Scenario generation for long term fuel prictes

S. Gambarini

Department of Mathematics, Statistics, Computing and Applications
University of Bergamo

R. Giacometti

Department of Mathematics, Statistics, Computing and Applications
University of Bergamo

rosel | a. gi acometti @nibg.it

S. Zigrino

Department of Information Technology and Mathematical Methods,
University of Bergamo

October 16, 2012

Abstract

In this article we deal with the problem of scenario generation for fueéptiic
the long term. The solution of many decision making problems in the enemgy s
tor such as the optimal mix of energy productions among different tdobies,
requires to model the dynamic of fuel prices and forecast their gessilenarios
over time. We present two different approaches for scenario geoer a Vector
autoregressive approach and a Monte carlo approach; The firss based on the
estimate of a Vector Auto Regressive model i.e. a set of simultaneuzdies.
The second one is based of the assumption that the returns dynamiesd@tn-
eralised weiner process. Using the two approaches we forecast’ mtemarios.

1 Introduction

In this paper we are interested in long term scenario geparaf the fuel prices and
EUA (CO2 allowances) price which affect the variable costdiectricity production
in different technologies. In particular for productioreheologies like coal, nuclear,
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combined cycle gas turbine(CCGT) and biomass power planfubls that influence
the variable costs are: gas, coal, nuclear and bio-oil; th& Brice influence the tech-
nologies that emits”O- that are coal and CCGT plants. We will concentrate our
attention on this set of variables. In Section 2 we desctibalata set, in Section 3 we
analyze the statistical characteristic of fuel prices atdrns using PCGive Software,
in Section 4 we describe the econometric model VAR, in Sacliave describe the
scenario generation on VAR model’s errors, in Section 6 vsedee the Monte Carlo
Simulation and in Section 7 we compare the results on the tffereht tecniques on
scenario generation and present some possible furtherobse

2 Fuel pricesdescription

In this section we describe the fuel prices, and EUA pricéalilse; we used monthly
data because we are interested in long period forecastiagnalyzed monthly database
for

« gas prices from April 2003 to March 2011 expresseé jim?.

+ coal prices from January 2004 to March 2011 express&f ity.
» EUA prices from Dicember 2004 to May 2008 expresse€ jn.
* nuclear prices from April 2003 to May 2011 expresse€jfkg.

* biooil prices from May 2003 to October 2010 expresse€ jitg.

The source for the gas prices is a private contract of amnalienCo, for the other
fuel prices the source is the IEA World Energy Outlook 2010.

We have transformed the prices& MW h dividing for the LHV (Lower Heating
Value) of every fuel. This price is an indicator of sensittfethe technology to the
fuel price variations: a high price means high sensitividyfar the gas plants, a low
price means low sensitivity as for the nuclear plants. Notiat the total electricity
cost for each technology depends on several parametethdladfficiency of the plant,
the operating hours, the fixed costs, the investments dbst§;0, emission rate and
the industrial life of the plant, so for various factors ahteclogy with high variable
costs might be more convenient respect to a technology ity bow variable costs.
The fuels and their characteristics are shown in Table 1.bEfaviors of these prices
against time are plotted in Figure 1.

The natural gas and the coal have a positive emission faictoe shey are fossil
fuels; obviously the nuclear plants do not emit arig), (but they produce nuclear
waste which are very expensive and dangerous to treat); l#mespthat burn biooil
have an emission rate equal to zero even if they €nit, because the emission is
considered a closed cycle: tlig0, emitted in the atmosphere is the same that had
been consumed by the plantations that produce the biomdmscdst of the nuclear
fuel includes both the uranium cost and the processing.costs
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Figure 1: Behaviours of the four fuel prices and EUA priceasidered from April
2003 to May 2011.

