
Soft Operators for Exploring Information Granules of
Web Search Results

Gloria Bordogna Giuseppe Psaila
Institute for the Dynamics of Environmental Processes Faculty of Engineering

National Research Council of Italy University of Bergamo
Via Pasubio 5, 24044 Dalmine (BG), Italy Viale Marconi 5, 24044 Dalmine (BG), Italy

gloria.bordogna@idpa.cnr.it psaila@unibg.it

 Abstract - The paper defines some soft aggregation operators
for combining results of Web searches, organized into
information granules of distinct resolution. We propose to use
them to perform personalized explorations of the contents
retrieved by distinct queries to possibly distinct search engines
on the Internet. These operators exploit the contents of the result
lists retrieved by search engines to discover shared and
correlated contents between web pages. We present their
application within the meta-search system Matrioshka and
discuss their semantics and utility.

I. INTRODUCTION

 The motivation of this work is to optimize the search
processes on the Internet, actually consisting of multiple query
reformulations [9], by providing some means for analyzing the
contents already retrieved by a query or a set of queries. The
objective is improving the potential exploitation and
comprehension of the contents retrieved by multiple Web
searches to classic search engines. This is pursued by offering
consultation indications alternative to the usual ranked list.
It is well known that one drawbacks of the way users search
information on the Internet by submitting queries to search
engines is that they formulate vague requests, consisting of at
most three terms [9] [10], and as a result they are overloaded
with huge amounts of web pages dealing with diversified
topics, that they rarely analyze below the second page of
results. As a result of multiple searches with the same target,
possibly submitted to several search engines, one needs to
filter out the relevant documents among those already
retrieved. Specifically, we provide users with some practical
means for exploring the overall set of results of several web
searches, to filter out their shared documents, shared contents,
correlated documents and correlated contents. The
highlighting of hidden relationships between documents
retrieved by distinct queries, can help understanding the topics
dealt with in the documents text, and thus gives new hints on
their relevance [13][14][17]. In order to make this task
feasible, it is not possible to exploit the full content of the
documents retrieved by the query (that would require an
HTTP access to the web pages in the reported result lists); on
the contrary, our solution extracts the necessary information
from within the texts (titles and snippets) reported in the result
lists provided by the search engines [5][13][15]. The operators

that we define are derived from relational algebra and are
defined based on fuzzy set theory [18].
In the paper, we first introduce the information granules that
are the objects that we combine by the operators. Then, we
define the operators used to combine the information granules
to identify their shared documents and contents. Finally, an
example of application of the operators within the meta-search
system Matrioshka and its results are discussed [2][3].

II. MULTI-GRANULAR WEB SEARCH RESULTS

 In this section, we summarize the data model, first
introduced in [1], i.e., the multi-granular organization of the
results of web searches, which constitute the basic bricks of
information that the soft operators can combine.
We start by considering a query q submitted to a search
engine; its result is a ranked list of web pages; an item
represents a retrieved web page referred in the ranked list.

Definition 1: Item
An item i is the finest granule of information that the operators
can manipulate. It represents (an instance of) a document
retrieved by a web search. It is described by the following
tuple of attributes:

i : <Urii,Titlei,Snippeti, Bagi ,Iranki>
Urii is the Uniform Resource Identifier of the ranked web
document;
Titlei and Snippeti are, respectively, the document title and
snippet;
Bagi is a bag of strings (single terms), each one weighted with
a score in [0,1], expressing the significance of the string in
representing the contents of the item; in Section 3, the
procedure for the generation of Bagi is detailed;
finally, Iranki is a score (in the range [0, 1]) that expresses the
estimated relevance of the retrieved document w.r.t. the query
and is computed as detailed in Section 3 (this is the reason
why sometimes an item is named ranked item).

Definition 2: Cluster
A cluster c corresponds to an information granule composed
of items, having a rank. It is defined by the tuple:

c : <Labelc,Contentc,Rankingsc,Crankc>.
Labelc is a set of terms that semantically synthesize the main
content of the cluster;
Contentc is the set of items associated with the cluster;

Rankingsc is a pool of values that measure (in the range [0, 1])
different properties of clusters, while Crankc is a user-defined
combination of measures in Rankingsc (measures in Rankingsc
and the way Crankc is computed was presented in [3]).
Notice that Labelc, Rankingsc and Crankc are computed as
functions of Contentc. This ensures that whatever the cluster c
was generated, if two clusters have the same content, they also
have the same label, and rankings.
A cluster can be generated by applying an operator combining
two other clusters or by a clustering operation applied to a
coarser information granule, a group, defined hereafter.

Definition 3: Group
A group g is the main element of the data model. It is the
coarsest information granule composed of ordered clusters. It
is described by the pair:

g : <Labelg,Clustersg>
Clustersg is the set of clusters belonging to the group.
A group can be obtained from the ranked list of documents
retrieved by a search engine, or can be generated by an
operator working on groups.
Labelg is the label of the group: it is a set of terms that
semantically synthesize the main contents of the group.
Labelg is generated based on a function of all the items in all
clusters of the group. Specifically, for a group generated by a
query to a search engine, it is the text of the query submitted
to the search engine; otherwise it is the title of the ranked item
most representative of the group, as defined in [1].

III. DEFINITION OF THE SOFT OPERATORS FOR COMBINING

INFORMATION GRANULES OF SEARCH RESULTS

 Before we define the soft operators, we need to introduce
some preliminary operations necessary to generate the
information granules introduced in the previous section.

