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Abstract

Physical variables can be observed over space and time with different measuring instru-
ments resulting in datasets characterized by different spatial supports. In many cases, the
observations are available as point data and pixel data over a regular grid. This paper con-
siders a space-time model for the data-fusion of multiple variables observed as both point
data and pixel data. The model is based on latent variables and it is able to handle covari-
ates, missing data and heterotopic spatial locations. The model parameters are estimated
by means of the Expectation Maximization algorithm and closed form estimation formulas
are derived. The model and the estimation formulas are implemented within the D-STEM
software.

1 Introduction

Complex space-time phenomena are usually characterized by multiple physical variables inter-
acting with each other. In order to study and understand the phenomena, the related variables
are to be measured over space and time by means of one or more measuring instruments. In
general, there is a trade-off between the spatial density of the collected data and their accuracy:
the higher the accuracy the lower the spatial density. In many cases, therefore, the data collected
using the more accurate measuring instruments are used to calibrate the less accurate but denser
data. When the air quality of a region of space is assessed, for instance, the pollutant concen-
tration measured by ground level monitoring stations is used to calibrate the remote sensing
observations provided as a grid of pixels over the area of the region (see [1] for more details). In
this case, the remote sensing observations are less accurate but, with the exclusion of the missing
data, they may cover the entire region. In other cases, the secondary data source is the output
of a physical model related to the observed variables, which is also provided as a regular grid of
pixels. In all the cases, a data fusion problem is to be solved by taking into account the different
spatial support of the data, the different accuracy and their spatio-temporal cross-correlation.

In this paper, a multivariate space-time model for data fusion is considered and the estimation
formulas of the model parameters are derived. The model is able to handle multiple variables
observed as both point data over a given set of spatial locations and pixel data over a regular grid.
Covariates may be considered as space-time varying coefficients to be interacted with the latent
variables at the basis of the model. Each observed variable can be characterized by missing data
and the sets of spatial locations at which the point data are collected can be disjoint across the
variables. Finally, time is considered to be discrete and it is assumed that all the variables are
observed synchronously and at fixed temporal intervals. For many applications, the observation
at time ¢ can be related to the time average over the temporal interval (¢ — 1,¢].



2 The multivariate data fusion model

Suppose that ¢ physical variables are defined over the region of space D C R2. Each variable,
thus, can be measured at each spatial location s € D for each time ¢t = 1,..., 7. Moreover,
suppose that D is covered by a regular grid of blocks B ={Bjy, ..., B;,} and that the ¢ variables
can be observed at each block B; € B.

Let y(s,t) = (y1(s,t),..,y4(s,1))" and y(B,t) = (y1(B,t),...,y4(B,t))" be the g—variate
response variables at the generic site s, block B 3 s and time . The model equation is given by

y(s,t) = appOxpp(s,t) O WP (B,t)+Xg (s,t) Bp + Xz (s,t) z(t)
+ Y ap; ©@xp;(s,t) ©whi(s,t) + (s, t)
j=1

ap ®wB(B,t) +e5(B,t)
Gz(t — 1) + n(t)

(1)
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where ® is the Hadamard product. In (1), w?(B,t) = (wlB(B,t),...,wf(B,t))/, whi(s,t) =
) ) ’

(wf’j (8,8), ey wh7 (s,t)) ,j=1,..,cand z(t) = (21(t),..., 2,(t)) are latent random variables,

el(s,t) = (e (s, 1), ...,sp(s,t))/ and (B, t) = (e£(B,1), ...,55(B,t))/ are the random measure-

ment errors while n(t) = (1,(t), ..., np(t))/ are the random temporal innovations. In particular,
the following distributions hold

w?(B,t) ~ N,(0,Tp)
wii(s,t) ~ N,(0,Tp;); j=1,..,c
ef(s,t) ~ N, (0,diag (c}))
e?(B,t) ~ N, (0,diag (o%))
n(t) ~ Np(0,%,)
z(0) ~ N, (vo,%o)
where
corre,, (wf (B, t),wP(B',t)) -+ corrg, (wf (B, 1), w? (B, 1))
I'p=Vp0© : - :
corrg,, (w2 (B, t),wP(B',t)) --- corrg, (wF(B,t),wl(B't))

is a matrix correlation function with V 5 a valid correlation matrix and corrg,, (wf (B, t), wg (B, t))
the spatial correlation function between block B and block B’ and parametrized by the parameter
vector Op. Similarly,

