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Abstract

We estimate technical efficiency of 33 Italian airports for the period 2005–2008. In addition

to conventional desirable outputs (aircraft, passenger and cargo movements), we consider also a

negative externality of airport activity: local air pollution. We apply a hyperbolic distance function

to estimate a multi–output stochastic frontier. Such approach allows to treat the outputs’ vector

asymmetrically by allowing desirable outputs expansion and undesirable outputs contraction. We

show that airports’ efficiency scores (obtained by maximum likelihood estimation) are greater and

closer when local air pollution is included in the analysis and that there is a fleet effect. Those

airports where airlines use environmental friendly aircrafts get the largest efficiency improvements.

We observe that this happens mainly in regional airports.

JEL classification: L930, L590, L110
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1 Introduction

Airport efficiency has been the subject of many contributions. Traditionally, the

inputs considered are either the production factors (e.g., labor and capital) or the

physical infrastructure of the airports (e.g., runways and terminal area), while the

outputs are given by the number of aircraft movements, passengers, and freights.1

Efficient airports are those that maximize their outputs/inputs ratios. Hence, under

this perspective, the pursuit of efficiency aims at increasing the number of aircraft

operations as well as the number of passengers transported and cargo handled, for a

given level of inputs.

This traditional approach to estimate airport efficiency does not consider some im-

portant environmental externalities (e.g., noise annoyance and pollutants’ emissions)

associated to airport activities, that should be instead considered in the performance

evaluation. Not considering these “bad” outputs may give rise to two errors: (1)

efficiency estimates may be biased and, as a consequence, the obtained benchmarking

is misleading; (2) the benefits created by airport activities are overestimated, since

they do not take into account the full social cost produced.

This is the aim of the present paper, i.e. to evaluate airports’ technical efficiency

using a more general approach. We adopt a stochastic frontier model taking into ac-

count that airports exploit their inputs to produce, at the same time, the conventional

“good” outputs and some undesirable outputs. More in details, in this contribution,

we focus our attention on the level of Local Air Pollution (LAP) produced by aircraft

movements.2 During the Landing–Take Off (LTO) cycle, an aircraft gives off several

pollutants (i.e., hydrocarbons, carbon monoxide, nitrogen oxides, sulphur dioxide

and particulate matter) affecting the quality of local air. Also CO2 is produced by

aircraft engines, but it affects only global warming and not local air quality. In this

contribution we focus on the pollutants emissions produced during the LTO cycle

1For a summary of the input and output included in the previous efficiency analysis refer to
Tovar and Mart́ın-Cejas (2009).

2Other types of negative externality related to air transportation are noise and climate change.
The first one is not considered here because of the difficulties connected to both the non–linear
properties and the subjectivity characterizing noise annoyance. Climate change is mainly associated
with emissions of aircrafts during the cruise stage, regardless of departure and arrival airports. In
fact, as pointed out by Givoni and Rietveld (2010), to account for aircraft operation impact on
climate change the whole flight must be accounted.
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and certified by ICAO, i.e., hydrocarbons, carbon monoxide and nitrogen oxides.

Following the approach of Cuesta et al. (2009), we estimate a stochastic production

frontier using a hyperbolic distance function model that is both parametric and

stochastic. In this way, we are able to represent the proportion by which desirable

outputs can be expanded and undesirable outputs and inputs can be reduced in

a multiplicative manner. Furthermore, this methodology allows us to apply a

conventional econometric technique based on maximum likelihood estimation (Battese

and Coelli, 1992). The econometric model is applied to a dataset of 33 Italian airports

for the period 2005–2008, covering more than 90% of the total number of passenger

movements.

To the best of our knowledge, no previous study regarding airport efficiency

has considered Local Air Pollution as undesirable output. Moreover, there are no

parametric studies about airport efficiency that take into account the simultaneous

production of desirable and undesirable outputs. The structure of this paper is

as follows. A review of previous related airport efficiency studies is presented in

Section 2. In Section 3, we formulate the hyperbolic distance function model and the

methodology by which the index for LAP has been constructed. Section 4 reports

the results of the proposed approach. Finally, Section 5 summarizes and concludes

the paper.

2 Literature review

Technical efficiency refers to the ability to maximize outputs from a given vector of

inputs or to minimize inputs utilization in the production process of a given vector of

outputs (Coelli et al., 2005). Thus, in order to describe the structure of production

technology, it is necessary to employ information on input and output levels realized

in the different units composing the industry (or a sample of them) (Kumbhakar

and Lovell, 2000). Estimation could be done using both a parametric approach

(i.e., Stochastic Frontier Analysis, SFA) and a non–parametric approach (i.e., Data

Envelopment Analysis, DEA).

The literature on the estimation of airport technical efficiency presents few

parametric contributions. Among them, we mention Pels et al. (2001, 2003), since
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they were the first to estimate airports’ production function applying a SFA.3

However, they ignore that airports are multi–product firms and estimate separately

two production functions: one for aircraft movements and another one for passengers.

If instead airports are treated as mutli–output units, it is necessary to adopt a

stochastic distance function approach (Coelli and Perelman, 2000),4 as in Chow and

Fung (2009), Tovar and Mart́ın-Cejas (2009) and Scotti et al. (2010).5 However, all

these studies focus only on desirable outputs.

