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Abstract

This paper analyses the efficiency of 33 Italian airports for the period 2005–2008. In
addition to the conventional outputs (i.e., flights, passengers and cargo), two undesirable
outputs have been considered: noise and local air pollution. The Directional Distance
Function (DDF) approach shows that the inclusion in the analysis of the undesirable effects
of airport operations leads to greater and closer airports’ efficiency scores. Furthermore,
we perform a second stage regression to investigate the determinants of efficiency. First, we
clearly identify the presence of a fleet effect: airports are more environmentally efficient,
the lower is the percentage of flights made through narrow–body aircrafts, in comparison
to the percentage of flights made by regional jets. Second, we find that the higher is
the stake of public local authorities in the airports’ ownership structure, the higher is
their environmental efficiency. Third, the presence of Low Cost Carriers (LCCs) seems
not to be significant from the environmental point of view, in contrast to the common
perception that LCCs are more environmentally friendly because they use more modern
fleets. Interestingly, most of our results are confirmed also when looking at a more long
run scenario.
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1 Introduction

Aircraft emissions of air pollutants (produced by aircraft engines) and noise
emissions are the two main environmental concerns related to the aviation
sector. Although noise is currently the primary environmental constraint
for airport operations, many airports are going to put air quality issues on
the same level (GAO, 2000). Furthermore, while the connection between
noise and human health is somewhat still unclear, emission are known to
have a direct impact on population (Daley, 2010), especially on people living
nearby the airports. Hence, efforts to integrate productivity measures in
air transport policies that specifically target these environmental issues are
evident at the global (International Civil Aviation Organization, ICAO),
regional (EU) and national level, with different decision-making procedures
and policy instruments.

As a consequence, it is more and more important to include environmen-
tal impacts into airport efficiency and productivity assessments: accounting
also for environmental undesirable outputs should provide a more complete
measure of airport efficiency. Yu (2004) and Yu (2008) are the only two con-
tributions considering one of the airports’ environmental externalities (i.e.,
the noise) in airports’ efficiency assessment. To the best of our knowledge,
no efficiency studies consider both the production of desirable outputs, and
the production of noise and local air pollution. Furthermore, no studies
investigate the determinants of airport ”environmental efficiency”. In this
sense, the major contributions of the paper are threefold. First, we make
the first attempt to assess the productivity of Italian airports by taking into
account jointly desirable output (i.e., passengers, aircraft movements and
cargo), noise and air pollution. Second, we compare the results from a model
that considers both desirable and undesirable outputs and outline the poten-
tial misleading results inherent in ignoring undesirable outputs. Third, we
investigate the influence of some exogenous variable such as airports’ own-
ership structure, airports’ fleet mix, and the presence of LCCs, in order to
test some research hypothesis about their influence on airport environmental
efficiency. Finally we show that the obtained results are confirmed also when
looking at a more long run scenario.

The remainder of this paper is organized as follows: section 2 briefly
reviews the related literature, section 3 formally presents the model, envi-
ronmental indexes and the database’s issues are explained in section 4 and
empirical results are summarized in section 5. This analysis is briefly con-
cluded in section 6.
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2 Literature review

Only few contributions regarding airport efficiency assessment consider the
production of undesirable outputs. Yu (2004) estimate the physical efficiency
of 14 domestic Taiwan’s airports for the period 1994–2000, considering air-
craft noise (measured in 1,000 New Taiwan dollars) as undesirable output.
The results of a DDF approach shows that ignoring undesirable outputs in-
creases both the frequency and the degree of inefficiency. Yu et al.(2008)
analyze the productivity growth of 4 Taiwan’s airport for the period 1995–
1999, showing that the average TFP growth increase if undesirable outputs
are ignored. Pathomsiri et al.(2008) consider congestion (delays) as undesir-
able output and apply a DDF approach to a panel of 56 US airports (period
2000–2003). Their main results show that if delayed flights are not included
in the analysis, many large but congested airports are found to be on the
frontier. On the contrary, when accounting for delays, the number of ef-
ficient airports increases; with small, less congested airports also resulting
efficient. Lozano and Gutierrez (2010) apply a slack based efficiency mea-
sure to a panel of 39 Spanish airports (period 2006–2007). They consider
delayed flights and delays as undesirable outputs and, differently from the
previous contributions, they find that disregarding bads generally improves
the efficiency assessment. However, this last approach is proved to be only a
special case of the more general concept of DDF (Färe and Grosskopf, 2010).
For this reason, we adopt the DDF approach in this paper.

To the best of our knowledge, no contributions consider the production of
local air pollution. Furthermore, there are no papers which try to explain the
efficiency scores, obtained after the inclusion of undesirable outputs, through
a second stage regression, in order to investigate the determinants of airport
environmental efficiency.

The concept of Directional Distance Function is introduced by Chambers
et al.(1996) and Chambers et al.(1998) at theoretical level, and firstly ex-
plored in duality term by Färe et al.(2000). The power of this tool is the
possibility to modify the direction in which to search for an the efficient coun-
terpart of each firms. This is a key aspect because allow to credit airports for
pollution reduction and to discredit them for each increases of undesirable
outputs, without applying transformation to the data (for an overview see
Scheel, 2001). DDF is an additive concept then all the conditions to identify
the best practice frontier are linear. Standard Data Envelopment Analy-
sis (DEA) procedure could be applied and no assumption are needed on the
functional forms of technology. Many application arise in environmental field
with firms focus such as Chung et al. (1997) about paper and pulp mills in
US, Boyd et al. (2002) on glass US manufacturing firms; Picazo-Tadeo et
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al. (2005) and Picazo-Tadeo and Prior (2009) consider Spanish ceramic in-
dustry; McMullen and Noh (2007) analyze transit buses firms in US; Färe
et al. (2007) and Kumar and Managi (2010)a consider a sample of power
generating firms in US, Bellenger and Herlihy (2010) apply DDF to inver-
tebrate comparison in ecological field. Also some application to aggregate
level extend the standard analysis on micro-units, for example Macpherson
et al., 2010, Kumar and Managi (2010)b. In many articles applying stan-
dard efficiency analysis big attention is devoted to interpret results. Often
this process is performed using econometrical technique which are proved to
be inconsistent on the basis of a seminal paper by Simar and Wilson (2007).
In this paper Simar and Wilson strongly recommend the use of maximum
likelihood, and in particular applied to a truncated regression model, focus-
ing estimates efforts only on inefficient observations. In the airport field we
are able to find one of the rare paper, Barros and Dieke (2008), that already
apply this results for a robust second stage phase, detecting the effect of
geographical and structural variables on estimated efficiency. Moreover only
few previous works combine DDF methods and a strong second stage phase:
Nakano and Managi (2008) analyse the Japanese power generating sector,
Watanabe and Tanaka (2007) investigate the Chinese industry at provincial
level and Kumar (2006) on international comparisons. A common feature is
that they perform biased Tobit estimates. Starting with the results in Simar
and Wilson (2007) we try to extend these previous work on DDF by ana-
lyzing our deterministic efficiency measures in semi-parametric second stage
step. In particular some suitable determinants of environmental efficiency
scores are identified and their effect on the estimated score is statistically
tested.