Py P P Pj(!
corTg,, ; (wl (s,t),wy (s ,t)) -+ COlTg, (wl (s,t), w7 (s',t)
Lpj=Vp;® .
P,j Pt P,j Pjg!
corTg,, ; (wq I(s,t),w;” (s ,t)) - corre,, (W (s, t), whi(s' 1))
are ¢ matrix correlation functions. The measurement errors are white noise in space and time but

; ns 3 : 2 _ (52 2y 2 _ (52 2y
each variable retains its own variance so that o = (apvl, ...,apyq) and o5 = (0371, ...,O’Byq) .
Finally, ¥y and 3,, are valid covariance matrices.



The ¢ x 1 loading vectors

XBpP (S,t) = (xBP’l (S,t) y ---7XBP,q (S,t))/

xpj(s,t) = (xpji(s,t),....Xpjq (s,t)) 55 =1,...,¢c
the ¢ x b loading matrix Xg (s,t) and the ¢ x p loading matrix X, (s,t) are characterized by
known coefficients. In particular

xg1(s,t) -+ Oixp,
Xp(s,t) = : g :
01 xp, S Xgg(s,t)
Xz1(8,t) -+ Oixp,
X, (s,t) = : :
Oixp, -+ Xggq(s,t)

where xg;(s,t), ¢ = 1,...,q are 1 X b; vectors, by + ... + by = b, X5,1(s,t) are 1 x p; vectors,
p1 + ... + pg = p and Opx, is the h x k matrix of zeros.
Finally app = (OzBp,l, ...,OLBP,q)/, Qap ;= (Olp,Lj, ...,Olp,q,j)/,j = 1, .,C,ap = (01371, ...,O{B7q)/

and Bp= (ﬂlp)l, ...,ﬁlp)q)/, Bp; = (ﬁi,l,...,6i7b1), i=1,...,q, by + ... + by = b are vectors of un-
known scale coefficients. The full model parameter set is

2 2
U= {aBP;aP,h ~--7aP,C7aB;/6P7UPaUBaVP,17 "'7VP,C70P,15 "'70P,05V370B7 E’r]a G7V0}

and, as discussed in the next section, it is estimated following the maximum likelihood approach
by means of the expectation-maximization (EM) algorithm.

Note that (1) extends both the models developed in [1] and [3] which can be considered as
particular instances of (1). Indeed, model (1) is flexible in the sense that it can be based on a
subset of the latent variables actually included while the known coeflicients may be either time-
variant, time-invariant or vectors of one. Moreover, constraints can be imposed on the model
parameters. For instance Vg, Vp;, X, and G can be diagonal matrices.

3 Model estimation

Suppose that the g variables are observed at the sets of spatial locations S; = {s;1,...Sin,; },
it = 1,...,q and over the regular grid B. For each time ¢, thus, the (n+mgqg) x 1 = N x 1

observation vector is given by y; = (y: (S)",y (B))/ where

!

yi(S) = (5(S1) s u (Sy))
= ((yl(sl)l,t),...,yl(sl)m,t)),...,(yq(sq’l,t),...7y1(sq’nq,t)))l

n=ni+..+ng S=Ww_,8S;, while

Y (B) = ((yl(Blﬁt)v "'7y1(B’ma t)) JRERE) (yq(Bht)’ ey yl(B"Ht)))/

Note that, in general, S; # S, that is, each variable can be observed at a different set of spatial
locations. Moreover, even if S; and B are time-invariant, missing data are allowed.
Given the following vectors



xppit = (tBp(Sit,t);2BP(Sin, 1))
Xpijt = (mp’J(s“, t),...,xp;(si, s 1))
wi = ((wf (B1,t),...w] (Bp,1)), .. (wf (31,75),...,11);3 (Bm,t)))/
wh = (0000wl (5000)) o (0 540, 8), 0] (50,01)) )
g = (( (sia,t), ---75{3(51 nl,t)) , (Ef;(sq’l,t), ...,af(sq,nq,t)) ,

7(61 (Blv )7"'7513 ) ?(an(Bh 7"'a€qB(BTYL7t)))/
and the following matrices

i—th position
/ ’
diag | 0/ vy XpBps .,0 )
XftP: g ny X1y BP,it 5 Yngxl i=1,..q

O(maq)xn

071,><(mq)
i—th position
B _ —— .
Xi,t - di o 1/ ’ 1=1,...,q
ag mx1y- mx1 sy ¥mx1

i—th position !

