , Snippeti2 ) 
Bagi  = Bagi1  Bagi2  

  else if i2 ContentR(c1,c2) , then 
Urii = Urii2 
Titlei  = Titlei2  
Snippeti  = Snippet2  
Bagi  = Bag2  

i2Contentc2  i1Contentc1 | i2 ContentR(c1,c2)  
 i1=ArgmaxikContentsc1|(sim(ik,i2)  match(ik,i2)) (sim(ik,i2)) 

   ! i  ContentS(c1,c2) | Iranki = min(Iranki1, Iranki2)  for which 
 if  ((I

F(i1, i2)) < (I
F(i2, i1))   

  (I
F(i1,i2) = I

F(i2,i1)  (Iranki2< Iranki1)), then 
Urii = Urii2 
Titlei  = Titlei2  
Snippeti  = Snippeti2  
Bagi  = Bagi2  

  else if  (I
F(i1, i2) = I

F(i2, i1)  Iranki1=Iranki2)), then 
Urii = Urii2 
Titlei  = shortest(Titlei1 , Titlei2 ) 
Snippeti  = shortest (Snippeti1 , Snippeti2 ) 
Bagi  = Bagi1  Bagi2  

 else if i1 ContentR(c1,c2) then 
Urii = Urii1 
Titlei  = Titlei1  
Snippeti  = Snippeti1  
Bagi  = Bagi1  

 
in which  is a minimum similarity degree and I

F and sim are  
defined as in formulae (3) and (4) respectively.  
Labelc Rankingsc and Crankc are computed as functions of 
Contentc. 
Some properties can be proved. 
R(c1, c2)  S (c1, c2)  [0, 1] by definition. 
Idempotency  
From the previous and since R is idempotent it follows that 
S(c, c)  c and, since there cannot be two items with the 
same Uri in a cluster S(c, c)  =  c. 
Commutativity 
Since sim and match functions and the two conditions in (8) 
are symmetric, we have that: 
S (c1, c2)  =  S (c2, c1)  
From the properties of R it also follows that: 
S(c, cc)     
Further, S(c1, S(c2, c3))   S(S(c1, c2), c3)  for (0,1] . 

The associativity property is not satisfied, since the selection 
condition based on the minimum (not null) similarity and the 
inclusion may filter out from the intermediate results elements 
that cannot be recovered any more. For example, let us 
consider the case in which i1c1 which is more specific than 
any other similar item jS(c2, c3): it follows that i1S(c1, 
S(c2, c3)). At the same time, it can happen that  an item 
i2c2 similar to i1 and most specific so that i1S(c1, c2), 
and at the same time not enough similar to any i3c3 so that 
i2S(c2, c3): it follows that i1S(S(c1, c2), c3).   
On the other side, when =0, the condition on the minimum 
similarity is not imposed. Nevertheless, also in this case 
associativity is not satisfied, due to the fact that I

F  is not 
transitive. Consider the previous counter example: assuming 
i1c1 is more specific than any other item jS(c2, c3) so 
that i1S(c1, S(c2, c3)). If there exists an item i2c2 most 
specific then i1 so that i1S(c1, c2), there must be an item 
i3c3 so that i3S(c2, c3), i.e., i3 is most specific than any 
other item in c2. If this happens, in order to guarantee 
associativity i3 should be also more specific than i1, and this 
cannot be stated since I

F  is not transitive. 
The Soft Intersection relaxes the constraint of the Ranked 
Intersection. It generates a cluster c that contains both the 
results of the Ranked Intersection of the two input clusters c1 
and c2, plus the items of the input clusters that have the most 
specific contents w.r.t. those dealt with in the most similar 
item of the other cluster, as it can be guessed from their Bags.  
Let us explain the rationale of this definition with a simple 
example. Given two documents, one dealing with 
“Mediterranean Tourist Points of Interest”, and the second 
with “Mediterranean Tourist cities”, they probably share most 
of the places listed in the second document, since the 
Mediterranean Tourist cities are indeed Mediterranean Points 
of Interest, but the vice versa is unlikely to occur, because the 
first document contains also names of islands, and picturesque 
villages, such as Capri, Portofino, Saint-Tropez and so on. So, 
the Soft Intersection retains only the shared contents, i.e., the 
second document on Mediterranean cities.  
Consider the example in Table 1, by setting =0 we obtain: 
S(c1, c2)={u2/0,7; u3/0,8}  
u2 is obtained since it belongs to R(c1,c2) and  u3 is 
obtained since it is more specific than u1: I

F(u3,u1) 
>I

F(u1,u3).  