3 Environmental efficiency: the directional

distance function approach

3.1 Theoretical framework

In this section we formalise some ideas that are commonly accepted in the
field of production process with undesirable outputs. First of all undesirable
are a sort of byproduct results, then a positive production of good output
is not compatible with a zero production of them. Secondly reducing bad
outputs is only possible, from a technological perspective, by reducing good
outputs volume.
Some notation have to be introduced in order to clarify the points. Let
x = (x1, ..., xN) ∈ RN

+ be a vector of inputs, y = (y1, ..., yM) ∈ RM
+ a vector
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of good outputs and b = (b1, ..., bJ) ∈ RJ
+ a vector of bad outputs. To model

production process with pollution and noise, the directional output distance
function by Chambers et al. (1996) is applied here. The output set P (x)
collect all the combinations of good and bad outputs that could be produced
using each particular input vector x.

P (x) = {(y, b) : x can produce (y, b)}, x ∈ RN
+ . (1)

Following Färe et al. (2007) we introduce some standard axioms which
are satisfied by airport’s environmental technology.

1. Inactivity. From a technical point of view the choose of remaining
inactive is always possible. Then 0 ∈ P (x),∀x ∈ RN

+ .

2. Compactness. P (x) is compact, then for each finite input mix x one
could obtain a finite couple of vector (y, b).

3. Free disposability of inputs. As in standard technology representation,
an increasing quantity of inputs allow to produce a fixed quantity of
outputs. Inputs are freely disposable: P (x) ⊆ P (x′) if x′ ≥ x, or a
Decision Making Units (DMU) could always obtain the same amount
of outputs by implying more inputs and this is technically feasible.
Macpherson et al. (2010) underline how that assumption could be
strong in environmental field, given the close linkage among input con-
sumption and pollution production.

These standard assumptions are always valid in modeling a production pro-
cess. In presence of undesirable outputs one have to formalize the joint
production idea and the cost of reducing. Färe et al.(1989) introduce two
additional axioms:

4. Null jointness. It is impossible to observe positive amount of good
outputs without observing also a positive amount of bad outputs, or in
formulae

(y, b) ∈ P (x) and b = 0 =⇒ y = 0 (2)

5. Weak disposability assumption on outputs. Each couple of vectors (y, b)
is assumed to be weakly disposable, then they cannot be freely reduced:

(y, b) ∈ P (x) and 0 ≤ α ≤ 1 =⇒ (αy, αb) ∈ P (x). (3)

In words only proportional contraction of both good and bad outputs
are feasible, because the decrease on bad outputs could only be per-
formed by reducing desirable outputs. In our context there are no clear
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regulations which impose airports to reduce and control for bad out-
puts such as pollution and noise. Free disposability is still valid on the
subset of good outputs for which every reduction is technically feasible
without costs and maintaining inputs constant.

(y, b) ∈ P (x) and y′ ≤ y =⇒ (y′, b) ∈ P (x) (4)

The Directional Output Distance Function model (DODF), defined on the
output set that meets previous axioms, gives the maximum feasible expan-
sion of outputs in a pre-assigned direction maintaining inputs unchanged.
We want to treat asymmetrically good and bad outputs then we expect to
discredit airports which increase noise or pollution and to credit them for re-
ductions; of course also each increase in good outputs production have to be
considered. An appropriate direction should be choose in order to guarantee
this asymmetrical treatment of desirable and undesirable outputs. DODF
allows to search for the efficient counterpart of an airport along non-radial
projections and the value DODF take represents directly the distance be-
tween observed airport and the technical frontier. DODF takes a value equal
to 0 for efficient DMUs and increase with inefficiency. For each theoretical
properties and duality correspondences we refer to Chambers et al. (1998)
or Färe and Grosskopf (2000). Formally the DODF is defined as follows:

−→
DW

O (x, y, b; gy, gb) = max{β : (y, b) + (βgy, βgb) ∈ P (x)} (5)

where g = (gy, gb) is the directional vector and gy ∈ RM
+ , gb ∈ RJ

+. The
production possibility set P (x) could be estimated via linear programming
thanks to the additive features of DODF, but before computations a particu-
lar directional vector have to be fixed. The asymmetry between desirable and
undesirable outputs have to emerge in the choose of the directional vector.
In the case of Italian airports we underline 2 different objective that must be
jointly achieved in order to meet all the involved interests: managers try to
maximise good outputs production, but local community and institution im-
pose to reduce environmental damages. Following what firstly recommends
Färe and Grosskopf (2000) and what is done in many applications to ecolog-
ical field (Domazlicky and Weber, 2004; Chung et al., 1997), we choose the
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vector g = (y,−b) that gives an immediate meaning to estimated β.

−→
DW

O (xk′
, yk′

, bk
′
; yk′

,−bk′
) = max β

s. t. xk′ ≥
K∑

k=1

zkxkn, n = 1, ..4

(1 + β)yk′ ≤
K∑

k=1

zkykm, m = 1, 2

(1− β)bk
′
=

K∑
k=1

zkbkj, j = 1, 2

K∑
k=1

zk = 1 (6)

zk ≥ 0

Return to scale are assumed to be variable in order to focus the attention
on inefficiency which can be reduced by managers in the short run, then
excluding potential scale inefficiencies.

A standard DEA model output oriented is also run in order to compare
results of classical Technical Efficiency with the Environmental Efficiency
score computed. The production of bad outputs is here ignored and the
value or TE is bounded below by unity instead of zero1, VRS are assumed.