. , - , .
xXP. — diag 0% st Xpige 00, x1 z‘:l,...,q
it = i=1,..c
O(mq)xn

where 1p,x is the h x k matrix of ones, model (1) can be written in this form

y: = Nt + &
c g
By = Z O‘BPzth Wt + Z ap zXz twt +X Bpt+Xiz:+ ) Z ap; ;X i, tWPt (2)
=1 =1 j=1li=1
zi = Gz +n

where the n x 1 vector w7 is given by w? = th and the matrix M maps w? over the spatial
locations in S in such a way that, for each WP (By,t),i=1,....,q, k =1,...,n;, By 3 s; . This
implies that a given element of w? can be rephcated more than one time in W2 if more than
one s; i fall into the same block. Finally

XP = blockdiag (Xg.1(S1,1), ..., X3.4(S;, 1))
X% = blockdiag (X, 1(S1,t), ..., X4,4(Sg, 1))
where
xg,i(s1,1,1) Xz,i(81,1,%)
Xfm(&-,t) = XZJ(Si,t): ii=1,...,q
x3,i(S1,n;,1) Xz,i(S1,n;, 1)



Note that (2) is overly complicated with respect to (1) but it allows to write the model in
such a way that the model parameters app;, ap; and ap;;, 2 =1,...,q, j = 1, ..., c are explicit
as a standard product. This, in turn, allows to write the complete-data likelihood function in an
easy manner and to derive closed-form estimation formulas.

3.1 Complete-data likelihood function

The complete-data likelihood L (¥;Y,Z, W) function can be defined and factorized in the fol-
lowing way

T T
L(V;Y,Z,W) = [ L(Vy;y:lze,We)  L(Vy520) [ L (V52 | 26-1) (3)
t=1 t=1
T B c T p
11 L(‘I’B§Wt ) -IT I L (\I]P;Wj,t)
t=1 j=1t=1
where
Y = {Y17~-~7YT}
w = {(WE W . W/}
wi = {Wf,...,w?}
Wf = {th...,wa}; j=1,...c
Z = {ZO,Zla"'azT}
R .

The statistical distributions involved in (3) are

Vi | 2ze, Wi ~ Ny (py, Xe)
Zg Np

ze |21~ Np(

WF ~ qu (O,EB)

w?l ~ N, (O,EP’j);j:]-,«..,C

7,t
where
3. = blockdiag (05 11n,s 09 Iy 051 Ims - 05 g Iin)
I'p (Hiy) - vp,a,9l's (Hig)
Yp = : : (4)
vp,g)I's (Ha) -+ I'p (Hyy)
Ip; (Hi) o vpygley (Hig)
vpj@nlr; (Hq) - I'p; (Hyq)

and where blockdiag is the block diagonal operator. In (4) and (5), vp ) is the (h, k) element
of the Vg matrix, vpj k) is the (h, k) element of the Vp; matrix and Hyy = d (Sp, S) is the
distance matrix between the spatial locations in S; and the spatial locations in §;, b,k =1,...,q.
The matrix ¥y has the same dimension of 3, and is supposed to be known.



The complete-data log-likelihood function is given by:

2 (1;Y,Z,W) = Tlog|=. |+Zet§] le
+log 3| + (Zo Mo) 5 (20 — po)
—|—T10g |E77‘ + z ( Zy — GZt_l) E; (Zt - Gzt—l)

!

ﬂH

+Tlog |[Xg| + Z (w B)/E_lth

+ 3 Tlog [y |+ - (W) Splwh,
J

where e; =y — p,.