Fuel cost| Lower Heating Value| Fuel cost CO,
Fuel [m.u.] year 0 year 0 | emission rate
[€/mul] [MWh/m.u.] [€/MWh] [t/GWh]
Gas[Nm?] 0.29 9.58 30.27 200
Coal[t] 115 8141 14.13 338
Biooil [Kg] 0.81 10138 79.90 0
Nuclear[K g] 2100 950171* 2.21 0

Table 1: The fuels considered and their characteristicstitid that this isn’t precisely
a LHV but the energy released by 1 Kg of uranium

3 Fuel prices statistics

From Figure 1 we can guess some characteristics of thesprfaes: positive correla-
tion, no normality, no-stationarity andno-trend-stationarity.

To verify these empiric hypothesis we report the statistieaults obtained with
software PCGive. We report the correlation matrix and ttsalte for the normality
test



gas coal CcO2 biooil  nuclear
gas 1.00000 0.58199 0.25988 0.57585 0.17899
5 coal  0.58199 1.00000 0.20282 0.79733 0.10152 (1)
C02  0.25988 0.20282 1.00000 0.55621 0.28884
biooil  0.57585 0.79733 0.55621 1.00000 0.24869

nuclear 0.17899 0.10152 0.28884 0.24869 1.00000

In figure 3 we can observe the dynamic of the logarithmic redtithe return are
also stationary. In table 3 we report the results of the nbtyntest on the returns
which is refused on prices (see 3) table while is accepte@mrrs.

| Fueloil | x* [ Probability | Result |
Gas 13.373 0.0012 refused
Coal 15.745 0.0004 refused
CO, 0.89956 0.6378 accepted
Biooil 44.886 0.0000 refused
Nuclear| 38.261 0.0000 refused

Table 2: Normality test on prices.

207

=3 (=]
40 F
wf
mf
0
10 0 a0 40 50 0 5 10 15 0
e
anf
mf
w}
]
5 1w 15 1 25 ;N
5 [[=EUEEE
25t
il

Figure 2: Distribution of the five fuel prices against normal



Fuel oil return| Chi2 | Probability | Result |

returnGas 5.5653 0.0619 | accepted
returnCoal | 4.0490 0.1321 | accepted
returnC'O- 0.85189| 0.6532 | accepted
returnBiooil | 5.7733 0.0558 | accepted
returnNuclear| 5.2058 0.0741 | accepted

Table 3: Normality test on returns
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Figure 3: Behaviors of the five fuel returns considered fropmil22003 to May 2011.

Finally we investigate the presence of unit root (see Digey Fuller (1979)[3]).
Difference stationary and trend stationary models of threestime series may
imply very different predictions. Deciding which model tseuis therefore
tremendously important for applied forecasters. Rathan #smploying one or
the other model by default, one may use a unit root test asgmasgtic tool to
guide the decision. In fact, one of the early motivationsunit root tests was
precisely to help determine whether to use forecasting feodalifferences or
levels in particular applications. If the series y is statiry (or trend station-
ary), then it has a tendency to return to a constant (or détestically trending)
mean. Therefore large values will tend to be followed by $enafalues (nega-
tive changes), and small values by larger values (positiemges). Accordingly,
the level of the series will be a significant predictor of ngatiod’s change, and
will have a negative coefficient. If, on the other hand, theeseis integrated,
then positive changes and negative changes will occur withgbilities that do
not depend on the current level of the series; The simplestat@mnary autore-
gressive process is a random walk in which where you are n@s dot affect
which way you will go next because the expected value of tlegss in tis
equal to the expected value at time t-1 in fact

Yy=¢ -y1+e  with  Elg]=0 (2)



The null Hypotheséd, : ¢ = 1 means the process is not stationary against the
hypothesdd; : ¢ < 1 means the process is stationary. With the sofware PCGive
we have found for trace test the results showed in Figurend)%®) which imply

our data are not stationary nor trend stationary but arerdiffce stationary.