TE = max θ

s. t. xk′ ≥
K∑

k=1

zkxkn, n = 1, ..4

θyk′ ≤
K∑

k=1

zkykm, m = 1, 2

K∑
k=1

zk = 1 (7)

zk ≥ 0

3.2 Second stage analysis

External and internal variables could have influence on environmental effi-
ciency results, in particular the attention has to be concentrated on those

1In the table placed in appendix the scores are transformed applying 1/TE to have
more readable results
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variables that are not under the direct decision of manager, in particular
some long term choices could affect observed results. These approach is nor-
mally investigated in classical DEA models, but in DDF framework a second
stage analysis is not so performed. Daraio and Simar (2008) listed directional
distance function among the extension of classical DEA models which inherit
the same statistical properties of standard DEA scores. A common practice
in the few previous works applying a second stage analysis was to estimate
a Tobit model for censored data. (Watanabe and Tanaka, 2007; Blancard et
al., 2006). Only Picazo-Tadeo et al. (2007) apply the recent features in Simar
and Wilson (2007) to the case of DDF efficiency scores. According to Simar
and Wilson (2007) classical estimation method based censored model, could
lead to misleading conclusion: they suggest a truncated regression method
in order to totally exclude from second step efficient DMUs which drive the
unknown technological frontier. Using a Montecarlo simulation the unbi-
asness of truncated regression coefficients is demonstrated in contrast with
biased Tobit results. In their seminal paper Simar and Wilson also suggest
a bootstrap procedure in order to better off confidence interval around esti-
mated parameters, this leads to a better inference stage. Following Barros
and Dieke (2008), we assume the following regression model:

EEk = wkγ + εk, k = 1, ...K (8)

To operationalize the theoretical model, the unknown efficiency score based
on an unknown technological frontier are estimated according to DODF
framework assuming that all previous hypothesis are still valid. The only
restriction which differ from standard second stage DEA approach is the
truncation point: in original Simar and Wilson (2007) approach efficiency
score are assumed bounded by unity, here, under DODF, they are lower
bounded by zero. The assumption on εk remain the same before truncation,
normal distribution with zero mean and unknown variance. What change is
the truncation point derived by the new condition εk ≥ −wkγ̂

2. The econo-
metric model is then estimated via maximum likelihood technique applying a
non parametric truncated regression model. In order to obtain better confi-
dence interval a single bootstrap procedure is the minimal request in order to
obtain more reliable inference. The procedure we apply roughly correspond
to the Algoritm 1 proposed by Simar and Wilson (2007) in order to correct
for the expected correlation among dependent variable and regressors. On
the basis of theoretical findings by Simar and Wilson, Picazo-Tadeoet al.

2In the analysis the second stage is also performed on standard DEA efficiency score.
In this case the truncation point follows standard formulation and the condition became
εk ≥ 1− wkγ̂
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(2011) stated some practical steps in order to obtain more robust confidence
interval:

1. We apply the truncated regression model to estimate, via maximum
likelihood method, a set of coefficient γ̂ and the estimated variance of
error term σ̂ε. We use as dependent variable the set of environmental
efficiency score obtained from DDF estimate: that scores are bounded
below by 0 rather than by 1 as in the classical DEA framework. No
transformation are applied on efficiency results as in Blancard et al.
(2006).

Then we loop over S time the next three steps with the aim of obtaining a
set of estimates for our coefficient γ̂ and σ̂ε.

2. We draw a casual extraction for εk from a normal distribution:

N(0, σ̂2
ε), left truncated at the point (−wkγ̂) (9)

and we repeat these procedure for each inefficient observation on effi-
ciency score.

3. We correct the computed environmental efficiency score for the poten-
tial bias by adding the casual extraction εk to each inefficient term
predicted by the truncated regression model.

EE∗k = wkγ̂ + εk (10)

4. Using maximum likelihood we estimate the truncated regression of
these new variable on the original explanatory variable we include in
the first model. By repeating S times the previous 3 steps we obtain a
set of bootstrap estimates:

G = [(γ̂∗, σ̂∗ε)g]Sg=1 (11)

5. Finally we use the bootstrap value in G to construct new confidence
intervals around estimated parameter γ̂ and σ̂ε coming from the first
truncated regression.

4 Data

4.1 Noise Index

The non-linear characteristic of noise, which is measured in decibels (dB),
makes difficult to calculate an index able to take into account airport noise
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production. However, the noise level from the operation of several flights can
be estimated and, as a consequence, it is possible to get the level of noise of
all the flights provided by a single airport during a year. The main source
of noise characterizing airports is represented by aircraft engines, especially
during take-off and landing operations, with peaks of high intensity during
the phase of take-offs. Obviously, the increase in airport noise is dependent
on both the growth of air traffic and the type of fleet operating at the airport.
Our data, collected using the databases European Aviation Safety Agency
(EASA) and Federal Aviation Administration (FAA), allow a classification
according to the noise produced by aircrafts operating in Italian airports.
EASA and FAA databases report the certified noise produced by an aircraft
on the basis of its engines and take-off weight.3 Hence, combining the Official
Arline Guide (OAG) database with the EASA, we have been able to associate
to each aircraft model in our data set the level of noise produced in each phase
(i.e., take-off, landing). Then we convert the data of Effective Perceived Noise
Level (EPNL) provided in the noise certification in the Sound Exposure Level
(SEL). The latter is the most common metric in the calculation of noise maps,
since it gives the value of sound energy produced by an acoustic event.4

We build an average daily noise exposure index, LV Ayear, over a year.5 In

3The certification procedure determines the Effective Perceived Noise Level (EPNdB)
for take–off and landing operations in three specific spots called reference noise measure-
ment points. The EPNL is an indicator constructed from measurements of sound pressure
level for 24 third-octave bands through a process that takes into account spectral irregu-
larities and duration of the event. To evaluate landing operations the measurement point,
called Approach, is placed under the trajectory at 2,000 meters from the threshold. To
evaluate take–off operations there are two reference noise measurement points. The first,
called Flyover is placed under the trajectory at 6,500 meters from the start of roll, the
second, called Lateral is that point at 450 meters from the runway where the highest level
is measured (several measuring stations parallel to the runway must be deployed).

4Since there is no a precise relation between the two metrics (that strongly depends on
the noise spectrum and the measurement point), we simulated with the Integrated Noise
Model (INM) the operations of the certification process (also reproducing the weather
conditions required), computing both EPNL and SEL for each aircraft and for each mea-
surement point. Then, in order to minimize errors arising from not certain correspondence
between simulated and actual flight profile, we considered four categories of aircraft iden-
tifying an average difference between EPNL and SEL.