3.2 Missing data

In order to deal with missing data, the following notation is introduced. Given y; the observation

1) @) (1)

vector at time t, y; is partitioned as y; = ( Y ) , where y,’ = L.y, is the sub-vector of

non-missing data at time ¢ and L, is the appropriate elimination matrix. The vector ¥; is thus a
permutation of y; and y; = D;y;, with D; the proper commutation matrix. In the sequel, given
b; a generic N x 1 vector and B; a generic N x N matrix at time ¢, bgl) and Bgl) will stand for
L,b, and L,B,L], respectively. On the other hand, if B, is a N x K matrix, than B{" = L,B,.
Finally, B; ; = OithtO;,t is the matrix B; the rows and columns of which are restricted to the
i-th variable, i =1, ..., 2q.

The partitioned measurement equation (2) becomes yg ) = ,uil)—kg ,l = 1,2 and the variance-
covariance matrix of the permuted errors is conformably partitioned, namely.

eV _( Ru R

e Ry, Ry
Since 3. is diagonal, it follows that R1; and Rao are diagonal matrices while Ri2 = Oy _v,)xv, ,
with U; the number of non-missing data at time t.

Var

3.3 EM algorithm

The EM algorithm is considered here in order to estimate the model parameter set . The algo-
rithm is iterative and it is based on two steps namely the expectation step and the maximization
step. The expectation step is defined by the following conditional expectation

Q(w,w) = Byow [-2(0;Y,2,W) | YO
= Egwm {Equ) {—21 (U;Y,Z, W) | Y(l),Z7W} |Y(1)} )

where YO = {y{", .,y }. n what follows, B (| ) = Bgtw (-] ), Var (-| ) = Vargom (-] )
and Cov (+,- | -) = Covgmy (-] ).



Considering the inner conditional expectation, the following result holds
E[-20(\;Y,Z,W) | YN, Z, W] = T'log ||
T
+tr [2;1 S E(e| YV, Z,W)E (e | YW, Z,W)’ + Var (e, | YW, Z, W)
t=1

+10g [Zo| + tr |5 (20 — t10) (20 — o) |

T
+T'log |%,| + tr [2n1 S (2 — Gzy_1) (2t — Gzt_1)'] (6)

T
+Tlog |[Xp| + tr [231 > wp (Wf)l}
C 1 T 4
+ 2T10g|2137j‘ + tr El_g’j tzlwlf,t <Wllc3t) ]
= =

where

(1) (1)
E(e| YO Z,W) =Dy = ) | =D ( °: )
Ro1Ryy e Onv-v)x1

Oy, U Oy, x(N-U /
Var[e | YD, Z,W| = D ( XUs X(N-Ue D
ar |e; | ¢ ONv—v,)xU, Roy — R21R11?R12 t

Oy, xu Ou, x(N—1) ) /
— D t t t t D
! ( Ov—vy)xU; Roo ¢

and

Moreover, p, = uém>, 3 = Eém>, G=Gm %, = E§]m>, 3. = E§m>, Y5 = Egm and ng]},
j =1,...,c, that is, vector and matrices are evaluated using the value of the model parameters
at the m-th iteration of the EM algorithm.
Applying the outer conditional expectation to the rhs of (6) it follows that
E[E[-21(\;Y,Z,W) | YD, Z, W] | YD] =

T
=Tlog ||+ tr (21 S
=1

€

+log Bl +tr [ { [ (o0 | YO) — o] [B (a0 | YO) = g+ Var (| Y)}]
+T108 3, + [ 27 (11— S10@ — G} + GSnG)] ©

T
+Tlog |Xp| + tr [231 SEWP|YD)E (WP | Y(l))/ + Var (w? | Y(l))}
=1

c _ T ’
+j§1T10g |Xp |+ tr [Ep}j t;E (wft | Y(l)) E (wft | Y(l)) + Var (Wft | Y(l)):|

where
!
Q, = E{E (et|Y(1),Z,W)E(et|Y(1),Z,W> + Var (et|Y(1),Z,W) |Y<1>}
!
_ E {E (et|Y(1),Z,W)E(et|Y(1),Z,W> |Y<1>} + Var (et|Y(1),Z,W)
(1) ()R—1
_ b, Qt , Qt R11 R D’ +D, ( Ou, xu, OUtx(N—Ut)
R12R1_11 (le)) RglRl_llﬂgl)Rl_llel t O(N—Ut)xU,, R22
- D, ( le) OUtX(N*Ut) )D;
Ou, x(N-1) Rao

