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Abstract: We consolidate the zero-inflated Poisson model for count data with
excess zeros (Lambert, 1992) and the two-component model approach for serial cor-
relation among repeated observations (Dobbie and Welsh, 2001) for spatial count
data. This concurrently addresses the problem of overdispersion and distinguishes
zeros that arise due to random sampling from those that arise due to inherent char-
acteristics of the data. We give a general quasi-likelihood and derive corresponding
score equations for the zero-inflated Poisson generalized linear model. To introduce
dependence, a spatial-temporal correlation structure comprising forms for fixed time,
fixed location, and neighbor interactions is required; construction using techniques
from the theory of Markov point processes is investigated.
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1 Introduction

Let yit denote the number of occurrences of an event observed at t = 1, . . . , Ti

time points for each subject i = 1, . . . , n, and let xit ∈ Rq be a vector of measured
covariates. Such data is often modeled through a generalized linear model to provide
greater flexibility, specifying a form for the expectation, E[Yit] = λit = g−1

(
x′itβ

)
,

with β a q × 1 vector of unknown parameters, and the link function g(·) commonly
taken to be the log function. Under a Poisson distribution, the variance is equal to
the mean, Var(Yit) = λit = E[Yit], which in practice may be too restrictive; often
the data exhibit E[Yit] = Var(Yit), known as overdispersion.

Lambert (1992) has presented zero-inflated Poisson (ZIP) regression, giving rise
to a new class of regression models for count data with an abundance of zero ob-
servations. In a ZIP model, the non-negative integer response Y is assumed to be
distributed as a mixture of a Poisson distribution with parameter λit, and a distri-
bution with point mass of one at the value zero, with mixing probability αit; the
non-zeros and a portion of the zeros are modeled by the usual Poisson probability.
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Dobbie and Welsh (2001) adapt the generalized estimating equations approach of
Liang and Zeger (1986) to zero-inflated spatial count data, addressing dependence
by incorporating a correlation matrix. They model the abundance of zeros via a
two-component approach: the zeros are modeled separately from the non-zeros;
first, absence versus presence (zero versus non-zero) is described by a logistic model,
and then conditional on presence, the non-zero counts are described by a truncated
Poisson distribution.

We work in the context of a Poisson generalized linear model, consolidating
the two aforementioned approaches to construct generalized estimating equations
for the zero-inflated Poisson generalized linear model comprising spatial-temporal
dependence. Attributing some of the zeros to the Poisson distribution avoids con-
ditioning on the responses, and provides a more intuitive approach to occurrence of
zeros in the data. The data of interest are weekly counts of Noisy Friarbirds (Phile-
mon corniculatus) recorded by observers for the Canberra Garden Bird Survey:
attributing a probability weight of zero observations to a point mass distribution
and its complement to a Poisson distribution allows for the distinction between zero
counts arising due to an inherent characteristics that may induce zero observations
(e.g. inadequacy of the region where measurements were taken for the survival or
reproduction of Noisy Friarbirds), and zero counts arising at random. In consider-
ing dependence, the theory of nearest-neighbor Markov point processes proves to be
useful in constructing covariance forms for the zero-inflated spatial data.

In this paper, we detail the theoretical results behind the work to be presented at
the 2011 European Regional Conference of The International Environmetrics Society
(TIES), “Spatial Data Methods for Environmental and Ecological Processes – 2nd
Edition”.

2 Methodology

We implement the zero-inflated Poisson model of Lambert (1992) to address overdis-
persion, and obtain a likelihood and score equations, which, following Dobbie and
Welsh (2001), turn out to be generalized estimating equations in the style of Liang
and Zeger (1986); we incorporate dependence into the model following Diggle et
al. (2009). In constructing a space-time dependence structure, we focus on the
neighbor interaction component and outline the theory of Markov point processes
relevant to this aspect.
The Zero-Inflated Poisson Generalized Linear Model. A non-negative, integer-
valued random variable describing a discrete number of occurrences for a cross-
sectional unit i at time period t is said to follow a zero-inflated Poisson distribution
with parameter λit ∈ (0,∞) and mixing probability αit ∈ (0, 1) if

Yit ∼
{

0 with probability αit,
Poisson(λit) with probability (1− αit).