A. Generation of items
An item i is generated by parsing the list of ranked results
returned by a search engine that evaluated a query.
Notice that the same web page retrieved by different search
engines (or by different queries) may be represented by
distinct items in distinct result lists. In fact, in this case the
document is uniquely identified by the same Urii, while it may
have distinct Titlei, Snippeti , Bagi and Iranki.
We compute Iranki as a function of the position Pos(i) of the
item in the query result list, defined as follows:

 
N

iPosN
Iranki

1
 (1)

Where N is the number of ranked items in the result list. Thus,
it is independent of the actual relevance score computed by
the search engine.
On the other side, distinct web pages have distinct Uris but
may share the same or similar titles and snippets, because they
are indeed duplicated documents at distinct web sites retrieved
by the same query.
A bag of weighted strings is defined by the fuzzy set:

Bagi ={ s1/ws1, …, sn/wsn},

with s being a string and ws[0,1]. Bagi represents the main
contents of an item i.
The strings in Bagi are obtained by performing lexicographic
analysis of the Urii, Titlei and Snippeti of item i by applying
Lucene functions [12]: stop-words are removed, words
stemming is applied, single terms are expanded with
associated terms by using Wordnet [6]; finally, all the selected
single terms are included in Bagi. Each string s in Bagi is
weighted by its relative frequency ws: an occurrence in the Uri
and title is considered as twice occurrences in the snippet, and
the total number of occurrences of a string is then normalized
w.r.t. the sum of all weights of all strings in Bagi so that it is
ws [0,1].

B. Generation of Groups
An immediate way to generate a group of ranked items is to
perform a Web search by submitting a query q to a search
engine SE through a call to the CQuery operator as follows:
CQuery(q, SE). Further, the N top ranked items in the list of
retrieved results are clustered, by applying a clustering
algorithm as the one described hereafter. A group of ranked
clusters containing the items is thus generated.

C. Generation of Clusters
The second operation that we introduce is the clustering of the
results of each query. To this end, in the implemented
prototypal system Matrioshka [3], the Lingo clustering
algorithm [9] is used, which performs an efficient flat crisp
clustering of the retrieved documents on the basis of the titles
and of the snippets, expanded based on Wordnet.
Since the label of a cluster must help the user to understand
the main topic of the cluster, and since clusters are built in
such a way clustered documents are similar as far as the
content of title and snippet is concerned, the most relevant
document w.r.t. the query is the one that best represents the
main topic. For this reason, we decided that Labelc = Titlei,
i.e., the title of item iContentc which is the most relevant
item in the cluster. Notice that we do not need to access the
text of the documents for extracting the features necessary to
cluster them. We parse the result list provided by the search
engine, containing the first N results, and extract all the
information which constitutes the representation of a ranked
item.

D. Comparing Items
Two functions are defined to compare pairs of ranked items,
that serve distinct purposes.
The first one, named match performs and exact matching of
the Uris of two items i and j:

match(i,j)=1 if Urii = Urij else 0 (2)

This function is used to verify if the two items i and j refer
indeed the same web page, assuming as unique identifier of
the page its Uri. The rationale of this assumption is the fact
that the same document, retrieved by two different search

engines, may have different title and snippet, but have the
same Uri.
Nevertheless, it can happen that the same web page is
duplicated at distinct sites, or its contents are near duplicates,
so two web pages may differ just for their Uris while they may
have very similar contents. This motivates the introduction of
other matching functions which do not identify an item by its
Uri but by its bag of string Bagi, regarded as a fuzzy set. Then,
the comparison of two items is formalized by partial matching
functions defined as fuzzy relations between fuzzy sets.
The first function is a weak fuzzy inclusion, indicated by I

F
computing a degree of subsethood of the first argument i in
the second argument j, respectively [11] [14]:

   

 







i

i

Bagk
ki

Bagk
kjki

F
I

wBag

wBagwBag

ji

),min(

),(
 (3)

I
F(i,j) [0,1] and we assume that, when a string s of Bagi is

not present in Bagj its weight is zero. This subsethood
measure gets the value zero when the bags of strings Bagi and
Bagj do not have any common string; it gets the maximum
value 1 when all the strings in Bagi are also present with a
greater-equal weight in Bagj; it gets intermediate values in
(0,1) when the two bags have some common entry. This
function satisfies these properties [11]:

I
F (i, i) = 1;

I
F (i, k) = 1 iff Bagi  Bagk

I
F (i, k) = 0 iff Bagi  Bagk = 

if Bagi  Bagk

 it is I
F (s, i)  I

F (s, k)  I
F (i, s)  I

F (k, s)
Notice that this fuzzy inclusion is not TZ transitive, i.e. it does
not satisfy the following:

 TZ(I
F (i, j), I

F (j, k))  I
F (i, k)

in which TZ is the Zadeh T-norm defined as the min [6].
This function is used to evaluate how much the contents of an
item i are also dealt by another item j. The degree it computes
is interpreted as the extent of the relative specificity of the
contents dealt with by i w.r.t. the contents dealt with by j.