Non–parametric distance functions have been introduced by Charnes et al. (1978)

and dominate the empirical analysis of airport performance: Lozano and Gutiérrez

(2009) present a recent and detailed review of this branch of the literature. A major

drawback of the DEA approach is that all the distance between the firm and the

estimated frontier is treated as inefficiency, without considering the possible impact

of random shocks. Furthermore, since it does not specify the functional relation

between input and output variables, it is not possible to rank the relative importance

of the various productive factors. For these reasons, we adopt a stochastic frontier

approach.

Few previous contributions have taken into account both desirable and undesirable

outputs produced by airports. Yu (2004) estimates airports’ technical efficiency using

aircraft movements as desirable output and aircraft noise as undesirable output. His

dataset covers 14 Taiwanese airports and includes the following inputs: runway area,

terminal area, apron area, number of routes connections with other domestic airports,

and city population. He finds that including noise in the efficiency analysis can

provide a better understanding of airports’ performances. More in details, airports are

in general more efficient when both desirable and undesirable outputs are considered,

and airports located in a smaller population area achieve the same efficiency than

other ones. A similar result is found by Yu et al. (2008) by investigating a panel

dataset composed by 4 Taiwanese airports for the period 1995–1999 and estimating

3Some contributions, Barros (2008), Oum et al. (2008) and Mart́ın et al. (2009), estimate a cost
stochastic frontier using accounting data. In doing so, they may incur in some distortions when
assessing inputs prices.

4Input and output oriented distance functions have been introduced first by Debreu (1951),
Malmquist (1953) and Shepard (1953).

5Unlike Chow and Fung (2009) and Tovar and Mart́ın-Cejas (2009), Scotti et al. (2010) did also
investigate the determinants of airports’ estimated efficiency scores.
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a revenue frontier.6 Pathomsiri et al. (2008) consider passenger movements, cargo,

and non–delayed flights as desirable outputs and time delays and number of delayed

flights as undesirable outputs. The inputs included are the land area, the number

of runways and the total runway area. They investigate 56 US airports for the

period 2000–2003, showing that if delayed flights are excluded from the model,

many large but congested airports are found to be efficient. If instead undesirable

outputs are taken into account, many other airports can be classified as efficient,

since they can compensate a lower desirable outputs/inputs ratio with shorter delays

per inputs. Furthermore, they also provide evidence of a lower airports’ productivity

when undesirable outputs are included. Lozano and Gutiérrez (2010) confirm these

results by analyzing the efficiency of 39 Spanish airports for the period 2006–2007,

considering two undesirable outputs, i.e., the percentage of delayed flights, and the

average conditional delay of delayed flights.7

While aircraft noise is clearly a negative externality of airport operations, flight

delays may be also regarded as a signal of low quality in providing a desirable output.

Hence, we do not consider delays in this contribution. Noise is also excluded for

its non–linear features that cannot easily be considered with linear desirable and

undesirable goods. Furthermore, some authors have shown that the social costs of

aircraft pollution are relevant (Dings et al., 2003 and Givoni and Rietveld, 2009 and

2010). Hence, our contribution is a first attempt to assess airport technical efficiency

when local environmental emission are taken into account.

3 Methodology

3.1 Hyperbolic distance functions and environmental efficiency

Airports’ efficiency is estimated using a hyperbolic distance function. Such approach

allows for the inclusion of undesirable outputs as shown in Cuesta et al. (2009). To

define it, we begin by considering a production technology that transforms input

vectors xi = (x1i, . . . , xKi) ∈ RK
+ into output vectors oi = (o1i, . . . , oV i) ∈ RP

+ ,

consisting of desirable and undesirable output subvectors yi = (y1i, . . . , yMi) ∈ RM
+

6They consider total airport revenues as desirable output and aircraft noise as undesirable output.
They find that total factor productivity is three times lower if bad output are considered.

7The inputs are the runways area, the number of aircraft parking positions, the number of
baggage belts, the number of check–in desks and the number of boarding gates.
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and wi = (w1i, . . . , wRi) ∈ RR
+ , and where the subscript i = (1, 2, . . . , N) refers

to a set of observed airports. T is the production possibility set representing the

technology, i.e., T = {(x, y, w) : x ∈ RK
+ , (y, w) ∈ RP

+, x can produce (y, w)}. T is

assumed to satisfy the axioms stated in Färe and Primont (1995).

If negative output are not considered, airports’ production function is tipically

represented by an output distance function DO(x; y) = inf{ϕ > 0 : (x; y/ϕ) ∈ T}.8

The output distance function has been largely used in the literature, but it has no

environmental interpretation. Differently from DO, the hyperbolic distance function

represents, for a given amount of inputs, the maximum expansion of the desirable

output vector and equiproportionate reduction of the undesirable output vector that

places a producer on the boundary of the technology T . Following Cuesta et al.

(2009), we can represent it by the following expression:

DH(x; y; w) = inf{θ > 0 : (x; y/θ; w × θ) ∈ T}.

This function has the virtue of treating desirable and undesirable outputs asymmet-

rically, thus providing an environmentally friendly characterization of the production

technology. The range of the hyperbolic distance function is 0 < DH(x, y, w) ≤ 1. If

the technology satisfies the customary axioms, then the hyperbolic distance function

fulfills the property of almost homogeneity (of degrees 0, 1, -1, 1):9

DH(x, µy, µ−1w) = µDH(x, y, w), µ > 0. (1)

Furthermore, DH is also (i) non–decreasing in desirable outputs, (ii) non–increasing

in undesirable outputs, and (iii) non–increasing in inputs.