CA%: ADF tests (T=68, Constant; 54=-2.90 1$=-3.53
D-lay  t-adf bera T 1 sigma ©-DY lag t-prob AIC F-prob
z -2.678 0.81947 1.308 17382 0.1713 0.5542
1 426 0.32800 1.317 5.164 0.0000 0534z 0.1713
0 -1.757 0.93870 1.882 0.308& 0.0000
OAL: ADF tests (T=6%, Constant; 5%=-2.90 1%=-3_53)
D-lay  t-adf beta ¥_1 sigma t-DY_lag t-prob AIC F-prob
z -1.761 024111  0.791% 05026 0.6169  -0.4110
1 .70z 0.94473  0.7868 3.582 0.0007 (4365 '0.6169
0 -1.0a8 096354 0.8544 -0.2857 0.00Z8
C0Z: ADF tests (T=68, Constant; 5%=-2.90 13=-3.53
D-lay  t-adf beta ¥ 1 sigma DY _lag t-prob AIC F-prob
z -3.293* 0.52543 1.346 1.231 0.z227 1.389
1 ~3.075% 0.84119 1.954 2.462 0.0165 1.383 0.z227
0 -2.661 0.85879 z.027 1.442 0.0273
BIOOLIO: ADF tests (T=68, Constant; 5%=-2.50 l%=-3_53)
D-lay  t-adf bera T_1 sigma ©-DY lag t-prob AIC F-prob
2 -1.378 0_52456 4.376 17450 0.14lz 3.009
1 738 0_53422 4.417 1.355 0.0548 3.014 0.ld41z
] -1.445 0.54473 4.E510 3.042 0.0533
NUCLEARE: IDF tests (T=68, Constant; 54=-2.90 l$=-3.53
D-lay  t-adf bera ¥ 1 sigma ©-DY_lag t-prob AIC F-prob
z -1.869 054275 0.1597 -z 556 0.0130 -3.164
1 -z.azg 0.92460  0.ZOBL 5.045 0.0000 -3.097 0.0130
0 -1l.6a8 024042 0.2436 -2.7%6 0.0000
GAS: ADF tests (T=68, Constant+Trend; 54=-3.48 1$=-4.10)
D-lay  t-adf beta ¥ 1 sigma ©-DY lag t-prob AIC F-prob
z -2.502 0.21766 1.21% 1.374 0.1744 06233
1 -z.209 0.82928 1.327 4.3%8 0.0000 0.623¢ 0.1744
0 -1.321 0.25087 1.553 0.9235 0.0000
0AL: ADF tests (T=62, Constant+Trend; 54=-3.48 13=-4.10}
D-lagy  t-adf beta ¥_1 sigma DY _lag t-prob AIC F-prob
z -2.592 088147  0.7763 08732 0.3859 -0.4358
1 -z.448 089311  0.7749 3.807 0.0003 -0.4531 0.3859
0 -1.550 092516  0.8515 -0.2784 0.0011
COZ: ADF tests (T=68, ConstanttTrend; 5$=—3.48 1$=-4.10)
D-lag  t-adf beta ¥_1 sigma  t-DY_lag t-prob AIC F-prob
z -4.085% 0.77946 1.872 17166 0.z478 1.325
1 -3.895+ 0_73283 1.877 2.2zl 0.0299 1.317 0.z478
o -3.617+% 0_80253 1.3933 1.362 0.0492
BIDOLIO: ADF tests (T=68, Constant+Trend; S&=-3.48 li=-4.10)
D-lay  t-adf beta T_1 sigma ©-DY_lag t-prob AIC F-prob
z -z.004 0.52011 4.404 17518 0.1341 3.036
1 -1.738 0.53137 4.443 1.55¢ 0.0548 3.042 0.1341
0 -1.41€ 0.34343 4.544 3.071 0.0518
WUCLEARE: IDF tests (T=68, ConstantiTrend; 5i=-3.48 l:=-4.10)
D-lay  t-adf beta ¥ 1 sigma ©-DY lag t-prob AIC F-prob
z -1.21% 024410 0.Z00L -z.62& 0.0109 -3.147
1 -z2.29% 0.82E11  0.2091 4.87E  0.0000 -3.072 0.0L09
o -1.837 054094  0.2430 -2.986 0.0000

Figure 4: No stationarity nor trend stationarity.