Another matching function is the similarity between two
items, computed based on the generalized Jaccard coefficient:

   

   






i

i

Bagk
kjki

Bagk
kjki

wBagwBag

wBagwBag

jisim
),max(

),min(

),(
 (4)

It was proved that this function is reflexive, symmetric, and
TW-transitive (where TW is the Luckasiewicz T-norm
TW(x, y)=max(x + y - 1, 0) [5]:

sim(i, i) = 1;
sim(i, j) = sim(j, i);
TW(sim(i, j), sim(j, k))  sim(i, k)

This function is used to estimate the percentage of shared
contents between two items.

E. Operations between Clusters
In this context, we regard a cluster as a fuzzy set of web
pages; Irank is the membership degree of the web page
identified by its Uri. A ranked item represents the contents of

a web page.
We define the intersection and union operations between
clusters in two different forms.
The ranked intersection, RIntersection, and the ranked union,
RUnion, are defined as classic operators between fuzzy sets
because they perform an exact matching between the Uris of
the items that uniquely identify the web pages.
The soft intersection, SIntersection, and the soft union,
SUnion, are named soft operators because they identify the
ranked items through their bags of weighted strings, which
represent the contents of the web pages and that are fuzzy
subsets of strings. These soft operators are defined to combine
fuzzy sets of fuzzy sets.

Definion 4: Ranked Intersection
Consider the ranked intersection of two clusters c1 and c2,
denoted by :

c = RIntersection(c1, c2) = R(c1, c2) (6)
i ContentR(c1,c2)

iff  i1Contentc1   i2Contentc2 | match(i1, i2), for which

if (Iranki1  Iranki2) then
(in this case i1 and i2 have distinct Irank but identify the same
web page retrieved by two distinct searches or search engines)

Iranki = min(Iranki1 , Iranki2)
Urii = Urii1
Titlei = ArgminTitlek{Titlei1, Titlei2} (Irankk)
Snippeti = ArgminSnippetk{Snippeti1, Snippeti2} (Irankk)
Bagi = ArgminBagk{Bagi1, Bagi2} (Irankk)

else
(in the case i1 and i2 have the same Irank but identify the same
web page too)

Iranki = Iranki1
Urii = Uri1
Titlei = shortest(Titlei1 , Titlei2)
Snippeti = shortest (Snippeti1 , Snippeti2)
Bagi = Bagi1  Bagi2

where function shortest returns the shortest argument and match is
defined as in (2) and returns 1 when Urii1 = Urii2.
This definition is consistent when we regard a cluster as a
fuzzy set of items, and consider the Irank of an item as its
membership degree to the cluster [12]. Labelc Rankingsc and
Crankc are computed as functions of Contentc.

Definion 5: Ranked Union
The ranked union, denoted by RUnion, is defined as follows:

c = RUnion(c1, c2) = R(c1, c2): (7)
i ContentR(c1,c2)

if  i1 Contentc1   i2 Contentc2 |
match(i1,i2), then i=i1

else (there exists a i2 with the same Uri)
if (Iranki1  Iranki2) then

Iranki = max(Iranki1 , Iranki2)
Urii = ArgmaxUrik{Urii1, Urii2} (Irankk)
Titlei = ArgmaxTitlek{Titlei1, Titlei2} (Irankk)
Snippeti = ArgmaxSnippetk{Snippeti1, Snippeti2} (Irankk)
Bagi = ArgmaxBagk{Bagi1, Bagi2} (Irankk)

 else (Iranki1 = Iranki2)
Iranki = Iranki1

Urii = Urii1
Titlei = longest(Titlei1 , Titlei2)
Snippeti = longest(Snippeti1 , Snippeti2)
Bagi = Bagi1  Bagi2

if i2 Contentc2 | match(i1, i2), i1  Contentc1

then i=i2

where function longest returns the longest argument and match is
defined in (2).
Labelc Rankingsc and Crankc are computed as functions of
Contentc .
The Iranki of ic is the maximum Irank value of i1 and i2,
assuming that Iranki1 = 0 (resp. Iranki2 = 0) when no item with
that Uri belongs to c1 (resp. c2).
To obtain the Title, the Snippet and the Bag of the items
belonging to the resulting cluster, we select, as resulting Title,
Snippet and Bag, those belonging to the document having the
smallest (in the case of Ranked Intersection) or the greatest (in
the case of Ranked Union) value of Irank, without making any
change. The rationale of this choice is the fact that, in the
aggregation based on the intersection (resp. union), we want
to represent the document by its worst (resp. best)
representative, in accordance with the modeling of the AND
and the OR within fuzzy set theory [12]. When their Uris and
Iranks are equal, which can occur when the same web page is
retrieved in the same position of two ranked lists by distinct
queries, we take the shortest (longest) titles and snippets in the
case of intersection (union) and generate a bag that is the
intersection (union) of the two bags.
Since an item ultimately identifies a web page, a cluster can be
regarded as a fuzzy set of web pages, and thus R and R are
indeed the intersection and union of fuzzy sets. It follows
from the properties of the intersection and union of fuzzy sets
based on the min and max that are idempotent, that also R
and R satisfy the idempotency, commutativity, associativity,
distributivity properties:
R(c, c) = c R(c, c) = c
R(c1, c2) = R(c2, c1) R(c1, c2) = R(c2, c1)
R(R(c1, c2), c3) = R(c1 , R(c2, c3))
R(R(c1, c2), c3) = R(c1 , R(c2, c3))
R(R(c1, c2), R(c1, c3)) = R(c1, R(c2, c3))
R(R(c1, c2), R(c1, c3)) = R(c1, R(c2, c3))
Further R (c , cc)   R (c , cc) = (R (c ,cc)c

