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Abstract

In this article we deal with the problem of scenario generation for fuel prices in
the long term. The solution of many decision making problems in the energy sec-
tor such as the optimal mix of energy productions among different technologies,
requires to model the dynamic of fuel prices and forecast their possible scenarios
over time. We present two different approaches for scenario generation: a Vector
autoregressive approach and a Monte carlo approach; The first one is based on the
estimate of a Vector Auto Regressive model i.e. a set of simultaneous equations.
The second one is based of the assumption that the returns dynamics follow a gen-
eralised weiner process. Using the two approaches we forecast prices’ scenarios.

1 Introduction

In this paper we are interested in long term scenario generation of the fuel prices and
EUA (CO2 allowances) price which affect the variable cost for electricity production
in different technologies. In particular for production technologies like coal, nuclear,
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combined cycle gas turbine(CCGT) and biomass power plant the fuels that influence
the variable costs are: gas, coal, nuclear and bio-oil; the EUA price influence the tech-
nologies that emitsCO2 that are coal and CCGT plants. We will concentrate our
attention on this set of variables. In Section 2 we describe the data set, in Section 3 we
analyze the statistical characteristic of fuel prices and returns using PCGive Software,
in Section 4 we describe the econometric model VAR, in Section 5 we describe the
scenario generation on VAR model’s errors, in Section 6 we describe the Monte Carlo
Simulation and in Section 7 we compare the results on the two different tecniques on
scenario generation and present some possible further research.

2 Fuel prices description

In this section we describe the fuel prices, and EUA prices database; we used monthly
data because we are interested in long period forecasting. We analyzed monthly database
for

• gas prices from April 2003 to March 2011 expressed ine/m3.

• coal prices from January 2004 to March 2011 expressed ine/kg.

• EUA prices from Dicember 2004 to May 2008 expressed ine/t.

• nuclear prices from April 2003 to May 2011 expressed ine/kg.

• biooil prices from May 2003 to October 2010 expressed ine/kg.

The source for the gas prices is a private contract of an italian GenCo, for the other
fuel prices the source is the IEA World Energy Outlook 2010.

We have transformed the prices ine/MWh dividing for the LHV (Lower Heating
Value) of every fuel. This price is an indicator of sensitiveof the technology to the
fuel price variations: a high price means high sensitivity as for the gas plants, a low
price means low sensitivity as for the nuclear plants. Notice that the total electricity
cost for each technology depends on several parameters likethe efficiency of the plant,
the operating hours, the fixed costs, the investments costs,theCO2 emission rate and
the industrial life of the plant, so for various factors a technology with high variable
costs might be more convenient respect to a technology with very low variable costs.
The fuels and their characteristics are shown in Table 1. Thebehaviors of these prices
against time are plotted in Figure 1.

The natural gas and the coal have a positive emission factor since they are fossil
fuels; obviously the nuclear plants do not emit anyCO2 (but they produce nuclear
waste which are very expensive and dangerous to treat); the plants that burn biooil
have an emission rate equal to zero even if they emitCO2 because the emission is
considered a closed cycle: theCO2 emitted in the atmosphere is the same that had
been consumed by the plantations that produce the biomass. The cost of the nuclear
fuel includes both the uranium cost and the processing costs.
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Figure 1: Behaviours of the four fuel prices and EUA prices considered from April
2003 to May 2011.

Fuel cost Lower Heating Value Fuel cost CO2

Fuel [m.u.] year 0 year 0 emission rate
[e/m.u.] [MWh/m.u.] [e/MWh] [t/GWh]

Gas[Nm3] 0.29 9.58 30.27 200
Coal [t] 115 8141 14.13 338

Biooil [Kg] 0.81 10138 79.90 0
Nuclear[Kg] 2100 950171∗ 2.21 0

Table 1: The fuels considered and their characteristics. *Notice that this isn’t precisely
a LHV but the energy released by 1 Kg of uranium

3 Fuel prices statistics

From Figure 1 we can guess some characteristics of these fuelprices:positive correla-
tion, no normality, no-stationarity andno-trend-stationarity.