Since Eq. (1) fully characterizes the technology assuming weak disposability,

if DH(x, y, w) < 1, the producer is inefficient and could improve environmental

performance by expanding production of “good” outputs and by reducing undesirable

pollutants.

Another possible representation of technology can be obtained by introducing

an enhanced hyperbolic distance function. Unlike the previous one, the enhanced

8The output distance function has range between 0 and 1. It is homogeneous of degree one in
outputs, non–decreasing in outputs and non-increasing in inputs (Shephard, 1970).

9For more information, see Aczél (1966) and Lau (1972).
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hyperbolic distance function calls also for a further proportional reduction on the

input side. The enhanced hyperbolic distance function is defined as:

DE(x, y, w) = inf{φ > 0 : (x× φ; y/φ; w × φ) ∈ T}.

Again, DE assumes values between 0 and 1, satisfies (i), (ii), (iii) while it has a

more inclusive degree of almost homogeneity:

DE(µ−1x, µv, µ−1w) = µDE(x, v, w), µ > 0.

As shown in Cuesta et al. (2009) and in Cuesta and Zofio (2005), DH and DE

not only provide a flexible approximation to the unknown production technology,

but also prove to be suitable to the imposition of almost homogeneity restrictions.

Furthermore, the necessary (1 + M + K + R) restrictions that ensure almost

homogeneity of degrees 0, 1, -1, 1 for DH are satisfied choosing the Mth desirable

output for normalizing purposes and obtaining:

DH(x,
y

yM

, w × yM) =
DH(x, y, w)

yM

.

Hence, adopting a translog specification for DH , we get:

ln(DHi/yMi) = α0 +
K∑

k=1

αk ln xki +
1

2

K∑
k=1

K∑
l=1

αkl ln xki ln xli

+
M−1∑
m=1

βm ln y∗mi +
1

2

M−1∑
m=1

M−1∑
n=1

βmn ln y∗mi ln y∗ni

+
R∑

r=1

χr ln w∗
ri +

1

2

R∑
r=1

R∑
s=1

χrs ln w∗
ri ln w∗

si

+
1

2

K∑
k=1

M−1∑
m=1

δmr ln xki ln y∗mi +
1

2

K∑
k=1

R∑
r=1

ξkr ln xki ln w∗
ri

+
1

2

M−1∑
m=1

R∑
r=1

υmr ln y∗mi ln w∗
ri

i = 1, 2, ..., N t = 1, 2, ..., T,

(2)
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where y∗mi = ymi/yMi and w∗
ri = wri × yMi.

Following the same procedure for the enhanced hyperbolic distance functions, we

obtain:

ln(DEi/yMi) = α0 +
K∑

k=1

αk ln x∗ki +
1

2

K∑
k=1

K∑
l=1

αkl ln x∗ki ln x∗li

+
M−1∑
m=1

βm ln y∗mi +
1

2

M−1∑
m=1

M−1∑
n=1

βmn ln y∗mi ln y∗ni

+
R∑

r=1

χr ln w∗
ri +

1

2

R∑
r=1

R∑
s=1

χrs ln w∗
ri ln w∗

si

+
1

2

K∑
k=1

M−1∑
m=1

δmr ln x∗ki ln y∗mi +
1

2

K∑
k=1

R∑
r=1

ξkr ln x∗ki ln w∗
ri

+
1

2

M−1∑
m=1

R∑
r=1

υmr ln y∗mi ln w∗
ri

i = 1, 2, ..., N t = 1, 2, ..., T,

(3)

where y∗mi = ymi/yMi, w∗
ri = wri × yMi and x∗ki = xki × yMi.

In a stochastic frontier model the distance separating a producer from the frontier

is given by two components: (1) its technical inefficiency and (2) a random shock

beyond producers’ control. To incorporate this two components in our estimation,

the error term is modeled as εit = (vit − uit), where vit is the two–sided random

noise capturing the effect of random shocks, while uit is non–negative and represents

the inefficiency. As in standard SFA, vit are normally distributed as N(0, σ2
v) while

uit is noramlly distributed and truncated at 0 as as N+(mit, σ
2
u). Hence, if we add

the random disturbance, the estimated distance function of Eq. (2) is given, in a

multi–period framework, by ln(DHit/yMit) = TL(xit, y
∗
it, w

∗
it, α, β, χ, δ, ξ, υ) + vit.

Since inefficiency (i.e., the distance ln(DHit)) is represented by uit, the translog

hyperbolic distance function to be estimated becomes:

−ln(yMit) = TL(xit, y
∗
it, w

∗
Mit, α, β, χ, δ, ξ, υ)− uit + vit. (4)

Similarly, the translog enhanced hyperbolic stochastic distance function of Eq.
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(3) can be written as:

−ln(yMit) = TL(x∗it, y
∗
it, w

∗
Mit, α, β, χ, δ, ξ, υ)− uit + vit. (5)

The assumptions regarding the distribution of the uit and vit involve estimating

the variance parameters σ2 = σ2
v + σ2

u and γ = σ2
u/(σ

2
v + σ2

u). We regress Eq. (4)

and Eq. (5) using the standard maximum–likelihood technique developed by Battese

and Coelli (1992) and then compute the posterior expected values of the error

components. In this way, we obtain time variant hyperbolic efficiency estimates that

can be transformed into efficiency scores as follows:

TEit = e−uit .