where cc is the complement of cluster c defined so as to
contain the same items of c but with a membership degree:
cc (i)=1-c(i)
Let us make an example considering the items in clusters c1
and c2 reported in Table 1.
R(c1,c2)={u2/0,7} where u2.title=”Italian costal tourist
centers” and Bag=Bagc1.u2  Bagc2.u2 = {Venice/0,9} since u2
is the only item having the same Uri and Irank in c1 and c2.
R(c1, c2)={u1/0,8; u3/0,9; u2/0,7} where u2.title=”Italian
costal tourist centers” an Bag=Bagc1.u2Bagc2.u2={ Venice/1;
laguna/0,8; Genoa/0,8; Rome/0,5 Capri/0,9 }
With such a strict definition of the intersection between
clusters, the ranked items that represent duplicated web pages

are filtered out from the result since their Uris are different (in
the example items u1 and u3). In particular situations, this
could be a limitation, since one would like to identify ranked
items dealing with similar and duplicated topics. Let us
consider, for example, the page of Expedia of the same hotel
but retrieved in two different searches with two different dates
of booking. They refer to the same hotel in the same Web site,
but they have different Uris. With the RIntersection operator,
these web pages are considered distinct, even if their
semantics is the same.
In order to overcome this limitation, we defined the Soft
Intersection between clusters. As a result, it yields a cluster c
generated considering the shared contents between the set of
titles and snippets of the ranked items belonging to the input
clusters. Then, it identifies topics that represent shared
contents between clusters.
On the other side, the ranked union duplicates items that
correspond to near duplicated web pages (in the example
items u1 an u3) while in these cases it would be desirable to
obtain just one item. To cope with this limitation of the ranked
union, we defined the Soft Union operator.

Table 1: ranked items
cl uri title bag Irank
c1 u1 Mediterranean

tourist points of
interest

{ Athens/1; Zante/0,9;
Creta/1; Capri/1;

Portofino/0,8;
Venice/1; Palma de
Mallorca/1; Saint-

Tropez/1;
Monaco/0,8; Zara/1 }

0,8

 u2 Italian costal
tourist centers

{ Venice/1;
laguna/0,8;}

0,7

c2 u3 Mediterranean
tourist cities

{ Athens/1; Venice/1;
Monaco/0,8; Zara/1 }

0,8

 u2 Italian costal
tourist centers

{ Venice/0,9;
Genoa/0,8; Rome/0,5

Capri/0,9; }

0,7

Definition 6: Soft Intersection
The soft intersection operation SIntersection, denoted by S,
performs the content intersection of two clusters c1 and c2 of
ranked items and returns a new cluster c of ranked items.
To define it, we uniquely represent an item i by its bag of
strings Bagi, that is, by a fuzzy subset of all possible strings.
Then, the definition of the Soft Intersection (and Soft Union)
is the intersection (and union) of fuzzy sets of fuzzy sets.
Notice that this is different from the intersection (and union)
of type-2 fuzzy sets [4]. In our context, the items refer to web
pages, and the operators must return references to web pages
associated with the items in the input clusters. In order to do
this, we first apply a partial matching between the Bags of
any pairs of items in the two input clusters to identify items
sharing similar contents. Then, once these items pairs are
identified, from them we select those that are most specific
w.r.t. the contents of their most similar items in the other
cluster. S is defined as follows:

c = SIntersection(c1, c2) = S (c1, c2) (8)

j  ContentR(c1,c2) i  ContentS(c1,c2) | i=j

i1Contentc1  i2Contentc2 | i1 ContentR(c1,c2) 
 i2= Argmax ikContentc2 | (sim(i1,ik)  match(i1,ik)) (sim(i1,ik)),

 ! i  ContentS(c1,c2) | Iranki = min(Iranki1, Iranki2) for which
 if ((I

F(i1, i2)) > (I
F(i2, i1)) 

 (I
F(i1, i2) = I

F(i2, i1)  (Iranki1 < Iranki2)), then
Urii = Urii1
Titlei = Titlei1
Snippetii = Snippeti1
Bagi = Bagi1

 else if (
I
F(i1, i2) = I

F(i2, i1)  Iranki1=Iranki2)), then
Urii = Urii1
Titlei = shortest(Titlei1 , Titlei2)
Snippeti = shortest (Snippeti1 , Snippeti2)
Bagi = Bagi1  Bagi2

 else if i2 ContentR(c1,c2) , then
Urii = Urii2
Titlei = Titlei2
Snippeti = Snippet2
Bagi = Bag2

i2Contentc2  i1Contentc1 | i2 ContentR(c1,c2) 
 i1=ArgmaxikContentsc1|(sim(ik,i2)  match(ik,i2)) (sim(ik,i2))

  ! i  ContentS(c1,c2) | Iranki = min(Iranki1, Iranki2) for which
 if ((I

F(i1, i2)) < (I
F(i2, i1)) 