(8)

)



and

T
S = ZZ? (Zf) + P?
t=1
T
Sw =z (2{_1) +P],
t=1

T
Soo = ) z{ 4 (1) + P,

with z{ = E (z; | YO), P = Var (z, | YY) and P{,_; = Cov (z¢,2—1 | YV)) the output of
the Kalman smoother as detailed in [1].
The matrix le) in (8) is given by

o = E (ef) | YV) E (ef” |Y(1)>I+Var (e 1Y) )
where
E (e | YW) - E(yi”—ui” YW) (10)
— gy ZaB P XEPA ”E( By ) (11)
fioqu SOE (WP YY) =X XEVE (2, YD)
—i:zq:OZPw zgi)E< r |Y(1))
=1 i=1
and



Var [e(l) | Y(l)} =

C q
—Var | 3 appi XPPOFE £ 3 ap XEOwE +X2Wg + 3 30 ap XEDwE, | YO

i=1 i=1 j=1i=1

/
(Z aBp, BP(l)) Var (WF | Y(l)) <Z QaBPp,; BP(l))
!/
(S an X v Y0 (£ X
!/
+x%W var (2| YOV) (Xf’(l))
C q P, :
+ 3 5 (L angXIY) Cov (whowh, 1 Y0) (£ aranx! ,512) "
j=1h= i=1

li
BPzXBP (1 ) COV (wt , W | Y(l)) <Z aB l B (1)> +

4 <Z o ﬂXB (1)) Cov (Wt W | Y(l)) (Z aBp BP(1)>
X

> OCBP,intR(l)) Cov (¥F, 2 | YW) (X7 ,<1>)
“W Cov (2, WP |Y<1)) (Z A BP<1>>

(Z appiX )Cov (WP, wl, | YD) <§q: api; 7J(j)>/
) <Z ap ZE?) Cov (WP, WE | Y1) (Zq:l o BP(1)>/
Zq: ap;X ) Cov ( 50 g, Y(l)) (X (1))
+x2D Cov (zt,wf’(l) 1Y) (i aB,in£(1)>

C q !/
s <Z apiX )COV( B P ‘Ym) <Z ocp,i,ij;f?)

j=1

M«fﬁms

A

<.

!/
(Z aPl,] 7,])& ) COV( ft(l) B(l |Y(1)) (ZaBZ B(l))

T
c /
2 x=W Cov (zt, ft |Y(1)) <Z ap; P(1)>
T

i,J,t

(Z ap; X >Cov( Pz | YW) (xX2)".

Given a; and by a generic vector at time ¢, the following identities hold
E (at | Y(l)7 Z) = E (at | yﬁl),zt)
Var (at | Y(l), Z) Var (at | ygl),zt)

Cov (at,bt | YD, Z) = Cov (atabt | Y§1)7Zt)

as, conditionally on Z, ygl) 1 yg,l ) for each t 1.



The quantities in (10) and (12) that have to be explicitly evaluated are the following

B (wp | X)
E(wf|Y®M) (13)
E(wF |Y<1>) j=1,.

Var (vvtB |Y<1>) = Var E (vvtB | yﬁ”,zt) |Y(1)] (14)

+E [Var <v~vf | ygl),zt) | Y(l)} .

Var (WtB | Y(1)> = Var E (W,fB | ygl),zt) | Y(l)] (15)

+E [Var <W§3 \ ygl),zt) | Y(l)} .

Cov (wt ,wt |Y 1)> = Cov {E (VV? \ yﬁl),zt> ( | y(l)» ) \ Y(l)] (16)

+E [Cov (Wt wh | y® zt> | Y(l)} .

Cov (\TVtB7zt | Y(1)> = Cov [ ( | y(l) ) ,E (z \ y(l), t) | Y(l)} (17)
+F [COV (v?ff,zt | y(l), zt> | Y(l)]

= Cov {E (\TV;B | y§1)7zt) VZt | Y(l)} .