5In doing so, we refer to the approach applied by Hsu and Lin (2005). Notice that the
index proposed in this contribution describes the average noise exposure for communities
in airport environs. It does not captures precisely the damage cost of noise that is usually
valued in the literature in two ways: (1) via hedonic pricing studies, based on the impact
of noise on property prices, or (2) via stated preference techniques, based on peoples
willingness to pay for a quieter environment (Dings et al., 2003). Given the difficulties to
get this kind of information for an entire sample of airports, both these approaches have
been applied mostly to single airport analysis, producing different results.
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Figure 1: Noise (Db) created by movement and airport size

particular, we first compute a LV Ap value for each measurement point p
taking into account all operations at airport level (arrivals and departures)
as follows:

LV Ap = 10log(
1

3, 600× 24× 365
×

∑
10

(SEL+W )
10 ) (12)

where W is a penalty equal to 10 dB applied to the levels of SEL if the
event takes place during the night. Then, in order to obtain a synthetic
index for the single airport, we compute the energetic mean of the values
of the three measurement points.6 The fact that the departures are doubly
represented in relation to arrivals (Flyover and Lateral Measurement Point)
can be considered acceptable, since the take-off causes more disturbance to
people living near the airport infrastructure. The index of airport noise is
therefore:

LV Ayear = 10log(
1

3
×

3∑
p=1

10
LV Ay

10 ) (13)

4.2 Local Air Pollution Index

Also in case of LAP, it is relevant the Landing Take-Off (LTO) cycle. We
compute the emissions produced by each aircraft type taking into account

6Since we are working with acoustic variables expressed in dB, we have to consider that
these variables are logarithms and they cannot follow the same calculations rules than with
ordinary numbers.
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both (1) the emission factors for the aircrafts specific engines and (2) the
number of engines installed on each aircraft type. Our references are the val-
ues specified in the aircraft certification, established in accordance with the
criteria set out on the basis of Annex 16 of the ICAO Convention (Volume 2),
dealing with the protection of the environment from the effect of aircraft en-
gine emissions. In order to compute the emissions produced by each airport
in our data set we matched five databases: OAG, EASA, International Regis-
ter of Civil Aircraft (IRCA), FOI database by the Swedish Defence Research
Agency and ICAO Engine Emissions Databank. OAG gives the number of
landing and take-off operations for the different model of aircraft in each Ital-
ian airport. IRCA and EASA provide information about the engine models
installed on the different aircraft types. ICAO and FOI supply information
about the emission factors (i.e., the emitted quantities in grams per kilogram
of fuel consumed) for each engine model in each LTO phase.7 The pollutants
considered in this contribution are: hydrocarbons (HC), carbon monoxide
(CO), and nitrogen oxides (NOx). In order to compute the total emission of
pollutant p produced by aircraft i (Qpi during the LTO cycle, we apply the
following equation:

Qpi = nij ×
4∑

f=1

(Ejpf × df × FCfj) (14)

where nij is the number of engine of type j installed on aircraft i, Ejpf is
the specific engine j emission factor of pollutant p (kg) for the phase f , df is
the duration of the phase and Fcfj is the indicated specific fuel consumption
in kg/sec of engine j. Hence, multiplying Qpi by the number of flights made
by aircraft i in airport A (miA), we get the total amount of pollutant p kg
produced in one year at the same airport:

Q̃pA = miA ×Qpi (15)

To aggregate these data into a single index representing the LAP pro-
duced by each airport, we consider the cost of damage imposed by each
pollutant (cp). Such estimates are provided by Dings et al.(2003) and are
applied to the emission levels computed for each airport. The LAP index is
obtained as the sum of the produced kg of each pollutant weighted for its
relative cost of damage:

7The ICAO LTO cycle model is divided into four phases, Take–Off, lasting 0.7 minutes,
Climb Out, lasting 2.2 minutes, Approach, lasting 4 minutes, and Idle, which is divided
into two sub–phases: Taxi In, lasting 7 minutes and Taxi Out, lasting 19 minutes.
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Figure 2: Cost of damage (Euros) created by movement and airport size

LAPA =
3∑

p=1

(cp × Q̃pA) (16)

4.3 Descriptive statistics of Input and Output vari-
ables

LV Ayear and LAP are the undesirable outputs included in our analysis.
Table 1, Figure 1 and Figure 2 show the values of the two indexes for each
airport belonging to our sample. Notice that the LAP has been divided
by the number of movements to show that there is a relevant part of the
differences among airports in terms of LAP, which is not due to the traffic
volume. Given that different aircraft types produce different levels of LAP
(and noise), the key - factor is the fleet mix operating in each airports.

Concerning the other (good) outputs and the inputs, the data sources
are Italian Civil Aviation Authority (ENAC) and OAG for outputs (i.e.,
aircraft, passenger, and freight movements) and the technical information
provided by the airports official documents for inputs. The latter have been
integrated by a direct investigation with the managing boards of the air-
ports. As the vast majority of previous contribution we consider two output
variables: the yearly number of Work Load Units (WLU) and of aircraft
movements (ATM).8 Regarding inputs, following many previous contribu-
tions investigating the efficient inputs utilisation, we include in our data set

8Passengers and freight are combined as work load units, a measure common in aviation
management, so that 1 WLU = 1 passenger = 100 kg of freight.
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Table 1: Noise index (Db) and pollution over movement (1000s Euros), 2008

Airport LVA LAP Airport LVA LAP

Alghero 53.35 616.3 Olbia 55.55 785.4
Ancona 42.77 112.5 Parma 46.62 133.4
Brindisi 52.14 454.0 Palermo 58.17 1894.1
Bergamo 60.33 2584.9 Pantelleria 42.15 63.0
Bologna 58.88 1651.8 Pisa 58.50 1495.6
Bari 56.16 1082.0 Pescara 46.93 144.8
Cagliari 57.11 1365.0 Reggio Calabria 50.71 253.4
Catania 59.56 2360.2 Rimini 43.18 62.6
Rome Ciampino 58.58 1712.4 Lamezia 53.07 588.9
Rome Fiumicino 68.65 19333.5 Trapani 48.92 203.4
Florence 55.03 822.8 Turin 57.60 1614.1
Forl̀ı 50.09 319.8 Trieste 50.38 323.6
Genoa 52.70 536.8 Treviso 53.03 643.8
Milan Linate 62.37 4594.1 Brescia 55.56 392.7
Lampedusa 42.33 55.1 Venice 60.53 3117.8
Milan Malpensa 66.68 10883.0 Verona 56.07 1017.6
Naples 59.09 2303.0 Total 54.33 1924.9
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the runway length, the total number of aircraft parking positions, the termi-
nal surface area and the number of baggage claims. The descriptive statistics
regarding outputs and inputs are presented in Table 2. We are able to collect
4 observation for each variable and for each airports, covering a period of 4
years, from 2005 to 2008. In Table 1 and 2 only data relative to the last year
are reported.