Definition 7: Soft Union 

The operation SUnion, denoted by S, performs the content 

union of two clusters c1 and c2 of ranked items.  
To define it, we uniquely represent an item i by its bag of 
strings Bagi and we evaluate a partial matching of any pairs of 
Bags of the items in the two input clusters. 
S is defined as follows: 

c = SUnion(c1, c2) = S (c1, c2)    (9) 
j  ContentR(c1,c2)  i  ContentS(c1,c2)   | i=j  

i1  Contentc1 | i1  ContentR(c1,c2)    
 if   i2Contentc2 | sim(i1,i2) <  then 



  ! iContentS(c1,c2)    | i=i1 
 else ( i2Contentc2 | sim(i1,i2)  ) for which 

if (  I
F(i1,i2) = I

F(i2,i1)   Iranki1 = Iranki2), then 

! i ContentsS(c1,c2)  |  i=i1  ! j ContentsS(c1,c2)  |  i=i2 

 else if  ( I
F(i1,i2)  <  I

F(i2,i1))   
   (  I

F(i1,i2) = I
F(i2,i1)   Iranki1 > Iranki2) then 

! i ContentS(c1,c2)    |  
Iranki=max(Iranki1, Iranki2) 
Urii = Urii1 
Titlei  = Titlei1  
Snippeti  = Snippeti1  
Bagi  = Bagi1  

  else if I
F(i1,i2) >  I

F(i2,i1) 
 ( I

F(i1,i2) = I
F(i2,i1)   Iranki1  <  Iranki2) then 

!i ContentS(c1,c2)    |   
Iranki=max(Iranki1, Iranki2) 
Urii = Urii2 
Titlei  = Titlei2  
Snippeti  = Snippeti2  
Bagi  = Bagi2  

 i2  Contentc2 | i2  ContentR(c1,c2)    
 if   i1Contentc1 | sim(i1,i2) <   then 
  !iContentS(c1,c2)    |  i=i2 
 else ( i1Contentc1 | sim(i1,i2)  ) for which 

  if  ( I
F(i2,i1)  <  I

F(i1,i2))  
    (  I

F(i1,i2) = I
F(i2,i1)   Iranki2 > Iranki1) then 

! i ContentS(c1,c2)    | 
Iranki=max(Iranki1, Iranki2) 
Urii = Urii2 
Titlei  = Titlei2 
Snippeti  = Snippeti2  
Bagi  = Bagi2  

  else if I
F(i2,i1) >  I

F(i1,i2) 
 ( I

F(i1,i2) = I
F(i2,i1)   Iranki2  <  Iranki1) then 

!i ContentS(c1,c2)    | 
Iranki=max(Iranki1, Iranki2) 
Urii = Urii1 
Titlei  = Titlei1  
Snippeti  = Snippeti1 
Bagi  = Bagi1 

in which  is a minimum similarity degree and I
F and sim are 

defined as in (3) and (4), respectively. The notation “! i” stands for 
“there exists one and only one i. 
Labelc Rankingsc and Crankc are computed as functions of 
Contentc.  
Some properties can be proved: S is idempotent, 
commutative, and monotonic not decreasing. 
Idempotency 
S(c, c) = c   
Since duplicated items with the same Uri are not allowed in a 
cluster, we have that S(c, c)  R(c, c); 
Further  iS(c, c)  iR(c, c);  
Assuming that iS(c, c)  iR(c, c) would mean that  jc 
| sim(i,j ) that is more general than i or that has a smaller 
Irank; nevertheless, this condition would be satisfied:  
( I

F(i1,i2) = I
F(i2,i1)  Iranki1 = Iranki2), so iS(c, c).  