3.2 Local Air Pollution

The quality of the air nearby the airports is an increasingly important issue for airports

managers, particularly in the European Union, where environmental directives have

been approved.10 As a result, airports’ managers have to provide detailed assessments

of their environmental impact. At the local level, airports are working alongside

regional partners and stakeholders to assess the contribution of airport emissions on

local air quality and to develop strategies and plans to reduce emissions. As a first

step in this direction, a rigorous evaluation of the airports’ environmental effects on

local air is required. Our contribution provides a method to evaluate airports’ local

air pollution. In doing so, we first take into account that aircrafts affect Local Air

Pollution (LAP) only when they operate along the Landing Take–Off (LTO) cycle.

The LTO cycle, following ICAO standards, is split into four stages: take–off, climb

(up to 3,000 ft), approach (from 3,000 ft to landing), and idle (when the aircraft is

taxiing or standing on the ground with engines–on).11

10Within the European Union, local air quality is regulated by the Framework Directive 96/62/EC7
on local air quality assessment and management. The Daughter Directive relevant to local air
quality at airports is 99/30/EC8, which covers SO2, NOx, PM10, and Pb. These EU Directives
are in line with the World Health Organization recommendations for Europe.

11The 3,000 ft (approximately 915 m) boundary is the standard set by the ICAO for the average
height of the mixing zone, the layer of the earth atmosphere where chemical reactions of pollutants
can ultimately affect ground level pollutant concentrations (US Environmental Protection Agency,
1999).
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We compute the emissions produced by each aircraft type taking into account

both (1) the emission factors for the aircrafts specific engines and (2) the time

spent in each phase of the LTO cycle. Our references are the values specified in the

aircraft certification, established in accordance with the criteria set out on the basis

of Annex 16 of the ICAO Convention (Volume 2), dealing with the protection of the

environment from the effect of aircraft engine emissions.

The study considers all the operations of aircraft with a maximum take–off weight

(MTOW) greater than 5,700 kg with turbine engines, i.e., turboprop and turbojet.

Therefore, aircrafts with internal combustion piston engine (necessarily helical), used

only in the light aviation, are ignored.

In order to compute the emissions produced by each airport in our data set we

matched five databases: OAG, EASA, IRCA, FOI and ICAO Engine Emissions

Databank databases.12 OAG gives the number of landing and take–off operations

for the different model of aircraft in each Italian airport. IRCA and EASA provide

information about the engine models installed on the different aircraft types.13 ICAO

and FOI supply information about the emission factors (i.e., the emitted quantities in

grams per kilogram of fuel consumed) for each engine model in each LTO phase. The

pollutants considered in this contribution are: hydrocarbons (HC), carbon monoxide

(CO), and nitrogen oxides (NOx).
14

In order to compute the total emissions for the LTO cycle (Qip) for the engine i

and the pollutant p, we sum the specific engine emission factor (Eipf) of pollutant

p (kg) for each phase f multiplied by the duration of the phase (df) and by the

indicated specific engine fuel consumption (Ffi) in kg/sec. Hence we have:

12OAG is the database provided by Official Airlines Guide; IRCA is the International Register
of Civil Aircraft for engines; EASA is the European Aviation Safety Agency, FAA is the Federal
Aviation Administration for engines noise certification; ICAO Engine Emission Databank is provided
by the International Civil Aviation Organization and FOI Database (for engines pollutant emissions)
is provided by the Swedish Defence Research Agency.

13The matching is realized on the basis of both the aircraft model and the MTOW. In case of not
identical weight, we estimate the level of emissions considering only the combinations between the
OAG data and the EASA with similar MTOW, i.e., with differences lower than ±3%.

14Notice that also SO2 emission and Particulate Matter (PM) emission are contributors to LAP
(US Environmental Protection Agency, 1999), but they are (still) not part of the engine certification
process. Emission of these pollutants is directly related to fuel consumption and therefore can be
incorporated in the analysis. However, results of previous studies (Givoni and Rietveld, 2005, and
Dings et al., 2003) show that the cost of LAP from aircraft operation during the LTO cycle strictly
depends on the volume of NOx emission.
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Qip =
4∑

f=1

Eipf × df × Ffi

Since the computed emissions refer to the single engine, we had to match each

aircraft with its engine (considering the number of engines) in order to get aircrafts

emissions (HC, CO, NOx) for the LTO cycle. The sum of the emissions (kg) produced

by each aircraft in a particular airport multiplied by the number of movements of the

same aircraft over a year gives the total amount of HC, CO and NOx produced by

the airport. Table 1 shows the yearly average total kilograms per pollutant produced

in each airport of our sample.15

Table 1: Average yearly values of pollutants produced by airport (kg)
Airport HC CO NOx Airport HC CO NOx

Alghero 3,892 45,247 55,139 Olbia 6,798 62,401 74,743
Ancona 877 11,949 14,095 Palermo 15,467 164,305 197,459