Table 2: Descriptive statistics of inputs and outputs

Variable Mean Std Dev. Min. Max.

Inputs
terminal area 38811.52 73320.04 1100 350000
baggage claims 4.48 3.32 1 15
runway length 3414.96 2354.51 1688 14709
aircraft parking position 26.22 26.17 2 142

Desirable outputs
WLU(1000s) 4136.56 6949.51 69.06 36758.41
ATM 38782.77 62876.25 434 337986

Undesirable outputs
LAP(1000s) 1805.86 3451.58 22.68 19333.54
LVA 53.67 7.26 31.76 68.65

4.4 Explanatory variables in the second stage

Our paper is focused on understanding the effect on airport’s environmental
performance of a set of exogenous variables affecting the efficient utilization
of airport infrastructures. Of course we have to solve the task of translated
this aspect in measurable and observable variable which have to be inserted
as explanatory variable of eco–efficiency. More in details we include in the
analysis a set of variables, each belonging to one of the following 4 subsets:

• fleet mix : as mentioned before, it is clear the existence of a fleet mix
effect, looking at the different values of the ratio between LAP and
movements characterizing airports (Table 1 and Figure 2). In order to
describe the composition of the fleets operating at different airports,
we use the percentage of flights made using narrow–body aircrafts (i.e.,
NB).9 Since the majority of Italian airports have no flights made with

9A narrow–body is an aircraft with a fuselage aircraft cabin width of 3 to 4 meters,
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wide–body aircrafts, the main differences consist in the percentage of
narrowbodies with respect to the sum of the percentages of regional
jets and power propeller aircrafts. Given that the impact in terms of
noise and pollution is greater in case of narrowbody, we expect that
the higher is the percentage of narrowbodies, the lower is airport envi-
ronmental efficiency (i.e., the higher is the percentage of regional jets
and power propeller, the higher is airport environmental efficiency).

• airports’ ownership structure: we consider the percentage of airport’s
assets owned by Public Local Authorities (PLA). Our purpose is to test
if the stronger is the presence of public local authorities, the higher is
the attention paid to environmental concerns, since noise and LAP
negative effects are essentially local.10

• size: we control for size (using natural log of the yearly aircraft move-
ments of each airport) to understand if there are scale economies.

• airlines : we control for both the presence of Low Cost Carriers and the
level of dominance of the main carrier operating at each airport of our
sample. Since low cost carriers use modern fleets, they are often con-
sidered leaders in terms of environmental efficiency. In this sense, one
should expect that the stronger is the presence of LCCs at one airports,
the higher is airport’s environmental efficiency. This is the reason why
we include a variable representing the yearly share of the available seats
offered by LCCs (LCC). Furthermore, we include also a variable repre-
senting the share of available seats per year offered by the main airline
in the airport (DOM). In general, a strong dependence on the main
carrier is a risky situation for an airport. However, a dominant airline
at an airport might also be interested in reducing negative externalities,
especially if this strategy prevents operational restrictions (e.g., during
nighttime) and facilitates capacity enhancement programs. Finally, we
also include the interactions of these two variable in order to study the
effect coming from LCCs’ dominance.

and seats arranged along a single aisle. In contrast, a wide–body is a larger aircraft and
is usually configured with multiple travel classes with a fuselage diameter of 5 to 7 meters
and twin aisles. Notice that a typical wide–body aircraft can accommodate between 200
and 600 passengers, while the largest narrow–body aircrafts (e.g., the Boeing 757-300)
carry a maximum of about 250. Regional jets carry fewer passengers than mainline jets
but generally travel at similar speeds, cruise at similar altitudes, and require runways of
about the same length.

10Notice that in many countries the ownership share of local authorities decreases with
the size of the airport. However this is not the case for Italy, where the majority of airports
is still under the control of local public authorities.
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The descriptive statistics regarding explanatory variables are presented
in Table 3.

Table 3: Descriptive statistics of explanatory variables

Variable Mean Std Dev. Min. Max.

NB 0.703 0.270 0.000 1.000
PLA 0.494 0.345 0.000 1.000
LCC 0.380 0.323 0.000 1.000
DOM 0.487 0.216 0.127 1.000
SIZE 9.739 1.317 6.073 12.731

5 Empirical findings

5.1 Environmental efficiency results

For each Italian airport in our sample with complete data, environmental
efficiency score are calculated by solving linear program represented by Eq.
(6). All programs are written and solved using R. Table 5 shows the scores
by airport for the period 2005–2008. We run 4 separate frontier, one for
each period, in order to obtain a better representation of reality and to avoid
problems relative to annual effect. Before results interpretation, it should be
underlined that efficiency is a relative concept and then what we get from es-
timation is the position of each airport in respect to the best of the sample in
a specific time period. Furthermore, we run a second standard DEA model11

without bad outputs (see Table 6), in order to make a comparison between the
scores. Notice that, as in previous studies, we observe an overall increase in
airports’ efficiency scores. Specifically, our results indicate that airports tend
to be more efficient, on average, when negative externalities of production
are included in the analysis. Especially those airports that are highly techni-
cal inefficient when only ”good” outputs are considered (because they have a
low utilisation rate of their aeronautical inputs), show strong improvements
in their efficiency when also ”bad” output are considered. This is mainly due
to the fact that airports producing ceteris paribus few movements (i.e., ”inef-
ficient airports” according to the traditional efficiency specification) produce
also low level of noise and LAP and, as a consequence, recover efficiency
when these negative externalities are included in the analysis.

11We assume the same inputs and outputs and we reports individual results choosing
an input orientation. Second stage analysis is performed on transformed efficiency score.
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5.2 Second stage estimates

We try to test several hypothesis on the determinant of environmental effi-
ciency and in doing so we follow the approach proposed in Picazo-Tadeoet al.
(2011). We set the number of replication in the bootstrap procedure equal to
1000. Two model of second stage analysis are performed, both following the
statistical procedure we reports in section 3.2. Some problems arise in the
second stage, due to the limited number of inefficient observations, especially
in the DDF model. In order to partially solve this issue we perform our sec-
ond stage by putting together efficiency score from different annual frontier.
This seems to be reasonable because each score is computed relatively to the
best practice of each year.