Commutativity   
S (c1, c2) =  S (c2, c1)  since sim and the two conditions in 

(9) are symmetric.  

Further, R (c1, c2)  S (c1, c2) 
If  iS(c1, c2) and iR(c1, c2), it means that ic1 and 
ic2, thus i does not exists, which contradicts the assumption. 

S(S(c1, c2), c3)  S(c1, S(c2, c3)) 
The associativity property is not satisfied due to the condition 
on the similarity and the intransitivity of the weak fuzzy 
inclusion. 
The Soft Union restricts the ranked union by eliminating, from 
its results, the most specific items having a similar item in the 
other input cluster. Let us give an example of utility. Assume 
that we want to have a panoramic overview of the 
Mediterranean Tourist information by eliminating redundant 
contents; having two documents, one dealing with 
“Mediterranean tourist points of interest”, and the second 
with “Mediterranean Tourist cities”, we want to eliminate the 
second document from the results and keep the first one that is 
more general: to achieve this, we apply a Soft Union. Consider 
the example in Table 1, by setting =0 we obtain:  
S(c1, c2)={u2/0,7,  u1/0,8}  
u2 is obtained since it belongs to R(c1,c2) and  u1 is 
obtained since it is more general than u3: I

F(u3,u1) 
>I

F(u1,u3).  

The distributivity property of S w.r.t. S and viceversa do not 
hold due to the not associativity of S and S: 
S (S(c1, c2) ,S(c1, c3) )  S(c1, S(c2, c3))   
S (S(c1, c2) , S(c1, c3) )   S(c1, S(c2, c3))   
 
F. Operators between Groups 
There are several operators taking Groups, i.e., the coarsest 
granules of information that we can manipulate, as arguments 
and generating a new group.  They are defined based on the 
cluster operations previously introduced. Here, we just define 
the basic ones used to identify shared documents and contents 
and correlated documents and contents. 

Definition 8: Group Intersection Operators :  GR and GS 
The Group Ranked Intersection operator GR and the Group 
Soft Intersection operator GS are defined so as to exploit the 
Ranked Intersection R and the Soft Intersection S  between 
all the pairs of clusters belonging to the two input groups. 
Given two groups of clusters g1 and g2, both GR and GS 
hereafter indicated simply by  are defined as follows: 

g = (g1, g2)  | 
 (c1, c2) | c1Clustersg1  c2 Clustersg2  

c Clustersg if  *(c1, c2)    
c = *(c1, c2) in which *  R in the case of GR while 

*S in the case of GS .  
Labelc Rankingsc and Crankc are computed as functions of 
Contentc. 
Labelg

 is defined as a function of the items in all clusters of g.  



It can be proved that GR and GS are idempotent, 
commutative. Further GR is also associative while  GS is 
not. 
Example of application of the group intersection operators are 
provided in the next section. 

Definition 9: Group Union Operators  GR and GS 
The group ranked union operator GR and the group soft 
union operator GS are defined so as to exploit the ranked 
union R and the soft union S  between all the pairs of 
clusters originated from the two input groups. 
Given two groups of clusters g1 and g2, both GR and GS 
hereafter indicated simply by  are defined as follows: 
g =  (g1, g2)  
(c1, c2) | c1Clustersg1  c2 Clustersg2  

c Clustersg | c = +(c1, c2), in which +  R in the 
case of  GR while +S in the case of  GS .  

Labelc Rankingsc and Crankc are computed as functions of 
Contentc. 
Labelg

 is defined as a function of the items in all clusters of g.  
It can be proved that these operators are idempotent, 
commutative, and monotonic.  
Further GR is also associative while  GS is not.  
This operator allows generating clusters of all (non redundant) 
contents dealt with in pairs of input clusters. 