DGAS: ADF tests (T=67, Constant; 54=-2.90 li=-3_53)
D-lag  t-adf beta ¥_1 sigua t-DY_lag t-prob AIC F-prob
z -z.71% 063483 1.372 -17283 0.z0zO0 0.6902
1 -3.527% 0. se3Es 1.379  -0_8111 0.4203 0.6864 0.zOZO
o -4.530%% 0. 51431 1.378 0.6667 0.3Ll30
DCOLL: ADF tests (T=67, Constant; 5%=-2.90 li=-3_ 53}
D-lag  rt-adf beta ¥ 1 sigma t-DY lag t-prob AIC F-prob
z -4.g787% 0.z3963 07930 1.930 0.0881 -D0.4060
1 -4.4lz7F 0.38444  0.8097 -0.1l184 0.9062 -0.3784 0.0581
o -5.adzvr 0.375z1  0.3036 -0.4080 0.16ZE
DCOZ: ADF tests (I=67, Constant; §%=-Z.90 li=-3_£3)
D-lay  t-adf beta ¥ 1 sigma t-DY_lag t-prob AIC F-prob
z -4.2647% 0.ZE10E 2.059 0.3439 0.73z1 1.503
1 -4.7777% 0.z8167 Z.045  -D_5620 0.E76L 1,478 0.73z1
0 -6.566*F 0.22928 2.034 1.450 0.8072
DEIOOLIO: ADF tests {T=67, Constant; Ei=-2_90 l3=-3.53)
D-lag  t-adf beta ¥ 1 sigma ©-DY_lag t-prob AIC F-prob
2 -3.323% 040539 4.506 -17014 0.3145 3.063
1 -4_356%% 0. 31580 4.507 -1.148 0.2553 3.055 0.3148
o —6.520*F 0.20573 4.518 3.046 03162
DMUCLEARE: ADF tests (T=57, Constamt; 5%=-2.50 1%=-3.53)
D-lag  t-adf beta ¥ 1 sigma t-DY_lag t-prob AIC F-prob
z -4_5g2+ 0.33078  0.2067  -0.1134 0.9101 -3.095
1 -5_77a%r 0.32108  0.Z0SL £.99z 0.0033 -3.125 ©0.9101
[i] ~d_E5a*r 0.49738 02173 -3.083 0.0161

Figure 5: Difference stationarity.

4 Vectorial Autoregressive Econometric model of the
forward prices curves

If two or more series are individually integrated (in the ¢ireries sense) but some
linear combination of them has a lower order of integratithien the series are said
to be cointegrated(see Engle & Granger 1987 [4]). A commamle is where the
individual series are first-order integrated (I(1)) but sofoointegrating) vector of co-
efficients exists to form a stationary linear combinationh&fm. For instance, a stock
market index and the price of its associated futures contnage through time, each
roughly following a random walk. Testing the hypothesist tteere is a statistically
significant connection between the futures price and thepmjue could now be done
by testing for the existence of a cointegrated combinatfadh@two series. (If such a
combination has a low order of integration - in particuldt i§ 1(0), this can signify an
equilibrium relationship between the original series,aitdre said to be cointegrated.)

Before the 1980s many economists used linear regressionsrestationary time
series data, which Nobel laureate Clive Granger and otthensed to be a dangerous
approach that could produce spurious correlation. In h&7lj8aper Robert Engle
formalized the cointegrating vector approach, and coihederm.

We have checked the price series cointegration by usinghden procedure (see
[5]) based on trace test where the null hypothesis is the euwificointegration vectors
r and then the secon step is to estimate the regression nmogtbi¢h we have decided
to work with logaritm of prices in order to lower prices validy. With Granger casu-
ality test we have verified that no price serigss Granger-caused where we say that
x Granger-causeg if lags of z explainy, so we have used an endogenous vectorial
autoregressiv®€ AR(p): yt =c+ A1ye—1+ ... + Apyr—p + &

We have found that the VAR(p) with = 7 is well posed with normal residual and
with a good forecasting ability as we can see in the Figureu@l) (7).
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Figure 6: Comparison between fitted value and simulate valtreVAR(7) model of
the fuel prices time serie.
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Figure 7: Forecating analysis of endogenous model VAR(7}He fuel prices time
series.