Table 4 shows the second stage estimates for both Model 1 (with bads)
and Model 2 (with only good outputs). Notice that the two models differ
in terms of both significance and sign of the coefficient of many variables.
This is a further confirmation of the fact that ignoring negative externalities
of airport activity, when they exist, could produce misleading results. Dif-
ferently from both significance and sign, the magnitude of coefficient is not
comparable given the two different range of Environmental Efficiency (EE)
by DDF and the transformed Technical Efficiency (TE) by DEA. EE vary
between 0 and 0.9 in our sample, while TE vary between 1 and 7.25 which
represent the detected threshold for outliers.12

Looking more carefully at the scores obtained including noise and local
air pollution, 3 variables are significant: NB, PLA and SIZE. Among these,
both NB and SIZE show a different sign in the two model. More in details,
the higher is the percentage of narrow–body aircrafts in the airport fleet mix,
the lower is airport environmental efficiency. In other words, given that the
majority of Italian airports’ fleet mix is composed essentially by narrowbod-
ies, regional jets and power propeller, if a percentage of flight is made by
regional jets rather than narrowbodies, the environmental efficiency of the
airports increases. Notice that the result is confirmed by the fact that if we
replace in the second stage regression NB with both RJ and PP, these two
variables result significant with negative sign. This finding is extremely inter-
esting considering that the gap between regional and narrowbody traditional
jets stage lengths appears to be close: regional jets offer jet–like features but
with smaller capacities meaning that they can be used to replace narrow–

12We consider as outliers observation that are over the value of:

µ(TE) + 3sd(TE)

In our sample 3 observation are dropped according to this criteria.
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Table 4: Bootstrap results of truncated regression estimates, 90 percent of
confidence

Model 1 Model 2
EE TE

Explanatory Estimated Lower Upper Estimated Lower Upper
Variables Coefficient bound bound Coefficient bound bound

NB(%) 0.060 0.037 0.081 -0.850 -0.882 0.897
PLA(%) -0.049 -0.062 -0.035 1.570 0.033 1.167
LCC(%) -0.009 -0.058 0.043 -4.201 -6.210 -2.044
DOM(%) 0.029 -0.009 0.066 -3.116 -5.724 -2.569
LCCxDOM -0.019 -0.095 0.055 6.369 3.252 9.339
SIZE -0.057 -0.063 -0.049 -2.144 -1.251 -0.763
Constant 0.622 0.555 0.712 23.103 11.679 17.318
Sigma 0.028 0.013 0.019 1.523 1.094 1.398
Num. of obs. 51 95

Significant variable at 90% are marked in bold

bodies on routes that are normally served by mainline jets (Brueckner and
Pai, 2009). Given the different capacity, this is important especially for those
routes that are characterized by the penalty of empty seats, because, in this
case, the replacement would not cause congestion problems associated with
an increased number of flights.13 Hence, considering that the environmen-
tal impact of a traditional jet is usually greater than a regional one, having
flights with low load factors and high negative externalities in terms of pol-
lution and noise is extremely inefficient. We provide an example to clarify
this concept.

Table 5 shows some examples of domestic flights, departing from Rome
Fiumicino Airport (FCO). For all these flights we compute an average load
factor (i.e., the ratio between the number of yearly passengers and the num-
ber of seats offered). Table 5 also shows the percentage of flights made by
three narrowbody aircrafts (i.e., MD–80, MD–82 and Airbus A320) and one
regional jet (i.e., Canadair Regional Jet 900, CRJ–900). These models are
comparable in terms of available seats: MD–80 and MD–82 have 131 and
150 seats respectively; the A320 has 131 seats, while the CRJ–900 has 90
seats. Notice that, in the majority of the cases, the load factor multiplied

13For example, the regional jets Embraer ERJ-145 and Canadair CRJ-200 have 50 seats,
while a Boeing B737-500 has 132 seats, a B737-800 189 seats and an Airbus A319 has 142
seats.
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Table 5: Examples of domestic routes with low load factor (year 2006)
Dep Airport Rome Fiumicino
Arr Airport Venice Turin Bari Trieste Genoa
Passengers 286,470 434,076 268,125 138,566 235,521

Seats 474,583 667,802 433,524 245,044 376,757
Load Factor 0.60 0.65 0.62 0.57 0.63

% MD-80/82 (131-150 seats) 63% 43% 43% 50% 73%
% Airbus A320 (131 seats) - 4% 8% 3% 6%

% CRJ-900 (90 seats) 2% 2% 7% 9% 3%
Pas. per MD flight 84 93 89 79 91

CRJ Seats - MD Pas. 6 -3 1 11 -1
Pas. per A320 flight 79 85 81 74 82

CRJ Seats - A320 Pas. - 5 9 16 8

by the available seats of MD aircrafts and A320 is smaller than 90. Hence,
the same amount of passengers could be transported, for the same routes, by
a regional jet such as the CRJ–900. Table 6 shows the relevant differences
between the MD aircrafts and the CRJ–900 in terms of emissions and noise.
Notice that a 3 dB increase (decrease) corresponds to a doubling (halving)
in the sound level.

Table 6: LTO emissions by aircraft model

Aircraft Model HC CO NOx Noise Seats

MD–80 0.861 7.176 10.462 90.96 131
MD–82 0.863 7.019 10.424 91.37 150

Airbus A320 0.471 6.767 10.893 92.53 131
CRJ–900 0.035 4.126 4.442 87.19 90

Pollutants are expressed in kg.
Noise is the energetic mean of the approach and flyover levels of EPNL (dB)

Since many of these aircrafts are daily used on the same city–pair market,
replacing an aircraft model with another one would not lead to network
problems. Clearly, it would be different if the same aircraft was used on
routes with different load factors. However, notice that even the replacement
of an MD with two CRJ–900 would be desirable in terms of emissions per
seat, but this kind of practice would lead to potential problems of congestion,
as already mentioned, and also to an increase in the airline’s costs (e.g., two
cockpit crews).14

14Notice that a change in the fleet mix at an airport or a reduction in the number
of movements are not the unique ways to reduce airports’ environmental impact. First,
airlines often can purchase kits to upgrade aircraft engine in the fleet and, sometimes, there
is also the possibility to convert aircraft on order to the newest engine configuration prior to
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As far as airports’ ownership structure, the higher is the presence of
public local authorities, the higher is airport environmental efficiency. This
seems to suggest that public local authorities pay a particular attention to
environmental concerns such as noise and local air pollution, which essentially
affect people leaving nearby the airports. This result is confirmed by the fact
that in model 2 the variable is significant with a positive sign, suggesting
that, in terms of technical efficiency, the result is completely different.