Bari 8,975 96,925 101,426 Pantelleria 210 5,712 5,567
Bergamo 15,959 165,091 232,956 Parma 441 4,888 5,875
Bologna 18,948 183,283 165,914 Pescara 1,701 16,858 16,114
Brescia 4,612 24,336 22,541 Pisa 10,288 112,269 132,92
Brindisi 3,327 34,453 43,561 Reggio Calabria 2,303 22,596 27,539
Cagliari 9,77 96,469 120,726 Rimini 523 5,738 5,884
Catania 18,223 192,436 240,694 Rome Ciampino 13,169 131,27 187,176
Florence 13,325 109,064 79,231 Rome Fiumicino 145,583 1,350,748 1,844,126

Forl̀ı 1,787 18,643 29,117 Trapani 1,321 18,656 20,079
Genoa 3,831 49,672 53,733 Treviso 3,967 38,467 58,366

Lamezia Terme 4,482 46,064 55,574 Trieste 2,338 26,957 32,209
Lampedusa 293 5,833 5,897 Turin 16,921 175,923 165,52
Milan Linate 36,867 385,55 498,737 Venice 33,009 314,971 311,884

Milan Malpensa 112,569 944,858 1,250,709 Verona 10,426 100,409 94,54
Naples 21,141 223,346 229,965

To aggregate these data into a single index, representing the LAP produced by

each airport, we consider Dings et al. (2003) estimates of the cost of damage they

impose. The index Weighted Local Pollution (WLP) is obtained as the sum of kg

produced of each pollutant (wp) weighted for the relative cost of damage (cp). The

latter are equal to 4 Euro/kg for HC and 9 Euro/kg for NOx. Carbon monoxide

(CO) emissions from aircraft operation do not appear to result in substantial health

effects and therefore a cost estimate for emission of this gas is assumed equal to 0

Euro/kg (Dings et al., 2003; Givoni and Rietveld, 2010). Hence we have:

WLP =
∑

p

wp × cp

15Notice that non–aircraft emissions from airport and airport–related activities such as fleet
vehicles and ground access vehicles are not considered in this contribution.
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Table 2 shows the value of the WLP index divided by the number of movements

for each airport of our dataset (for the year 2008). The different values show that

the fleet mix characterizing airports may have a significant impact on the amount of

LAP produced. In particular, the average value is about 41 euros per flight. Notice

that the two Italian hubs, i.e., Rome Fiumicino and Milan Malpensa, show very

similar values (respectively 57.2 and 55 euro both greater than the average), while

the maximum and minimum values are respectively 79.7 euro for Brescia airport and

16.49 euro for Ancona airport. A possible explanation for this result is that in Brescia

airports a lot of flights have been done by MD–80 aircrafts, an old and very polluting

aircraft introduced into commercial service in 1980, while in Ancona by ATR 42, a

twin–turboprop that is much more environmentally friendly than the MD–80: as a

result, Brescia airport presents a WLP much higher than Ancona airports.

Table 2: WLP on aircraft movements by airport (year 2008).
Airport WLP/Movements Airport WLP/Movements
Alghero 49.27 Olbia 45.31
Ancona 16.49 Palermo 43.74

Bari 41.61 Pantelleria 18.01
Bergamo 52.13 Parma 34.41
Bologna 33.49 Pescara 27.60
Brescia 79.72 Pisa 42.36
Brindisi 43.02 Reggio C. 40.03
Cagliari 42.35 Rimini 36.75
Catania 46.32 Rome Ciampino 50.91
Florence 27.09 Rome Fiumicino 57.20

Forl̀ı 51.95 Trapani 32.49
Genoa 31.25 Treviso 52.69

Lamezia 47.00 Trieste 25.13
Lampedusa 24.38 Turin 34.02
Milan Linate 49.25 Venice 42.50

Milan Malpensa 55.00 Verona 36.32
Naples 39.38 Mean 40.88

If we classify the airports on the basis of their size, we can check if there is a

size effect on the local emission. More in details, we have grouped the airports in

4 categories based on the average annual number of aircraft movements: (1) small

airports (with less than 15,000 movements per year); (2) small/medium airports

(with annual movements between 15,000 and 45,000); (3) medium/large airports

(with annual movements between 45,000 and 90,000); (4) large airports (with annual

movements over 90,000).

Table 3 shows the costs of the local emissions for the different airports groups.

Large airports produce more costly emissions per aircraft movement (Euro 53.82)

than medium/large ones (Euro 41,31) and small/medium airports (Euro 40.10).
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Table 3: Average yearly values of WLP per airport size (year 2008)
small small/medium medium/large large

WLP (Euro) 38.60 40.10 41.31 53.82
number of airports 15 9 6 3

Small airports have instead the lower small costs of pollution per aircraft movement

(Euro 38.60). This result may suggest that, on average, the fleets operating at small

airports are more environmental friendly, maybe for the the large presence of either

young airlines or low cost carrier with new generation aircrafts.

4 Results

In this section, we present and discuss our econometric results regarding the estimation

of a stochastic frontier for “good” and “bad” outputs on a data set composed by 33

Italian airports for the period 2005–2008.

Following many previous contributions estimating airports’ technical efficiency,

we considered as inputs both capital assets (i.e., most of the airports’ existing

infrastructures) and labor. We collected information on the runway capacity (CAP )16,

the number of aircraft parking positions (PARK), the terminal area (TERM) and

the number of check–in desks (CHECK). Labor is given by the number of employees

measured in terms of Full–Time Equivalent units (FTE). All the data have been

obtained through a direct investigation.