Cov (Wf,wﬁt | Y(1)> = Cov {E (v~vf | y,gl),zt> E (wft | yil),zt) \ Y(l)} (18)

+E {Cov (v"vf,wft | y(l),zt) | Y(l)}

Cov (wf,zt | Y(1)> = Cov [ ( \ y(l) ) JE (Zt | yt(l),zt> | Y(l)} (19)
+F [COV (Wf,zt | y(l),zt) | Y(l)]

= Cov {E (th | ygl),zt> ,Zt | Y(l)} .

Cov (Wf,wft | Y(l)) = Cov |E [ ( | y(l) ) ,E (Wft | y£1)7zt) \ Y(l)} (20)

+E {Cov (wf,wft | y(l),zt) | Y(l)} .

Cov ( wj Pz Y(1)> = Cov [E (wft \ ygl),zt) E (zt | ygl),zt) | Y(l)} (21)
+E {Cov( ],,zt | y®, ) | Y(l)}

= Cov {E (wft \ yt ,zt) \ 2y | Y(l)} .

10



Cov ( w t,wit | Y(1)> = Cov {E (wﬁt | ygl),zt) B (Wit | ygl),zt) | Y(l)} (22)
+E [Cov (Wft,wit \ y(l),zt> | Y(l)] .

for j,h=1,...,c
In order to evaluate (13-22), let

_ Var (y¢) X% Var (z¢)
H, = |: Var (Zt) (X%) Var (Zt) :|
[CO L, Var(y,)L;  L,X? Var(z;)
= [ Var (z) (XP)' L Var () }
with
Var (y;) = (ZO‘BPL >MEBM' (ZQBPL BP)
(s )
+X?# Var (z;) (X?)'
+Z<ZQP1] )EP] (Zaplj ) +EE
and

vec (Var (z¢)) = (I -G ® G)il vec (3,)
The conditional expectations in (13) can be evaluated as follows
E(wE|Y®) =B [B(WE |y ) | Y]

The inner conditional expectation is given by

(1) -1 (1) B,(1)
E (‘TVF | Y1(51)7Zt) = Cov {v'(/tB, ( yzt )} (H§1)> < Y — )Z(t Bp )
t t

while the outer conditional expectation is equal to

(1) -1 (1) B,(1)
B (%f | YW) = Cov [ﬁﬁ( n )] (mf") ( A B ) (23)
t

where the covariance in (23) is given by

g q
2 XBP(W B B B
Cov [v*vtB, < Yi )] = Cov \7vtB, z; appiiiy Wi +i;1 api&; Wi

Z
t Z4

!
( MM’ (Z QBP; BP(l)) +MZXp <Z B Bu)) Ou, xp >

11



The conditional variances in (14) and (15) are given by

Var [E (WtB |y, z ) \ Y(l)] =

(1) —1 (1) B.(1)
e (4 ) (573 ) )
Zy Zy
(1) -1 -1 (1)
_ -5 [ Vi (1) Ou,xv, Ou,xp (1) -5 [ Vi
= Cov {wt,< z, )] (Ht ) < Oyt PtT )(Ht ) Cov l:Wt,< 2, )]

while the conditional expectation of the variance is

E {Var <v~vtB \ ygl),zt) | Y(l)] = Var (\TVtB | ygl),zt)
Var (v~vf | ygl),zt) = 3Xp — Cov [v?f, ( yz‘gtl) )] (H§1)>71 Cov |:V~VtB, ( yzgtl) )]

The conditional covariances in (16-22) are given by

/

with

!

Cov [ B (WP | vz )E(th|y(”,zt)|Y<
(1) (1) B,(1)
:Cov{Cov{ﬁ'v?,(yzt )} (yt X 5P>,
t

(1) -
B (Y 1 513 (1)
Cov [wt ,( 2, ﬂ (Ht ) ( Zt > | Y}
(1) -1 (1) B,(1) -1 (1) !
= Cov |:W75B, ( Yt > Hil)) Var [( yi =X Bp ) | Y(l)} (HEI)) Cov {th, ( Vi )}
Zt Zy Z
1

K
[ )™ (e e ) () o s ()

(1) 1/ o) x B
Cov[E(VvtB|y§1),zt),zt|Y(1)} - COV{COV[\XI?,(Y; )} (H§”) (Yt )Z(: ﬁP)thY(l)}
(1) 1 i xB0
f( )] ) e (3T ) 0]
Z¢ Zy
(1) -1
=B [ ¥ (1) 0v, xp
cor ot ( %, )] () (57 )

The conditional expectations in (16-22) are given by
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Cov (Wf,wf | y(l),zt) =Cqo
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Finally,
E {Cov (Wf,wf | y(l),zt) | Y(l)} =FE (C%2 | Y(l)) = C;}?

as C{? is constant.