 (I
F(i1,i2) = I

F(i2,i1)  (Iranki2< Iranki1)), then
Urii = Urii2
Titlei = Titlei2
Snippeti = Snippeti2
Bagi = Bagi2

 else if (I
F(i1, i2) = I

F(i2, i1)  Iranki1=Iranki2)), then
Urii = Urii2
Titlei = shortest(Titlei1 , Titlei2)
Snippeti = shortest (Snippeti1 , Snippeti2)
Bagi = Bagi1  Bagi2

 else if i1 ContentR(c1,c2) then
Urii = Urii1
Titlei = Titlei1
Snippeti = Snippeti1
Bagi = Bagi1

in which is a minimum similarity degree and I

F and sim are
defined as in formulae (3) and (4) respectively.
Labelc Rankingsc and Crankc are computed as functions of
Contentc.
Some properties can be proved.
R(c1, c2)  S (c1, c2) [0, 1] by definition.
Idempotency
From the previous and since R is idempotent it follows that
S(c, c)  c and, since there cannot be two items with the
same Uri in a cluster S(c, c) = c.
Commutativity
Since sim and match functions and the two conditions in (8)
are symmetric, we have that:
S (c1, c2) = S (c2, c1)
From the properties of R it also follows that:
S(c, cc)  
Further, S(c1, S(c2, c3))  S(S(c1, c2), c3) for (0,1] .

The associativity property is not satisfied, since the selection
condition based on the minimum (not null) similarity and the
inclusion may filter out from the intermediate results elements
that cannot be recovered any more. For example, let us
consider the case in which i1c1 which is more specific than
any other similar item jS(c2, c3): it follows that i1S(c1,
S(c2, c3)). At the same time, it can happen that  an item
i2c2 similar to i1 and most specific so that i1S(c1, c2),
and at the same time not enough similar to any i3c3 so that
i2S(c2, c3): it follows that i1S(S(c1, c2), c3).
On the other side, when =0, the condition on the minimum
similarity is not imposed. Nevertheless, also in this case
associativity is not satisfied, due to the fact that I

F is not
transitive. Consider the previous counter example: assuming
i1c1 is more specific than any other item jS(c2, c3) so
that i1S(c1, S(c2, c3)). If there exists an item i2c2 most
specific then i1 so that i1S(c1, c2), there must be an item
i3c3 so that i3S(c2, c3), i.e., i3 is most specific than any
other item in c2. If this happens, in order to guarantee
associativity i3 should be also more specific than i1, and this
cannot be stated since I

F is not transitive.
The Soft Intersection relaxes the constraint of the Ranked
Intersection. It generates a cluster c that contains both the
results of the Ranked Intersection of the two input clusters c1
and c2, plus the items of the input clusters that have the most
specific contents w.r.t. those dealt with in the most similar
item of the other cluster, as it can be guessed from their Bags.
Let us explain the rationale of this definition with a simple
example. Given two documents, one dealing with
“Mediterranean Tourist Points of Interest”, and the second
with “Mediterranean Tourist cities”, they probably share most
of the places listed in the second document, since the
Mediterranean Tourist cities are indeed Mediterranean Points
of Interest, but the vice versa is unlikely to occur, because the
first document contains also names of islands, and picturesque
villages, such as Capri, Portofino, Saint-Tropez and so on. So,
the Soft Intersection retains only the shared contents, i.e., the
second document on Mediterranean cities.
Consider the example in Table 1, by setting =0 we obtain:
S(c1, c2)={u2/0,7; u3/0,8}
u2 is obtained since it belongs to R(c1,c2) and u3 is
obtained since it is more specific than u1: I

F(u3,u1)
>I

F(u1,u3).

Definition 7: Soft Union

The operation SUnion, denoted by S, performs the content

union of two clusters c1 and c2 of ranked items.
To define it, we uniquely represent an item i by its bag of
strings Bagi and we evaluate a partial matching of any pairs of
Bags of the items in the two input clusters.
S is defined as follows:

c = SUnion(c1, c2) = S (c1, c2) (9)
j  ContentR(c1,c2) i  ContentS(c1,c2) | i=j

i1  Contentc1 | i1  ContentR(c1,c2)
 if  i2Contentc2 | sim(i1,i2) <  then

 ! iContentS(c1,c2) | i=i1
 else ( i2Contentc2 | sim(i1,i2)  ) for which

if ( I
F(i1,i2) = I

F(i2,i1)  Iranki1 = Iranki2), then

! i ContentsS(c1,c2) | i=i1  ! j ContentsS(c1,c2) | i=i2

 else if (I
F(i1,i2) < I

F(i2,i1))
  ( I

F(i1,i2) = I
F(i2,i1)  Iranki1 > Iranki2) then

! i ContentS(c1,c2) |
Iranki=max(Iranki1, Iranki2)
Urii = Urii1
Titlei = Titlei1
Snippeti = Snippeti1
Bagi = Bagi1

 else if I
F(i1,i2) > I

F(i2,i1)
 ( I

F(i1,i2) = I
F(i2,i1)  Iranki1 < Iranki2) then

!i ContentS(c1,c2) |
Iranki=max(Iranki1, Iranki2)
Urii = Urii2
Titlei = Titlei2
Snippeti = Snippeti2
Bagi = Bagi2

 i2  Contentc2 | i2  ContentR(c1,c2)
 if  i1Contentc1 | sim(i1,i2) <  then
 !iContentS(c1,c2) | i=i2
 else ( i1Contentc1 | sim(i1,i2)  ) for which

 if (I
F(i2,i1) < I

F(i1,i2))
  ( I

F(i1,i2) = I
F(i2,i1)  Iranki2 > Iranki1) then

! i ContentS(c1,c2) |
Iranki=max(Iranki1, Iranki2)
Urii = Urii2
Titlei = Titlei2
Snippeti = Snippeti2
Bagi = Bagi2