To verify these empiric hypothesis we report the statistical results obtained with
software PCGive. We report the correlation matrix and the results for the normality
test
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Σ =

















gas coal CO2 biooil nuclear
gas 1.00000 0.58199 0.25988 0.57585 0.17899
coal 0.58199 1.00000 0.20282 0.79733 0.10152
C02 0.25988 0.20282 1.00000 0.55621 0.28884
biooil 0.57585 0.79733 0.55621 1.00000 0.24869

nuclear 0.17899 0.10152 0.28884 0.24869 1.00000

















(1)

In figure 3 we can observe the dynamic of the logarithmic returns.The return are
also stationary. In table 3 we report the results of the normality test on the returns
which is refused on prices (see 3) table while is accepted on returns.

Fuel oil χ2 Probability Result

Gas 13.373 0.0012 refused
Coal 15.745 0.0004 refused
CO2 0.89956 0.6378 accepted
Biooil 44.886 0.0000 refused

Nuclear 38.261 0.0000 refused

Table 2: Normality test on prices.

Figure 2: Distribution of the five fuel prices against normal.
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Fuel oil return Chi2̂ Probability Result

returnGas 5.5653 0.0619 accepted
returnCoal 4.0490 0.1321 accepted
returnCO2 0.85189 0.6532 accepted
returnBiooil 5.7733 0.0558 accepted

returnNuclear 5.2058 0.0741 accepted

Table 3: Normality test on returns

Figure 3: Behaviors of the five fuel returns considered from April 2003 to May 2011.

Finally we investigate the presence of unit root (see Dickeyand Fuller (1979)[3]).
Difference stationary and trend stationary models of the same time series may
imply very different predictions. Deciding which model to use is therefore
tremendously important for applied forecasters. Rather than employing one or
the other model by default, one may use a unit root test as a diagnostic tool to
guide the decision. In fact, one of the early motivations forunit root tests was
precisely to help determine whether to use forecasting models in differences or
levels in particular applications. If the series y is stationary (or trend station-
ary), then it has a tendency to return to a constant (or deterministically trending)
mean. Therefore large values will tend to be followed by smaller values (nega-
tive changes), and small values by larger values (positive changes). Accordingly,
the level of the series will be a significant predictor of nextperiod’s change, and
will have a negative coefficient. If, on the other hand, the series is integrated,
then positive changes and negative changes will occur with probabilities that do
not depend on the current level of the series; The simplest nostationary autore-
gressive process is a random walk in which where you are now does not affect
which way you will go next because the expected value of the process in t is
equal to the expected value at time t-1 in fact

yt = φ · yt−1 + ǫt with E[ǫt] = 0 (2)
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The null HypotheseH0 : φ = 1 means the process is not stationary against the
hypotheseH1 : φ < 1 means the process is stationary. With the sofware PCGive
we have found for trace test the results showed in Figure (4) and (5) which imply
our data are not stationary nor trend stationary but are difference stationary.

Figure 4: No stationarity nor trend stationarity.
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Figure 5: Difference stationarity.

4 Vectorial Autoregressive Econometric model of the
forward prices curves

If two or more series are individually integrated (in the time series sense) but some
linear combination of them has a lower order of integration,then the series are said
to be cointegrated(see Engle & Granger 1987 [4]). A common example is where the
individual series are first-order integrated (I(1)) but some (cointegrating) vector of co-
efficients exists to form a stationary linear combination ofthem. For instance, a stock
market index and the price of its associated futures contract move through time, each
roughly following a random walk. Testing the hypothesis that there is a statistically
significant connection between the futures price and the spot price could now be done
by testing for the existence of a cointegrated combination of the two series. (If such a
combination has a low order of integration - in particular ifit is I(0), this can signify an
equilibrium relationship between the original series, which are said to be cointegrated.)

Before the 1980s many economists used linear regressions onnon-stationary time
series data, which Nobel laureate Clive Granger and others showed to be a dangerous
approach that could produce spurious correlation. In his 1987 paper Robert Engle
formalized the cointegrating vector approach, and coined the term.