(1)
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The parameters λit, αit are allowed to depend on auxiliary covariate information,
for simplicity we assume the same auxiliary information. It follows that E[Yit] =
(1− αit)λit and Var(Yit) = (1− αit)λit(1 + αitλit) and indeed E[Yit] < Var(Yit).

Under this model, the observations are generated by

Prob(Yit = yit|xit) = αit1l(yit = 0) + (1− αit)
exp

{
yitx

′
itβ − ex

′
itβ
}

yit!
, (2)

where 1l(·) denotes the indicator function; the probability of observing a zero is
Prob(Yit = 0|xit) = αit + (1− αit) exp

{
− ex′

itβ
}
.

Likelihood and Score Equations. The log-likelihood for the zero-inflated Poisson

model is `(αit,β) =
∑

i,t:yit=0

log
(
αit+(1−αit)e

−ex
′
itβ
)

+
∑

i,t:yit>0

(
yitx

′
itβ−ex

′
itβ−log yit!

)
,

which gives the following score equation with regard to β:

∂

∂β
`(αit,β) =

∑
i,t:yit=0

(yit − λit)
Prob(Yit = 0)− αit

Prob(Yit = 0)
+

∑
i,t:yit>0

(yit − λit)xit = 0. (3)

Modeling the mixing probability αit as any differentiable function of another pa-
rameter γ, αit = αit(γ), the score equation for the ZIP model with regard to γ
is

∂

∂γ
`(αit,β) =

∑
i,t

Prob(Yit > 0)

Prob(Yit = 0)

∂αit

∂γ

1

1− αit

= 0. (4)

Note that ratio of probabilities in this latter equation provides an intuitive odds-
ratio interpretation of the weighting between the two probability components.
Introducing Dependence. Following Dobbie and Welsh (2001) and Diggle et
al. (2009) in the setting of marginal models, we introduce dependence by extending
the score equations (3) and (4) to comprise a 2Ti × 2Ti spatial variance-covariance
matrix. Diggle et al. (2009) show that for marginal models under appropriate param-
eterizations, the score equations assume a form of a generalized estimating equation
(Liang and Zeger, 1986), whose solution gives a consistent estimator:(

∂µ

∂β

)′
Var(Y )−1(Y − µ) = 0. (5)

In the spatial-temporal setting, the covariance requires structures for fixed time,
fixed location, and neighboring interactions. Models for the former cases are readily
available in time series analysis and spatial statistics literature. In our application
to Noisy Friarbird counts, the latter case is of particular interest, since, depending
on the region partition, observations in one region is likely to influence that in
nearby regions: vicinities of unsuitable habitat regions may also be less suitable,
thus influencing a low-valued observation. This motivates the use of techniques
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of nearest-neighbor Markov point processes and random tessellations to address
neighbor interaction as well as region partitioning.

Models for observations generated by marked Markov point processes can be
augmented to allow interactions to depend on the realization of the process by
generalizing the spatial Markov property, as shown by Baddeley and Møller (1989).
Moreover, the spatial interaction in a marked Markov point process can be analyzed
conditional on the positions of the points, since the conditional distribution of the
marks given the point configuration is a Gibbs process on the finite graph defined
by the points. Dirichlet tessellation is shown to satisfy nearest-neighbor conditions
in the construction of such processes where each point interacts with its neighbors,
notably that of the invariance of connectivity between any two points under the
addition of a new point, unless it is a neighbor of both points.

3 Concluding Remarks

The spatial-temporal zero-inflated Poisson generalized linear model addresses overdis-
persion present in space-time data comprising excess zeros, while providing greater
flexibility in the modeling and interpretation of zeros due to random sampling and
those due to characteristics of the data, and may be extended to incorporate spatial-
temporal dependence. The nature of such data motivates the consideration of neigh-
boring interactions when constructing forms for dependence, which then inspires the
use of techniques of nearest-neighbor Markov point processes, allowing for the gen-
eration of spatial points with interaction that is conditional on their positions. This
two-fold approach to the challenges of zero-inflated, correlated spatial-temporal data
will indeed prove to be applicable in various ecological and biological contexts, and
useful in general applications in diverse fields of science.
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