5 Scenario generation on the VAR model’serrors

From VAR model's construction we have obtained that evesl farice serie is de-
scribed by the equatiopp = ¢+ A1ys_1 + ... + A7ys_7 + ¢, where the errors, are
indipendent and identically distributed with normal distition and so can be described



by the following brownian motion
dey = pedt + o€ dZy 3)

with dZ; € N(0,dt).

In equation (3) the risk factor correlation is hiddendi#;, to explicit it we have
used Choleski decomposition method that says that we camgease the symmetric
and positive definite matrix of variance and covariancg as C” C where C is a lower
triangular matrix with strictly positive diagonal entriemdC7? denotes the conjugate
transpose of C.

The Cholesky decomposition is unique: given a Hermitiasjtpe@-definite matrix
3], there is only one lower triangular matrix C with strictly gitive diagonal entries
such that: = CT'C. The converse holds trivially: i can be written a&'” C for some
invertible C, lower triangular or otherwise, th&his Hermitian and positive definite.

The Cholesky decomposition is commonly used in the MontdoQaethod for
simulating systems with multiple correlated variableg ¢brrelation matrix is decom-
posed, to give the lower-triangular C. Applying this to ateeof uncorrelated samples,
yt, produces a sample vectély, with the covariance properties of the system being
modeled.

So we have analyzed VAR errors obtaining descriptive stedishown in table be-
low then we have obtained Choleski matrix (4) and finally weegated 100 scenarios
on errors over 30 years as reported in figure 8.

| descriptive statistic3 Gas | Coal [ CO, | biooil | nuclear |

mean 0 0 0 0 0
standard deviation| 0.68826| 0.49073| 1.2579| 2.3026| 0.12676

gas coal CcO2 biooil  nuclear
gas 1.00000 0.58199 0.25988 0.57585 0.17899
C— coal  0.58199 1.00000 0.20282 0.79733 0.10152 ()
C02  0.25988 0.20282 1.00000 0.55621 0.28884
biooil  0.57585 0.79733 0.55621 1.00000 0.24869

nuclear 0.17899 0.10152 0.28884 0.24869 1.00000

6 Montecarlo scenarios

In this section we face with problem of scenarios generatfdong time period fore-
casting fuel prices. A Monte Carlo simulation was implenegirdnd the set of variables
considered are gas, coal, nuclear, bio-oil ard,. Instead of constructing scenarios
on the VAR model’s errors we work directly on these priceschitdan be considered as
correlated random variables with a lognormal distributigth correlation matrix (1).
After discretization over time of the stochastic equattbe,dynamic of these variables
over a time horizon T can be obtained as (5)

S(t+1)=5(t)[1 + pAt + oeAt] (5)
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Figure 8: Simulate value of the fuel prices time series wittn&rio generation on the
VAR model’s errors

in which p is the annual percentage dritt,is the annual percentage volatilityare
extracted from a multivariate normal distribution with relation matrix (1) and\¢ is
the discretization interval (in this workt is the number of mouth in one year).

By analyzing historical prices, it can be computed the deitéistic component of
the price in each equation as the mean of monthly pricess/fetan april 2003 to May
2011. Table 6 shows the calibration of the scenario varigtdeameters adopted for all
Monte Carlo replications. The price in instaptrepresents the current average price of
the correspondent variables that will be the starting dointhe Brownian motion gen-
erated for each scenario. The annual volatility has beelnatesl processing historical
data of each variables. In particular, the volatility wakokated aso = o+/T, where
T is the time interval of the observation of the historicaieg andod is the standard
deviation of the monthly historical series of the returns.