3.4 Updating formulas

The updating formulas for the model parameters are obtained from the maximization step of the
EM algorithm as

lm+l) — arg max@) (\I/, \If<m>>
v
The updating formulas for
{\I[y7 \Ijz} = {aBP; &pi,...,&Xpc, AR, 6Pa 0'?37 0'237 27‘[7 G7 VO}

can be obtained in closed form by solving 0Q (¥, ¥‘™)) /0 (¥, ¥,) = 0 while the model para-
meters
{Vp1,...,Vpc,0p1,..,0p.,Vp,05}

are estimated through numerical optimization. In particular

{ngmH), ng“)} = argmax T log |3 p| + tr
V.05

T
Zgl Z Wf; (Wf)/]
t=1
and

T
E;’xlj Zwllc),t (Wkp,t)/l ;s 7=1,...,c

t=1

{V;";-JFD, Bgr}H)} = argmax T'log |Xp ;| + tr
’ ' Vp,;0p,;

The closed form updating formulas for ¥y, = {app,ap;,...,ap. ap,Bp,0%,0%} can be
derived by noting that the only term of (7) which is function of ¥y, is T log | 3. |+tr (E;l EtT:I Qt) .
Solving

OT log |E.| + tr (2;1 ST Qt)
v, -

and by considering that

atr ) (\) ,F (el () | Y ™)
oA\ oA

8 Var (e§” N | Y<1>)
)

B (el ()] Y®) +

li
OF (e§1> ) | Y<1>) d Var (eﬁ” ) | Y<1>)
oA - oA

— tr|2F (ei” (A)|Y<1>)

with A the generic model parameter, the following updating formulas can be derived
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_%Xfi(l) Var (WtB |Y(1)) (12# agﬁ ) )
! /
_% < Z ajgﬂ?l)XB (1)> Var( | Y(l) ( )
i=liztr
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[ (55 et ) con s )] (2
t
' _%Xftp’ Y Cov (WP, wP | YD) <Z (m) ( xB: (1)) )
XA oot 0 (30
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i o 0 (5
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X PP ))
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2

i
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=

(
d B(l 1
>« ,z COV(th st|Y()
i=1

) (X
)C ( stth |Y(1) ( (
)

l\')

l\')\»—l

M° w2

- 1 >a BP(1)> Cov (WP, wl, | YD ( Tst) |
(ag,rs) = {é: x” ( ) [ ( 52(1) |Y<1>> E(wP, | Y1) 4 Var (w? wl Y 1))} (ng(p)’}
Bty = [i (Xf’(l))le’(l)] i <ZT: (Xf’(l))/ [E (egl) | Y(U) +Xf,(1)ﬁ§jm>}>

t=1 t=1
(0%,)" Y = lT trET:O 2,0,

T t=1
(0%,)" = mlT trtzlozﬂtﬂtowqt

withr=1,...,q, s=1,...,c and egl) = ygl) — ugl). Finally, the updating formulas for the model
parameters {U, ,¥,} are the following

I,

G<m+1) _ SIOSaol
Bt =771 (841 — 810G’ — GS/y + GSG')

n

Starting from an initial value ¥{9) for the model parameter set, the EM algorithm is iterated
until convergence, that is, until ||\I!<m+1> —pim |/ H\I/<m> || < &, where the norm |[-|| is evaluated
with respect to the non-zero and unique elements of W.

3.5 Software implementation

Model (1) is implemented by the D-STEM software available at http://code.google.com/p/d-stem/.
As discussed in [2], the software is optimized for large datasets and it is based on parallel and

distributed computing.
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