We have checked the price series cointegration by using Johansen’s procedure (see
[5]) based on trace test where the null hypothesis is the number of cointegration vectors
r and then the secon step is to estimate the regression model in which we have decided
to work with logaritm of prices in order to lower prices volatility. With Granger casu-
ality test we have verified that no price seriesxt is Granger-caused where we say that
x Granger-causesy if lags of x explainy, so we have used an endogenous vectorial
autoregressiveV AR(p): yt = c + A1yt−1 + . . . + Apyt−p + ǫt

We have found that the VAR(p) withp = 7 is well posed with normal residual and
with a good forecasting ability as we can see in the Figure (6)and (7).
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Figure 6: Comparison between fitted value and simulate valuewith VAR(7) model of
the fuel prices time serie.

Figure 7: Forecating analysis of endogenous model VAR(7) for the fuel prices time
series.

5 Scenario generation on the VAR model’s errors

From VAR model’s construction we have obtained that every fuel price serie is de-
scribed by the equationyt = c + A1yt−1 + . . . + A7yt−7 + ǫt where the errorsǫt are
indipendent and identically distributed with normal distribution and so can be described
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by the following brownian motion

dǫt = µǫtdt + σǫtdZt (3)

with dZt ∈ N(0, dt).
In equation (3) the risk factor correlation is hidden indZt, to explicit it we have

used Choleski decomposition method that says that we can decompose the symmetric
and positive definite matrix of variance and covariance asΣ = CT C where C is a lower
triangular matrix with strictly positive diagonal entries, andCT denotes the conjugate
transpose of C.

The Cholesky decomposition is unique: given a Hermitian, positive-definite matrix
Σ, there is only one lower triangular matrix C with strictly positive diagonal entries
such thatΣ = CT C. The converse holds trivially: ifΣ can be written asCT C for some
invertible C, lower triangular or otherwise, thenΣ is Hermitian and positive definite.

The Cholesky decomposition is commonly used in the Monte Carlo method for
simulating systems with multiple correlated variables: the correlation matrix is decom-
posed, to give the lower-triangular C. Applying this to a vector of uncorrelated samples,
yt, produces a sample vectorCyt with the covariance properties of the system being
modeled.

So we have analyzed VAR errors obtaining descriptive statistics shown in table be-
low then we have obtained Choleski matrix (4) and finally we generated 100 scenarios
on errors over 30 years as reported in figure 8.

descriptive statistics Gas Coal CO2 biooil nuclear

mean 0 0 0 0 0
standard deviation 0.68826 0.49073 1.2579 2.3026 0.12676

C =

















gas coal CO2 biooil nuclear
gas 1.00000 0.58199 0.25988 0.57585 0.17899
coal 0.58199 1.00000 0.20282 0.79733 0.10152
C02 0.25988 0.20282 1.00000 0.55621 0.28884
biooil 0.57585 0.79733 0.55621 1.00000 0.24869

nuclear 0.17899 0.10152 0.28884 0.24869 1.00000

















(4)

6 Montecarlo scenarios

In this section we face with problem of scenarios generationof long time period fore-
casting fuel prices. A Monte Carlo simulation was implemented and the set of variables
considered are gas, coal, nuclear, bio-oil andCO2. Instead of constructing scenarios
on the VAR model’s errors we work directly on these prices which can be considered as
correlated random variables with a lognormal distributionwith correlation matrix (1).
After discretization over time of the stochastic equation,the dynamic of these variables
over a time horizon T can be obtained as (5)

S(t + 1) = S(t) [1 + µ∆t + σǫ∆t] (5)
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Figure 8: Simulate value of the fuel prices time series with scenario generation on the
VAR model’s errors

in which µ is the annual percentage drift,σ is the annual percentage volatility,ǫ are
extracted from a multivariate normal distribution with correlation matrix (1) and∆t is
the discretization interval (in this work∆t is the number of mouth in one year).