Definition 10: Group Join Operators  ><GR and ><GS 
The Group Ranked Join operator ><GR and the Group Soft 
Join operator  ><GS are defined so as to exploit the crisp and 
soft operators between all the pairs of clusters belonging to the 
two input groups. 
Given two groups of clusters g1 and g2, both ><GR and ><GS 
hereafter indicated simply by >< are defined as follows: 

g =  ><(g1, g2)  
 (c1, c2) | c1Clustersg1   c2 Clustersg2  

c Clustersg if  *(c1, c2)    c = +(c1, c2)  
in which *  R and +  R in the case of ><GR while *  

S and +S in the case of ><GS .  
Labelc Rankingsc and Crankc are computed as functions of 
Contentc. 
Labelg

 is defined as a function of the items in the clusters of g.  
It can be proved that both ><GR and ><GS are reflexive, 
commutative, and monotonic, and ><GR is also associative. 
These operators allow filtering clusters of correlated topics, 
when they share some topic. Example of application of the 
group join operators are provided in the next section. 
 
IV.  EXAMPLE OF PERSONALIZED EXPLORATORY ACTIVITY BY 

THE AID OF THE SOFT OPERATORS  

Matrioshka is a meta-search system designed and 
implemented to perform personalized explorations of the 
results retrieved in a Web search process [1][2]. Among its 
functionalities, it allows: submitting queries to four search 
engines (Google, Google Scholar, Yahoo! and Bing). It allows 
clustering the list of results. Finally, it makes available the 

operators for manipulating groups, that the user can apply for 
combining pairs of lists to explore their shared contents and 
documents. Notice that, since this manual application of 
operators can be uneasy for inexperienced users, Matrioshka 
provides an alternative way for exploring the shared contents 
between distinct groups. The graph utility is made available 
that displays, in the form of labeled multi-granular graphs, the 
results in the selected groups, and their shared documents 
obtained by applying their group ranked intersection and 
group soft intersection [3]. 
To show an example of exploratory analysis by the use of the 
soft operators, we submitted the two queries “Proceedings 
SIGIR” and “Proceeding ECIR” to Google Scholar through 
Matrioshka; then, we executed a Ranked Intersection with the 
results of the previous queries. Observing that we got an 
empty group, we tried a Soft Intersection by setting the 
minimum similarity threshold to =0.5. This time we obtained 
the group entitled “Proceeding information ACM Retrieval 
Conference” (indeed both SIGIR and ECIR are ACM 
conferences on IR themes) containing 13 clusters with 
documents dealing with shared topics in the input groups (see 
Figure 1) 

 
g1=“Proceedings information ACM retrieval conference” 

C1 Scores distribution in Information retrieval 
C2 Interactive visualization of multiple query results 
C3 Query expansion using random walk models 
C4 Empirical studies of information visualization: a meta-analysis  
C5 Retrieval constraints and words frequency distributions: a log logistic 
model for IR 
C6 Categorizing paper documents… 
C7 Language models for Information Retrieval 
C8 Methods and apparatus for distributed indexing and retrieval  
C9 Apparatus and Methods for collaboratively searching knowledge 
databases 
C10 Where to start reading a textual XML documents 
C11 Advances in Information Retrieval  
C12 Hierarchical clustering with real time updating 
C13 Automatic construction of known item finding test-bed 

 
Fig 1: clusters in the group g1 are obtained by executing  

“Proceeding SIGIR”GS
0.5 “Proceeding ECIR”  

Finally, we applied the Group Soft Join operator to generate a 
group containing documents dealing with correlated topics. 
At first, we set =0.5 to require a strong correlation between 
the clusters. One group g2 containing two clusters g2.C1 and 
g2.C2 of correlated topics was generated (see Figure 2). One 
could question why the number of shared topics between two 
input groups, i.e., the number of clusters in g1, is greater than 
the number of correlated topics between the same two input 
groups, i.e., the number of clusters in group g2. The reason is 
that correlation is a less strict relationship than sharing. Notice 
that two homonymous clusters exists in g1 and g2: in fact 
g1.C2 and g2.C1, as well as g1.C3 and g2.C2, have the same 
label, but different content since g2.C1 and g2.C2 contain 
additional documents w.r.t. g1.C2 and g1.C3 respectively. 
We reapplied the Group Soft Join operator by decreasing the 
minimum correlation =0.2: this time, we obtained the group 
g3 with 11 clusters of correlated topics (see Figure 2). This 
greater number of clusters in g3 w.r.t. the number of clusters 
in g2 is due to the fact that, by decreasing the correlation 