 else if I
F(i2,i1) > I

F(i1,i2)
 ( I

F(i1,i2) = I
F(i2,i1)  Iranki2 < Iranki1) then

!i ContentS(c1,c2) |
Iranki=max(Iranki1, Iranki2)
Urii = Urii1
Titlei = Titlei1
Snippeti = Snippeti1
Bagi = Bagi1

in which is a minimum similarity degree and I
F and sim are

defined as in (3) and (4), respectively. The notation “! i” stands for
“there exists one and only one i.
Labelc Rankingsc and Crankc are computed as functions of
Contentc.
Some properties can be proved: S is idempotent,
commutative, and monotonic not decreasing.
Idempotency
S(c, c) = c
Since duplicated items with the same Uri are not allowed in a
cluster, we have that S(c, c)  R(c, c);
Further  iS(c, c)  iR(c, c);
Assuming that iS(c, c)  iR(c, c) would mean that jc
| sim(i,j) that is more general than i or that has a smaller
Irank; nevertheless, this condition would be satisfied:
( I

F(i1,i2) = I
F(i2,i1)  Iranki1 = Iranki2), so iS(c, c).

Commutativity
S (c1, c2) = S (c2, c1) since sim and the two conditions in

(9) are symmetric.

Further, R (c1, c2)  S (c1, c2)
If  iS(c1, c2) and iR(c1, c2), it means that ic1 and
ic2, thus i does not exists, which contradicts the assumption.

S(S(c1, c2), c3)  S(c1, S(c2, c3))
The associativity property is not satisfied due to the condition
on the similarity and the intransitivity of the weak fuzzy
inclusion.
The Soft Union restricts the ranked union by eliminating, from
its results, the most specific items having a similar item in the
other input cluster. Let us give an example of utility. Assume
that we want to have a panoramic overview of the
Mediterranean Tourist information by eliminating redundant
contents; having two documents, one dealing with
“Mediterranean tourist points of interest”, and the second
with “Mediterranean Tourist cities”, we want to eliminate the
second document from the results and keep the first one that is
more general: to achieve this, we apply a Soft Union. Consider
the example in Table 1, by setting =0 we obtain:
S(c1, c2)={u2/0,7, u1/0,8}
u2 is obtained since it belongs to R(c1,c2) and u1 is
obtained since it is more general than u3: I

F(u3,u1)
>I

F(u1,u3).

The distributivity property of S w.r.t. S and viceversa do not
hold due to the not associativity of S and S:
S (S(c1, c2) ,S(c1, c3))  S(c1, S(c2, c3))
S (S(c1, c2) , S(c1, c3))  S(c1, S(c2, c3))

F. Operators between Groups
There are several operators taking Groups, i.e., the coarsest
granules of information that we can manipulate, as arguments
and generating a new group. They are defined based on the
cluster operations previously introduced. Here, we just define
the basic ones used to identify shared documents and contents
and correlated documents and contents.

Definition 8: Group Intersection Operators : GR and GS
The Group Ranked Intersection operator GR and the Group
Soft Intersection operator GS are defined so as to exploit the
Ranked Intersection R and the Soft Intersection S between
all the pairs of clusters belonging to the two input groups.
Given two groups of clusters g1 and g2, both GR and GS
hereafter indicated simply by  are defined as follows:

g = (g1, g2) |
 (c1, c2) | c1Clustersg1  c2 Clustersg2

c Clustersg if *(c1, c2)   
c = *(c1, c2) in which *  R in the case of GR while

*S in the case of GS .
Labelc Rankingsc and Crankc are computed as functions of
Contentc.
Labelg

 is defined as a function of the items in all clusters of g.

It can be proved that GR and GS are idempotent,
commutative. Further GR is also associative while GS is
not.
Example of application of the group intersection operators are
provided in the next section.

Definition 9: Group Union Operators GR and GS
The group ranked union operator GR and the group soft
union operator GS are defined so as to exploit the ranked
union R and the soft union S between all the pairs of
clusters originated from the two input groups.
Given two groups of clusters g1 and g2, both GR and GS
hereafter indicated simply by  are defined as follows:
g =  (g1, g2)
(c1, c2) | c1Clustersg1  c2 Clustersg2

c Clustersg | c = +(c1, c2), in which +  R in the
case of GR while +S in the case of GS .

Labelc Rankingsc and Crankc are computed as functions of
Contentc.
Labelg

 is defined as a function of the items in all clusters of g.
It can be proved that these operators are idempotent,
commutative, and monotonic.
Further GR is also associative while GS is not.
This operator allows generating clusters of all (non redundant)
contents dealt with in pairs of input clusters.

Definition 10: Group Join Operators ><GR and ><GS
The Group Ranked Join operator ><GR and the Group Soft
Join operator ><GS are defined so as to exploit the crisp and
soft operators between all the pairs of clusters belonging to the
two input groups.
Given two groups of clusters g1 and g2, both ><GR and ><GS
hereafter indicated simply by >< are defined as follows:

g = ><(g1, g2)
 (c1, c2) | c1Clustersg1  c2 Clustersg2

c Clustersg if *(c1, c2)    c = +(c1, c2)
in which *  R and +  R in the case of ><GR while * 

S and +S in the case of ><GS .
Labelc Rankingsc and Crankc are computed as functions of
Contentc.
Labelg

 is defined as a function of the items in the clusters of g.
It can be proved that both ><GR and ><GS are reflexive,
commutative, and monotonic, and ><GR is also associative.
These operators allow filtering clusters of correlated topics,
when they share some topic. Example of application of the
group join operators are provided in the next section.