The desirable outputs are the annual passenger movements and freights (WLU)17

provided by the Italian airport authority (Ente Nazionale Aviazione Civile, ENAC),

and the annual aircraft movements (ATM) collected from the OAG database. The un-

desirable output is given by the emissions produced during the LTO cycles computed

using the WLP index presented in Section 3.18

Table 4 shows the descriptive statistics regarding outputs and inputs.

16This variable takes into account both the runway length and the airport’s aviation technology
level—e.g., some aviation infrastructures such as ground–control radars and runway lighting systems.

17In air transportation, by convention, passengers and freight are combined in a single output
measure, WLU, such that 100 kilograms of freight corresponds to one passenger.

18Notice that we check the validity of the chosen inputs and outputs by testing for their isotonicity—
i.e., outputs should be significantly and positively correlated with inputs (Charnes et al., 1985).
Pearson correlation coefficients between all the inputs and the outputs is significant (at a 1%
level) and positive. Moreover, the input correlation is positive, significant, and very high, as a
confirmation that in managing airports, inputs are jointly dimensioned to avoid bottlenecks (Lozano
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Table 4: Descriptive Statistics of Inputs (I), Desirable (D) and Undesirable (U) Outputs
Average Median Std. Dev. Max Min

ATM (D, number) 38,782 16,932 62,876 337,986 434
WLU (D, number) 4,136,556 1,732,196 6,949,506 36,758,411 69,059

WLP (U, euro) 1,805,864 667,303 3,451,583 19,333,542 22,675

TERM (I, sqm) 38,102 13,505 73,578 350,000 256
CHECK (I, number) 42 19 65 358 3

FTE (I, number) 237 110 408 2,186 2
CAP (I, number per hour) 19 15 18 90 2

PARK (I, number) 26 18 26 142 2

Since our main purpose is to analyze the impact on efficiency of local emissions,

we estimate three different multi–output stochastic distance functions: Model (I) is

an output distance function DO including only desirable outputs (see Equation (6)

below); Model (II) represents a hyperbolic distance function DH with both desirable

and undesirable outputs (Equation (7)); Model (III) is an enhanced hyperbolic

distance function DE (Equation (8)) that not only includes both “good” and “bad”

outputs, but also estimates proportional reductions in inputs.

−ln(ATMit) = TL(WLUit/ATMit, TERMit, CHECKit,

FTEit, CAPit, PARKit, α, β, χ, δ, υ)

+λ1HUBit + vit − uit,

(6)

−ln(ATMit) = TL(WLUit/ATMit, WLPit × ATMit, TERMit, CHECKit,

FTEit, CAPit, PARKit, α, β, χ, δ, υ)

+λ1HUBit + vit − uit,

(7)

−ln(ATMit) = TL(WLUit/ATMit, WLPit × ATMit, TERMit × ATMit,

CHECKit × ATMit, FTEit × ATMit, CAPit × ATMit,

PARKit × ATMit, α, β, χ, δ, υ) + λ1HUBit + vit − uit,

(8)

In Eqs. (6)–(8), ATMit is the normalizing output and HUB is a dummy variable

equal to 1 if the airport is classified as an hub, to control for the presence of a

and Gutiérrez, 2009).
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technology difference among hub and non–hub airports.19 Prior to estimation, all the

output and input variables have been divided by their respective geometric means.

Consequently, the first–order coefficients of the estimated production functions can

be regarded as (partial) distance elasticities when evaluated at the variable means of

the empirical sample.

Table 5 presents the maximum likelihood estimates of Models (I)–(III).

Table 5: Estimation results
Model 1: DO Model 2: DH Model 3: DE

Variable Coefficient Std.Error Coefficient Std.Error Coefficient Std.Error
Cost. 0.787 (***) 0.107 0.120 (***) 0.019 0.060 (***) 0.016
WLU 0.565 (***) 0.165 0.312 (***) 0.040 0.276 (***) 0.027
WLP - - -0.464 (***) 0.009 -0.397 (***) 0.015

TERM 0.122 0.090 -0.060 (***) 0.017 -0.025 (*) 0.013
CHECK -0.149 (*) 0.084 -0.061 (**) 0.024 -0.058 (***) 0.018

FTE -0.504 (***) 0.079 -0.021 0.017 -0.005 0.014
CAP -0.384 (**) 0.167 0.112 (***) 0.033 -0.020 0.023

PARK -0.064 0.092 0.025 0.027 -0.019 0.022
WLU ×WLU 0.388 (**) 0.186 -0.037 0.065 -0.035 0.038
WLU ×WLP - - -0.060 (***) 0.017 0.004 0.023

WLU × TERM -0.136 0.125 -0.002 0.044 -0.068 (**) 0.029
WLU × CHECK 0.045 0.199 0.090 0.056 0.079 (**) 0.040

WLU × FTE 0.106 0.089 0.065 (**) 0.031 0.038 (*) 0.022
WLU × CAP 0.377 0.311 0.001 0.073 -0.003 0.058

WLU × PARK -0.709 (***) 0.202 -0.151 (**) 0.059 -0.094 (**) 0.044
WLP ×WLAP - - -0.048 (***) 0.008 0.015 0.031
WLP × TERM - - 0.053 (***) 0.015 0.036 0.026