As far as the variable representing size, it is significant with a negative
sign in both model 1 and model 2 . This suggests the existence of scale
economies allowing bigger airports to reach higher efficiency scores in terms
of both environmental and technical efficiency.

Moreover if we consider the variables regarding airlines, the presence of
LCCs seems not to influence airport environmental efficiency. This means
that the hypothesis that LCCs are greener than traditional carriers is not
confirmed. On the contrary, the higher is the value of LCC, the higher is
airports’ technical efficiency according to the traditional airport benchmark-
ing approach (i.e., model 2).15This may be due to the fact that the presence
of LCCs often resulted in a relevant rise in both domestic and international
traffic, thus leading to a better utilization of the existing infrastructures.
However, the significance with positive sign of the interaction between LCC
and dominance suggests that when LCCs are too much strong, their effect
becomes negative. This negative dominance effect may be explained in terms
of entry deterrence adopted by the dominant LCC. As a consequence, the air-
ports capacity to attract new carriers is limited, and, in turn, its utilization
of assets.

Finally, we compare the above results obtained through the DDF model
with undesirable output (i.e., Model 1) with a DDF model in which the neg-
ative outputs are considered as inputs. Our purpose is to verify whether our
results can be considered robust when some hypothesis are relaxed. In par-
ticular, the weak disposability assumption in Model 1 is quite restrictive and

aircraft delivery. Furthermore, there are other operational options in order to reduce actual
emissions: for example, airports might reduce taxi times (leading to a reduction of local air
pollution) or apply noise abatement procedures (e.g., preferred runways, minimum noise
routings). The impact of these last operational procedures cannot be taken into account
in this contribution.

15European large LCCs (i.e., Ryanair and Easyjet) only operate narrow–body aircrafts.
However, many LCCs operating at Italian airports during the period 2005–2008 also use
regional jets (e.g., MyAir, Blue 1, Brussels Airlines, Clubair, . . . ). Furthermore, many
traditional carrier operate narrow–body aircrafts. As a result, the correlation between
LCC and NB is not so high (0.396), meaning that eventual problems of multicollinearity
are reduced. Notice also that, if we do not include LCC in the analysis the results regarding
environmental efficiency do not change significantly.
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provides a sort of short run look at relative efficiency scores. However, by
changing the mix of aircraft flying into an airport or by imposing night cur-
fews, an airport can reduce negative outputs (i.e., noise and pollution), while
maintaining positive outputs (total flights, total passengers, total frights,
etc.). This is especially true in the long run when technological progress
produce new more environmentally friendly aircrafts. Obviously, this possi-
bility is not in line with the weak disposability assumption on outputs, since
the tight coupling of the negative and the positive outputs, at least in the
long run, fails. Hence, in order to look also at a more long run scenario, we
compute efficiency scores by considering the negative outputs as inputs and
minimizing the inputs plus negative outputs subject to the positive outputs.
Notice that this is a less restrictive look at relative efficiency. Table 10 shows
the efficiency scores of the long run model (i.e., Model 3). Note that they are
very similar to those obtained with Model 1: unless some exceptions efficient
airport are the same. Furthermore, also the results of the second stage seem
to be confirmed (Table 7) in the sense that the significant variables (i.e., NB,
PLA and SIZE) retain the same sign they have according to Model 1. Fur-
thermore, the interaction between LCC and DOM retains its negative sign
but becomes significant.

Table 7: Bootstrap results of truncated regression estimates, 90 percent of
confidence

Model 3
EE

Explanatory Estimated Lower Upper
Variables Coefficient bound bound

NB(%) 0.412 0.283 0.476
PLA(%) -0.109 -0.169 -0.032
LCC(%) 0.076 -0.154 0.295
DOM(%) 0.044 -0.157 0.238
LCCxDOM -0.564 -0.848 -0.201
SIZE -0.208 -0.225 -0.153
Constant 2.944 2.496 3.269
Sigma 0.160 0.072 0.105
Number of Obs. 64

Significant variable at 90% are marked in bold

Focusing on the econometric property of our results we have to underline
a fact that arise from Table 4 and Table 7. Some estimated coefficient value
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lie outside the bootstrap confidence interval (CI). This is an issue that emerge
also in Simar and Wilson (2007), when they present their empirical analysis
and it is probably due to the ML problem in finite samples. In case of a
limited number of observation this limitation should appear stronger then
in other case. A further point to support our findings regards is that the
bootstrap CI incorporate an implicit bias correction which is not considered
in the original estimates of γ̂ from Eq. (7).

6 Conclusion and discussion

In this paper, a DDF approach for airport efficiency assessment considering
undesirable outputs has been applied to a sample of 33 Italian airports for the
period 2005–2008. In order to consider both local air pollution and noise, we
computed two indexes describing the total amounts of pollutants and noise
produced for each Italian airport included in our data set. Notice that there
are no contributions in the existing literature on airport efficiency assessment
which consider the production of local air pollution.

The results show that the efficiency scores of the airports, when their
undesirable outputs are ignored, are generally different and can therefore
be misleading. Especially those airports that are highly technical inefficient
when only ”good” outputs are considered (because they have a low utiliza-
tion rate of their aeronautical inputs), show a strong improvements in their
efficiency when also ”bad” output are considered. However, this is mostly
not due to managerial effort, but to econometric specification: inefficient
airports improve their scores because they get closer to the environmental
frontier thanks to the low number of movements realized.

Furthermore, we perform a second stage regression in order to investigate
the effect of some potential determinants of airport efficiency. The results
of the second stage confirm that ignoring undesirable output may produce a
distortion, also in testing the determinants of efficiency.