IV. EXAMPLE OF PERSONALIZED EXPLORATORY ACTIVITY BY

THE AID OF THE SOFT OPERATORS

Matrioshka is a meta-search system designed and
implemented to perform personalized explorations of the
results retrieved in a Web search process [1][2]. Among its
functionalities, it allows: submitting queries to four search
engines (Google, Google Scholar, Yahoo! and Bing). It allows
clustering the list of results. Finally, it makes available the

operators for manipulating groups, that the user can apply for
combining pairs of lists to explore their shared contents and
documents. Notice that, since this manual application of
operators can be uneasy for inexperienced users, Matrioshka
provides an alternative way for exploring the shared contents
between distinct groups. The graph utility is made available
that displays, in the form of labeled multi-granular graphs, the
results in the selected groups, and their shared documents
obtained by applying their group ranked intersection and
group soft intersection [3].
To show an example of exploratory analysis by the use of the
soft operators, we submitted the two queries “Proceedings
SIGIR” and “Proceeding ECIR” to Google Scholar through
Matrioshka; then, we executed a Ranked Intersection with the
results of the previous queries. Observing that we got an
empty group, we tried a Soft Intersection by setting the
minimum similarity threshold to =0.5. This time we obtained
the group entitled “Proceeding information ACM Retrieval
Conference” (indeed both SIGIR and ECIR are ACM
conferences on IR themes) containing 13 clusters with
documents dealing with shared topics in the input groups (see
Figure 1)

g1=“Proceedings information ACM retrieval conference”

C1 Scores distribution in Information retrieval
C2 Interactive visualization of multiple query results
C3 Query expansion using random walk models
C4 Empirical studies of information visualization: a meta-analysis
C5 Retrieval constraints and words frequency distributions: a log logistic
model for IR
C6 Categorizing paper documents…
C7 Language models for Information Retrieval
C8 Methods and apparatus for distributed indexing and retrieval
C9 Apparatus and Methods for collaboratively searching knowledge
databases
C10 Where to start reading a textual XML documents
C11 Advances in Information Retrieval
C12 Hierarchical clustering with real time updating
C13 Automatic construction of known item finding test-bed

Fig 1: clusters in the group g1 are obtained by executing

“Proceeding SIGIR”GS
0.5 “Proceeding ECIR”

Finally, we applied the Group Soft Join operator to generate a
group containing documents dealing with correlated topics.
At first, we set =0.5 to require a strong correlation between
the clusters. One group g2 containing two clusters g2.C1 and
g2.C2 of correlated topics was generated (see Figure 2). One
could question why the number of shared topics between two
input groups, i.e., the number of clusters in g1, is greater than
the number of correlated topics between the same two input
groups, i.e., the number of clusters in group g2. The reason is
that correlation is a less strict relationship than sharing. Notice
that two homonymous clusters exists in g1 and g2: in fact
g1.C2 and g2.C1, as well as g1.C3 and g2.C2, have the same
label, but different content since g2.C1 and g2.C2 contain
additional documents w.r.t. g1.C2 and g1.C3 respectively.
We reapplied the Group Soft Join operator by decreasing the
minimum correlation =0.2: this time, we obtained the group
g3 with 11 clusters of correlated topics (see Figure 2). This
greater number of clusters in g3 w.r.t. the number of clusters
in g2 is due to the fact that, by decreasing the correlation

threshold, we get a not empty soft intersection for more than
two pairs of input clusters. Notice that also in g3 we have the
two clusters g3.C4 and g3.C6 homonymous of g1.C2 and
g1.C3 respectively.
Figure 3 illustrates another example in which we submitted
the same query “visit Greece” to Yahoo! and Bing and further,
in order to filter the most relevant results, we applied a
Ranked Intersection and finally a Soft Intersection. It can be
observed that the Group resulting from the Soft Intersection
contains additional documents w.r.t. the group resulting from
the Ranked Intersection.

g2=“Proceedings information ACM retrieval conference”=
“Proceeding SIGIR”><GS

0.5 “Proceeding ECIR”
C1 Interactive visualization of multiple query results
C2 Query expansion using random walk models

g3=“Proceedings retrieval information ACM conference”=
“Proceeding SIGIR”><GS

0.2 “Proceeding ECIR”
C1 Methods and apparatus for extracting data from data sources on a
network
C2 Categorizing paper documents
C3 Systems and methods for querying multiple, distributed databases
C4 Query expansion using random walk models
C5 Facilitating WWW search utilizing a multiple search engine query
clustering fusion
C6 Interactive visualization of multiple query results
C7 The effects of topic familiarity on information search behaviour
C8 Cha-cha: a system for organizing intranet search results
C9 Where to start reading a textual XML documents
C10 Advances in Information Retrieval
C11 Report on the 25th European conference on information retrieval
research (ECIR-03)