threshold, we get a not empty soft intersection for more than 
two pairs of input clusters. Notice that also in g3 we have the 
two clusters g3.C4 and g3.C6 homonymous of g1.C2 and 
g1.C3 respectively. 
Figure 3 illustrates another example in which we submitted 
the same query “visit Greece” to Yahoo! and Bing and further, 
in order to filter the most relevant results, we applied a 
Ranked Intersection and finally a Soft Intersection. It can be 
observed that the Group resulting from the Soft Intersection 
contains additional documents w.r.t. the group resulting from 
the Ranked Intersection.  
 

g2=“Proceedings information ACM retrieval conference”= 
“Proceeding SIGIR”><GS

0.5 “Proceeding ECIR” 
C1 Interactive visualization of multiple query results 
C2 Query expansion  using random walk models 

g3=“Proceedings retrieval information ACM conference”= 
“Proceeding SIGIR”><GS

0.2 “Proceeding ECIR” 
C1 Methods and apparatus for extracting data from data sources on a 
network 
C2 Categorizing paper documents 
C3 Systems and methods for querying multiple, distributed databases  
C4 Query expansion using random walk models 
C5 Facilitating WWW search utilizing a multiple search engine query 
clustering fusion 
C6 Interactive visualization of multiple query results 
C7 The effects of topic familiarity on information search behaviour 
C8 Cha-cha: a system for organizing intranet search results 
C9 Where to start reading a textual XML documents 
C10 Advances in Information Retrieval  
C11 Report on the 25th European conference on information retrieval 
research (ECIR-03) 

Fig 2: Two output Groups obtained by the execution of “Proceeding SIGIR 
“ ><SG  “Proceeding ECIR” with correlation =0.5 and =0.2 respectively 

 
g4=“visit Greece” to Yahoo! g5=“visit Greece” to Bing 
C1=Visit Greece Answerbag C1=Week 
C2=Greece Tourism C2=Ancient Greece 
C3=Greek Islands C3=Time to visit Greece 
C4=Greece Holiday Hotels Flights  C4=Northeastern Aegean Islands 
C5=Time to visit Greece C5=Places to visit 
C6=Destination C6=American Jewish Leaders 
C7=Top Reasons C7=Getting 
C8=Athens Greece Holiday 
Package 

C8=Reasons to visit Greece 

C9=Greece Honeymoon  
C10=Services  
C11=Ancient Greece  
C12=Visit Greece events  
g6= g1 R g2 
= “best Greece travel visit guide” 

g7 = g1 S g2 
=”Greece travel visit best” 

C1 =Greece travel 
Visit Greece 
Greece Tourism | Best Places.. 
The best of Greece 

C1=Greece travel 
Visit Greece 
Greece Tourism | Best Places.. 
Holidays in Greece, Go to .. 
The best of Greece 

C2=Places to visit 
Greece Tourism | Best Places.. 
Greece Places to visit 

Fig 3: Groups g4 and g5 are obtained by submitting “visit Greece” to Yahoo! 
and Bing respectively, groups g6 and g7 are obtained by the Rintersection and 

SIntersection of g4 and g5  

 
V. CONCLUSIONS 

In the paper we defined some soft operators for combining 
information granules of distinct resolution which represent 
web pages retrieved by distinct searches submitted to possibly 
distinct search engines. We discussed their properties and 
their application for web exploration. We figure out that the 
main use of these operators is for exploring the contents 
relationships between the results of distinct queries to search 

engines. We further figure out that their repetitive nested 
application does not make too much sense and will be rarely 
needed. Thus, the fact that the soft operators are not 
associative is not a big concern in practical use. Nevertheless, 
further studies are needed to assess their potential utility.  
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