WLP × CHECK - - 0.007 0.022 0.001 0.035
WLP × FTE - - 0.019 (.*) 0.010 -0.027 (*) 0.016
WLP × CAP - - -0.060 (***) 0.023 0.020 0.037

WLP × PARK - - 0.012 0.021 -0.108 (***) 0.036
TERM × TERM 0.361 (**) 0.154 -0.110 (***) 0.037 -0.027 0.032

TERM × CHECK 0.080 0.181 -0.007 0.045 0.024 0.039
TERM × FTE 0.050 0.088 0.064 (**) 0.031 0.089 (***) 0.024
TERM × CAP -0.437 (**) 0.181 -0.065 0.047 -0.110 (***) 0.038

TERM × PARK 0.310 (**) 0.156 -0.043 0.041 -0.024 0.038
CHECK × ba -0.416 0.544 0.012 0.121 -0.089 0.100

CHECK × fte 0.234 (**) 0.107 0.045 0.042 0.025 0.033
CHECK × CAP 0.172 0.334 -0.113 0.073 -0.031 0.060

CHECK × PARK -0.363 0.222 0.086 0.073 0.093 0.059
FTE × FTE -0.126 0.084 -0.093 (***) 0.024 -0.108 (***) 0.019
FTE × CAP 0.039 0.196 0.103 (***) 0.037 0.033 0.031

FTE × PARK -0.221 0.169 -0.105 (**) 0.050 0.036 0.037
CAP × CAP -0.524 0.475 0.220 (**) 0.098 0.079 0.071

CAP × PARK 0.694 (**) 0.286 0.047 0.074 0.002 0.057
PARK × PARK -0.153 0.222 0.088 0.059 0.040 0.049

HUB -2.345 (***) 0.556 0.068 0.084 -0.046 0.067
σ2 1.112 (***) 0.364 0.009 (***) 0.003 0.004 (***) 0.002
γ 0.992 (***) 0.003 0.907 (***) 0.039 0.856 (***) 0.068

time -0.031 (***) 0.010 0.069 (**) 0.031 0.075 0.045
logl 45.89 237.20 265.17

Note that *,**,*** denote significance at 10%, 5% and 1% respectively.

The MLE estimated coefficients for the output, hyperbolic and enhanced hyper-

bolic distance functions’ specifications, and their associated standard errors allow us

19The literature on air transportation (Graham, 2008) highlights that airports with hub–and–
spoke system employ different technologies (e.g., different BHS) than non–hub ones. Hence, the
variable HUB exerts an influence on the production function and not on managerial efficiency.
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to determine (i) the effect that the outputs and the inputs have on the distance func-

tions, and (ii) whether the magnitude corresponding to each direct partial elasticity

is statistically significant or not.

In all the econometric models the desirable output (WLU) is statistically sig-

nificant with the expected positive sign. This indicates that any increase in the

amount of WLU produced, ceteris paribus, would imply a smaller distance to the

frontier. Hence the three estimated frontiers meet the monotonicity condition of

being non–decreasing in desirable outputs (at the sample mean).

The estimated coefficient of the undesirable output WLP is significantly different

from zero both for DH and DE, also has the expected negative sign. This finding

indicates that the estimated translog functions are non–increasing in the WLP at

the sample mean, as required by the already mentioned monotonicity condition.

When compared to the sizes of the input elasticity values, the WLP elasticity values

(respectively -0,46 and -0,39) are considerably higher indicating that pollution has

relatively more importance in the frontiers’ characterization.

Concerning the inputs, first–order coefficients indicate the magnitude of the

respective partial input elasticities at the sample mean. Table 5 shows that all the

significant coefficients have the expected negative sign with the exception of the

variable CAP in the Model (III). Hence, any increase in the amount of inputs, ceteris

paribus, would imply a greater distance to the frontier. This result indicates that the

estimated translog functions for all model’s specifications satisfy the monotonicity

property of being non–increasing in inputs (at the geometric mean of the data).

Moreover, in case of non–significance of the first–order coefficient, in all the model

either second–order coefficients or interaction terms result significant.

Table 5 also shows that when only the desirable outputs are considered (i.e.,

Model (I)), the hub different technology has a positive impact on the frontier: its

coefficient is negative and statistically significant. This effect instead vanishes if

the undesirable output is introduced (Models (II) and (III)), i.e., the hub different

technology has no impact on the frontier: hub airports have not lower emissions per

inputs than the other airports.

As mentioned in Section 3.1, the likelihood function is expressed in terms of

the variance parameters σ2 = σ2
v + σ2

u and γ = σ2
u/(σ

2
v + σ2

u). Table 5 also shows

that these parameters are always statistically significant at the 1% level, with the
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estimated γ equal respectively to 0.99, 0.91 and 0.86. Hence, a relevant part of the

distance between the observed output levels and the maximum feasible ones is due

to technical inefficiency in all the three model’s pecifications.