By analyzing historical prices, it can be computed the deterministic component of
the price in each equation as the mean of monthly prices yields from april 2003 to May
2011. Table 6 shows the calibration of the scenario variables parameters adopted for all
Monte Carlo replications. The price in instantt0 represents the current average price of
the correspondent variables that will be the starting pointfor the Brownian motion gen-
erated for each scenario. The annual volatility has been evaluated processing historical
data of each variables. In particular, the volatility was calculated as:σ = σ

√
T , where

T is the time interval of the observation of the historical series andσd is the standard
deviation of the monthly historical series of the returns.

In Figure (9) we show 100 scenarios from every variable whilein Figure (10) we
show one scenario of the five variables in a logaritmic scale.

By increasing the number of Monte Carlo trials and so obtaining a large number of
possible scenarios, the model will define a probability distribution.

10



scenario variables deterministic component Annual volatility Price in istantt0
Gas 0.005810587 0.047882283 27.66922293
Coal 0.014966595 0.083379959 12.33180778
CO2 0.016609074 0.128397656 15.66758413
Biooil 0.008468842 0.05904478 81.61448564

Nuclear 0.017209791 0.095053344 1.741946199

Table 4: Parameters of scenario variables.
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Figure 9: Simulate value of the fuel prices time series with montecarlo generation.
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Figure 10: One scenario of the fuel prices time serie in logaritmic scale.
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7 Conclusions and further works

In this section we show the results obtained comparing generation scenarios in the two
different approaches described above. We have analyzed mean, standard deviation and
kurtosis in year 5, 10, 20 and 30 as we can see in the two tables below.

year 5 coal gas CO2 biooil nuclear
mean 12.926 28.171 16.172 84.381 1.818

standard deviation 2.532 2.413 4.066 10.317 0.328
curtosis 0.2045 -0.0465 0,8228 -0.0210 -0.1989

year 10 coal gas CO2 biooil nuclear
mean 13.4367 29.2473 16.8172 85.7316 1.9701

standard deviation 3.5423 4.0115 7.1544 13.7881 0.5036
curtosis -0.1284 -0.5668 4.2034 2.0070 -0.2760

year 20 coal gas CO2 biooil nuclear
mean 15.210 31.031 20.0457 91.7199 2.2478

standard deviation 5.9124 7.0239 12.6444 23.2656 0.8586
curtosis 1.5656 0.5783 4.8606 0.7222 0.7235

year 30 coal gas CO2 biooil nuclear
mean 17.6478 31.7154 22.2670 10.3239 2.6631

standard deviation 9.2004 7.9175 15.2450 32.9379 1.4167
curtosis 2.9992 -0.3677 2.7446 -0.1975 1.3890

Table 5: Statistics for the scenarios generated by Montecarlo simulation

year 5 coal gas CO2 biooil nuclear
mean 12.4962 28.4093 15.5381 80.8744 1.5720

standard deviation 1.1277 1.6211 2.7121 5.4491 0.2922
curtosis 1.0151 0.4406 0.0312 -0.1058 -0.3044

year 10 coal gas CO2 biooil nuclear
mean 13.3920 28.3634 15.9924 81.3603 1.5935

standard deviation 1.4941 2.0611 3.5521 7.1442 0.3699
curtosis -0.4852 0.2294 0.2543 0.5454 0.6426

year 20 coal gas CO2 biooil nuclear
mean 12.2455 28.6333 15.7684 81.1483 1.5116

standard deviation 2.1044 3.3925 5.5089 9.9350 0.5544
curtosis 0.0835 -0.3949 0.6328 -0.4907 0.5096

year 30 coal gas CO2 biooil nuclear
mean 12.1064 28.1979 15.5810 81.8152 1.5207

standard deviation 2.4006 4.044 6.8702 12.2326 0.6792
curtosis -0.3068 -0.8530 0.3973 0.1005 -0.0438

Table 6: Statistics for the scenarios generated by VAR simulation
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From results obtained we can conclude that scenarios obtained with Montecarlo
method are more diversified having an higher standard deviation and they don’t follow
a normal distribution as we can see in Figure (11). These are two important features to
forecast long period time series.

Figure 11: Distribution Montecarlo scenarios.
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Figure 12: Distribution VAR’s model scenarios.
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