Fig 2: Two output Groups obtained by the execution of “Proceeding SIGIR
“ ><SG “Proceeding ECIR” with correlation =0.5 and =0.2 respectively

g4=“visit Greece” to Yahoo! g5=“visit Greece” to Bing
C1=Visit Greece Answerbag C1=Week
C2=Greece Tourism C2=Ancient Greece
C3=Greek Islands C3=Time to visit Greece
C4=Greece Holiday Hotels Flights C4=Northeastern Aegean Islands
C5=Time to visit Greece C5=Places to visit
C6=Destination C6=American Jewish Leaders
C7=Top Reasons C7=Getting
C8=Athens Greece Holiday
Package

C8=Reasons to visit Greece

C9=Greece Honeymoon
C10=Services
C11=Ancient Greece
C12=Visit Greece events
g6= g1 R g2
= “best Greece travel visit guide”

g7 = g1 S g2
=”Greece travel visit best”

C1 =Greece travel
Visit Greece
Greece Tourism | Best Places..
The best of Greece

C1=Greece travel
Visit Greece
Greece Tourism | Best Places..
Holidays in Greece, Go to ..
The best of Greece

C2=Places to visit
Greece Tourism | Best Places..
Greece Places to visit

Fig 3: Groups g4 and g5 are obtained by submitting “visit Greece” to Yahoo!
and Bing respectively, groups g6 and g7 are obtained by the Rintersection and

SIntersection of g4 and g5

V. CONCLUSIONS

In the paper we defined some soft operators for combining
information granules of distinct resolution which represent
web pages retrieved by distinct searches submitted to possibly
distinct search engines. We discussed their properties and
their application for web exploration. We figure out that the
main use of these operators is for exploring the contents
relationships between the results of distinct queries to search

engines. We further figure out that their repetitive nested
application does not make too much sense and will be rarely
needed. Thus, the fact that the soft operators are not
associative is not a big concern in practical use. Nevertheless,
further studies are needed to assess their potential utility.

 ACKNOWLEDGMENT

 We thank Simone Fidanza and Valentina Taramelli, students
at University of Bergamo for the implementation.

REFERENCES
[1] Bordogna G., Campi A., Psaila, G., & Ronchi S. (2008) A language for

manipulating groups of clustered web documents results, In ACM CIKM
'08: Proceedings of the: the 17th ACM conference on Information and
knowledge management (pp 23-32). ACM Press.

[2] Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2008). An interaction
framework for mobile web search. In MoMM-2009 6th International
Conference on Advances in Mobile Computing and Multimedia (pp. 183–
191). Linz, Austria:ACM.

[3] Bordogna, G., Campi, A., Psaila, G., & Ronchi, S. (2010). Web Search
Results Discovery by Multigranular Graphs, submitted for publication in
Ramon Brena, Adolfo Guzman eds , Quantitative Semantics and Soft
Computing Methods for the Web: Perspectives and Applications", to be
published in 2011 by IGI Global.

[4] Castillo O., Melin P. (2008), Type-2 Fuzzy Logic: theory and
Applications, Studies in Fuzziness and Soft Computing Series, Springer
Verlag.

[5] De Baets B., De Meyer H., Naessens H., A class of rational cardinality-
based similarity measures, Journal of Computers and Applied
Mathematics (2001) 51–69.5.

[6] De Baets B., De Meyer H., Naessens H., On rational cardinality-based
inclusion measures, Fuzzy Sets and Systems 128 (2002) 169 – 183.

[7] De Graaf E., Kok J., & Kosters W.. (2007). Clustering improves the
exploration of graph mining results. In IFIP2007: Proceedings of the
Articial Intelligence and Innovations 2007: from Theory to Applications,
volume 247 of IFIP International Federation for Information Processing,
(pp 13-20). Springer Verlag.

[8] Fellbaum, C. (Ed.) (1998). WordNet An Electronic Lexical Database.
Cambridge, MA ; London: The MIT Press.

[9] Jansen, B. J., & Spink, A. (2006). How are we searching the world wide
web? a comparison of nine search engine transaction logs. Information
Processing and Management, 42, 248263.

[10] Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users and
real needs: A study and analysis of users queries on the web. Information
Processing and Management, 36, 207–227.

[11] Kosko B., (1992) Neural Networks and Fuzzy Systems: a Dynamical
Systems Approach to Machine Intelligence (Prentice-Hall, Englewood
Cliffs).

[12] Lucene(Web Site). Lucene java documentation. http://lucene.apache.org.
[13] Markov A., Last M., & Kandel A. (2007). Fast categorization of web

documents represented by graphs. In WEBKDD: Proceedings of
Advances in Web Mining and Web Usage Analysis. LNCS 4811, (pp 56-
71).Springer Verlag.

[14] Miyamoto S. (1990) Fuzzy sets in information retrieval and clustering
analysis, Kluwer Academic Press.

[15] Osinski, S., &Weiss, D. (2005). A concept-driven algorithm for clustering
search results. IEEE Intelligent Systems, 20, 48–54.

[16] Pan J., Yang H., Faloutos C., & Duygulu P. (2007). Crossmodal
correlation mining using graph algorithms, In Zhu X., Zhu X.; Davidson I.
(Eds) Knowledge Discovery and Data Mining: Challenges and Realities
with Real World Data. (pp. 274-294) IGI Global.

[17] Roussinov, D. G., & Chen, H. (2001). Information navigation on the web
by clustering and summarizing query results. Information Processing and
Management, 37, 789 – 816.

[18] Zadeh, L.A. (1965) Fuzzy sets. Information and control, 8, 338-353.