Table 6 compares the average estimated efficiency scores of the three models

described by Eqs. (6), (7) and (8). Notice that, when local air pollution is included

in the airport production function, (1) the average efficiency increases (as shown by

Yu, 2004, Yu et al., 2008, Pathomsiri at al., 2008, and Lozano and Gutiérrez, 2010);

(2) the efficiency gaps among the airports become smaller and (3) the greater gains

are obtained by medium airports (the average increase in efficiency scores is 46%

for small airports, 50% for medium airports (in particular 41% for small/medium

and 68% for medium/large) and 33% for large airports). The overall increase in

efficiency arises because, in our framework, an airport is efficient if, given its current

input utilization, carries out as many aircrafts and WLU movements as possible

and, at the same time, produces the minimum feasible amount of pollution. Hence,

airport inefficiency can come from two main sources: low utilization (much less

traffic than the nominal capacity) or high production of undesirable outputs. Many

airports are inefficient if only desirable outputs are considered because, since the

level of several inputs is fixed across airports (e.g., the runway length), they have low

utilization rates. When instead emissions are introduced, these airports benefit from

very low emission rates per input. For instance, the same underutilized runway gives

rise to low efficiency in terms of desirable outputs, but high efficiency in terms of

emissions. The results may change if different weights are given to desirable outputs

and emissions. This is left for future research. Furthermore, in Italy medium airports

are mainly regional ones that have grown a lot in recent years. This sharp increase

is due to two factors: (1) the entrance of Low Cost Carriers (LCC); (2) the opening

of new routes by existing airlines, using small turboprop aircrafts (e.g., ATR 42

in its different specifications). Both these factors have positive effects in terms of

emissions: LCC uses new generation aircraft with lower rates of local emissions and

small turboprop are environmentally friendly too in terms of emissions. Once again,

these results highlight the important of the fleet mix for environmental efficiency.

16



Table 6: Technical efficiency scores by model
Airport DO DH DE Airport DO DH DE

AHO 0.490 0.977 0.970 OLB 0.953 0.984 0.989
AOI 0.390 0.855 0.915 PMO 0.355 0.950 0.977
BRI 0.182 0.979 0.981 PNL 0.385 0.921 0.848

BGY 0.271 0.948 0.973 PMF 0.934 0.861 0.875
BLQ 0.355 0.850 0.885 PSR 0.780 0.898 0.962
VBS 0.512 0.990 0.993 PSA 0.267 0.891 0.907
BDS 0.351 0.980 0.966 REG 0.752 0.988 0.994
CAG 0.235 0.969 0.934 RMI 0.942 0.836 0.967
CTA 0.176 0.972 0.972 CIA 0.233 0.919 0.947
FLR 0.376 0.872 0.910 FCO 0.898 0.968 0.980
FRL 0.345 0.933 0.906 TRN 0.309 0.947 0.979
GOA 0.587 0.866 0.936 TPS 0.240 0.975 0.964
SUF 0.779 0.769 0.937 TSF 0.554 0.935 0.968
LMP 0.922 0.975 0.976 TRS 0.284 0.976 0.983
LIN 0.272 0.983 0.986 VCE 0.196 0.938 0.950

MXP 0.612 0.979 0.983 VRN 0.707 0.862 0.888
NAP 0.415 0.893 0.969 Mean 0.487 0.928 0.951

5 Conclusion

In this paper, a hyperbolic stochastic distance function econometric model has

been applied to estimate the efficiencies of Italian airports during the period 2005–

2008. Differently from previous parametric contributions we include in the efficiency

estimation both desirable outputs (i.e., passengers, freights and aircraft movements)

and an undesirable output (i.e., local air pollution produced by aircrafts during the

LTO cycle). Hence, this paper estimates a desirable outputs/emission production

frontier.

In order to include local air pollution, we computed an index describing the social

costs of the total amounts of pollutants produced for each Italian airport included in

our data set.

We show that, when the undesirable outputs are ignored, airport efficiency scores

are totally different and can therefore be misleading. Specifically, our results indicate

that airports tend to be more efficient, on average, when negative externalities of

production are included in the analysis. Especially those airports that are highly

technical inefficient when only “good” outputs are considered (because they have

a low utilization rate of their aeronautical inputs), show a strong improvements in

their efficiency when also “bad” output are considered. However, this is not due to

managerial effort, but to econometric specification: “bad” and “good” outputs have

the same weight in the distance function, and inefficient airports improve their scores

because they get closer to the environmental frontier thanks to the low number of

movements realized. When airports with similar number of movements are considered,
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we clearly identify the presence of a fleet effect. More environmental friendly fleets

reduce the emissions and make airports more efficient.

Our results yield the following policy implications: first, there is less need of

implementing a tight regulatory mechanism that provides incentives to improve

airports’ technical efficiency if environmental effects are included in the benchmarking

analysis. We provide evidence that almost all airports are very close to the estimated

frontier. However, we have also found that the vast majority of airports are technically

inefficient (and rather far from the frontier) when only desirable outputs are considered.

These insights create a friction that has to be taken into account when designing

the airports’ regulatory settings: on the one hand, including undesirable outputs is

important because all the social costs related to airport operations are considered.

On the other hand, it is necessary to find an optimal balance of weights between

desirable and undesirable outputs, in order to give the necessary incentives to improve

the current low level of technical efficiency if only “good” outputs are analyzed. This

is a possible future development. Second, airports should induce airlines to update

their fleet, either through engine updating or by replacing old aircrafts with new

environmental friendly ones. This target may be achieved by imposing emission

charges, maybe linked to fuel consumption (e.g., carbon tax).

Another possible extension of this work may be the inclusion in the efficiency

analysis of noise to obtain a more complete desirable/undesirable outputs frontier.

This implies to treat in a linear framework a non–linear variable such as noise, and

to estimate the social cost of noise annoyance.
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