In Figure (9) we show 100 scenarios from every variable winilEigure (10) we
show one scenario of the five variables in a logaritmic scale.

By increasing the number of Monte Carlo trials and so obtajrai large number of
possible scenarios, the model will define a probabilityriiation.
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scenario variables deterministic componen

t Annual volatility

Price in istant,

Gas 0.005810587 0.047882283 27.66922293
Coal 0.014966595 0.083379959 12.33180778
COq 0.016609074 0.128397656 15.66758413
Biooll 0.008468842 0.05904478 81.61448564
Nuclear 0.017209791 0.095053344 1.741946199

Table 4: Parameters of scenario variables.
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Figure 9: Simulate value of the fuel prices time series witintecarlo generation.
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Figure 10: One scenario of the fuel prices time serie in libgée scale.
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7 Conclusionsand further works

In this section we show the results obtained comparing g¢io@rscenarios in the two
different approaches described above. We have analyzed, steadard deviation and
kurtosis in year 5, 10, 20 and 30 as we can see in the two tableab

year 5 coal gas CO2 biooil | nuclear
mean 12,926 | 28.171 | 16.172 | 84.381 | 1.818
standard deviation 2.532 2.413 4.066 | 10.317 | 0.328
curtosis 0.2045 | -0.0465| 0,8228 | -0.0210| -0.1989
year 10 coal gas CcO2 biooil | nuclear
mean 13.4367| 29.2473| 16.8172| 85.7316| 1.9701
standard deviation 3.5423 | 4.0115 | 7.1544 | 13.7881| 0.5036
curtosis -0.1284 | -0.5668| 4.2034 | 2.0070 | -0.2760
year 20 coal gas Cc0o2 biooll nuclear
mean 15.210 | 31.031 | 20.0457| 91.7199| 2.2478
standard deviation 5.9124 | 7.0239 | 12.6444| 23.2656| 0.8586
curtosis 1.5656 | 0.5783 | 4.8606 | 0.7222 | 0.7235
year 30 coal gas C02 biooll nuclear
mean 17.6478| 31.7154| 22.2670| 10.3239| 2.6631
standard deviation 9.2004 | 7.9175 | 15.2450| 32.9379| 1.4167
curtosis 2.9992 | -0.3677 | 2.7446 | -0.1975| 1.3890

Table 5: Statistics for the scenarios generated by Moritesanulation

year 5 coal gas CO2 biooil | nuclear
mean 12.4962| 28.4093| 15.5381| 80.8744| 1.5720
standard deviation 1.1277 | 1.6211 | 2.7121 | 5.4491 | 0.2922
curtosis 1.0151 | 0.4406 | 0.0312 | -0.1058 | -0.3044
year 10 coal gas CO2 biooil | nuclear
mean 13.3920| 28.3634| 15.9924| 81.3603| 1.5935
standard deviation 1.4941 | 2.0611 | 3.5521 | 7.1442 | 0.3699
curtosis -0.4852 | 0.2294 | 0.2543 | 0.5454 | 0.6426
year 20 coal gas CcO2 biooil | nuclear
mean 12.2455| 28.6333| 15.7684| 81.1483| 1.5116
standard deviation 2.1044 | 3.3925 | 5.5089 | 9.9350 | 0.5544
curtosis 0.0835 | -0.3949 | 0.6328 | -0.4907 | 0.5096
year 30 coal gas CO2 biooil | nuclear
mean 12.1064| 28.1979| 15.5810| 81.8152| 1.5207
standard deviation 2.4006 | 4.044 | 6.8702 | 12.2326| 0.6792
curtosis -0.3068 | -0.8530| 0.3973 | 0.1005 | -0.0438

Table 6: Statistics for the scenarios generated by VAR sitian

12



From results obtained we can conclude that scenarios @otaiith Montecarlo
method are more diversified having an higher standard deriand they don't follow
a normal distribution as we can see in Figure (11). Thesenarémportant features to
forecast long period time series.
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Figure 11: Distribution Montecarlo scenarios.
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