First, we clearly identify the presence of a fleet effect. More environ-
mental friendly fleets reduce (ceteris paribus) emissions and noise, making
airports more environmentally efficient. More in details, we find that air-
ports are more efficient, the lower is the percentage of flights made through
narrow–body aircrafts, in comparison to the percentage of flights made by
regional jets. The fact that the partial substitution of narrow–bodies with
regional jets increases the environmental performance of airports has an im-
portant policy implication. Obviously, given the different capacities of the
two aircraft models, this finding is especially valuable for those flights that
have low load factor, because, in this case, it would not be necessary to in-
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crease the number of flights (given the number of passengers) with the risk of
experiencing congestion problems. In this sense, the airports could encour-
age airlines to use cleaner aircrafts for example through reduction of airport
charges. Policy makers could alternatively provide an incentive scheme that
rewards the greenest airports: such incentives could then be shared between
the airport and the airlines that have contributed to the objective.

Second, we find that the higher is the stake of public local authorities in
the airports ownership structure, the higher is their environmental efficiency.
The fact that local authorities may be more sensitive to the problems related
to noise and local air pollution, it is not surprising and seems to be an
argument down the privatization of airports. However, the theme of the
ideal ownership structure of airports is very complex as demonstrated by
the fact that the influence on traditional technical efficiency is, contrariwise,
positive.

Third, with regard to the influence of airlines on airport efficiency, the
presence of low cost is not significant from the environmental point of view.
This result is interesting as it seems to deny, at least on average, the com-
mon perception that LCC, using modern aircrafts, are more environmentally
friendly. On the contrary, the presence of LCCs seem to be positive for air-
ports technical efficiency as long as there is no a dominance by the main LCC
operating at the airport.

Finally, when we look at a more long run scenario, allowing airports
to reduce the level of bad outputs without necessarily reduce that of good
outputs, we find similar results in terms of both efficiency scores and second
stage analysis.
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Table 8: Estimated Environmental efficiency score for each airport by year

Airport 2005 2006 2007 2008 Total

Alghero 0.000 0.000 0.105 0.114 0.055
Ancona 0.000 0.000 0.000 0.000 0.000
Brindisi 0.249 0.180 0.154 0.149 0.183
Bergamo 0.000 0.000 0.000 0.000 0.000
Bologna 0.000 0.000 0.000 0.000 0.000
Bari 0.158 0.143 0.094 0.078 0.118
Cagliari 0.091 0.079 0.089 0.078 0.084
Catania 0.000 0.020 0.012 0.000 0.008
Rome Ciampino 0.000 0.000 0.000 0.000 0.000
Rome Fiumicino 0.000 0.000 0.000 0.000 0.000
Florence 0.000 0.000 0.000 0.000 0.000
Forl̀ı 0.192 0.000 0.120 0.126 0.109
Genoa 0.088 0.071 0.000 0.081 0.060
Milan Linate 0.000 0.000 0.000 0.000 0.000
Lampedusa 0.000 0.000 0.000 0.000 0.000
Milan Malpensa 0.000 0.000 0.000 0.000 0.000
Naples 0.000 0.000 0.000 0.000 0.000
Olbia 0.140 0.134 0.110 0.124 0.127
Parma 0.000 0.000 0.000 0.000 0.000
Palermo 0.063 0.040 0.054 0.046 0.051
Pantelleria 0.000 0.000 0.000 0.000 0.000
Pisa 0.035 0.000 0.000 0.000 0.009
Pescara 0.126 0.108 0.105 0.081 0.105
Reggio Calabria 0.266 0.000 0.155 0.131 0.138
Rimini 0.000 0.000 0.000 0.000 0.000
Lamezia 0.168 0.072 0.077 0.096 0.103
Trapani 0.123 0.173 0.000 0.000 0.074
Turin 0.033 0.032 0.013 0.000 0.019
Trieste 0.124 0.095 0.000 0.000 0.055
Treviso 0.000 0.000 0.000 0.000 0.000
Brescia 0.000 0.245 0.000 0.222 0.117
Venice 0.000 0.000 0.000 0.000 0.000
Verona 0.000 0.000 0.000 0.000 0.000
Total 0.056 0.042 0.033 0.040 0.043
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Table 9: DEA efficiency score for each airport by year

Airport 2005 2006 2007 2008 Total

Alghero 0.553 0.601 0.677 0.546 0.590
Ancona 0.275 0.301 0.290 0.306 0.293
Brindisi 0.398 0.405 0.303 0.329 0.353
Bergamo 1.000 1.000 1.000 1.000 1.000
Bologna 0.655 0.693 0.681 0.672 0.675
Bari 0.356 0.512 0.551 0.650 0.493
Cagliari 0.589 0.580 0.410 0.541 0.519
Catania 1.000 0.776 0.863 0.985 0.896
Rome Ciampino 1.000 1.000 1.000 1.000 1.000
Rome Fiumicino 1.000 1.000 1.000 1.000 1.000
Florence 1.000 1.000 1.000 1.000 1.000
Forl̀ı 0.409 0.453 0.509 0.273 0.389
Genoa 0.373 0.371 0.352 0.347 0.360
Milan Linate 1.000 1.000 1.000 1.000 1.000
Lampedusa 0.634 1.000 0.409 0.374 0.520
Milan Malpensa 1.000 1.000 1.000 1.000 1.000
Naples 1.000 1.000 1.000 1.000 1.000
Olbia 0.237 0.238 0.252 0.271 0.249
Parma 0.398 0.121 0.138 0.514 0.201
Palermo 0.631 0.745 0.712 0.742 0.704
Pantelleria 1.000 1.000 1.000 1.000 1.000
Pisa 0.535 0.852 1.000 0.869 0.770
Pescara 0.202 0.333 0.296 0.302 0.273
Reggio Calabria 0.446 1.000 0.578 0.460 0.560
Rimini 0.085 0.122 0.186 0.164 0.127
Lamezia 0.408 0.465 0.496 0.395 0.437
Trapani 0.325 0.357 0.598 0.578 0.431
Turin 0.595 0.543 0.581 0.610 0.581
Trieste 0.181 0.234 0.299 0.318 0.246
Treviso 1.000 0.405 0.477 0.564 0.545
Brescia 0.233 0.189 0.230 0.225 0.218
Venice 0.721 0.837 0.993 0.833 0.835
Verona 0.560 0.507 0.605 0.567 0.557
Total 0.413 0.429 0.456 0.477 0.442

Efficiency score are reported as input oriented, then
variable between 0 and 1, with unity represent airports
on the technological frontier
Outliers are marked in bold
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Table 10: Long run environmental efficiency score for each airport by year

Airport 2005 2006 2007 2008 Total

Alghero 0.781 0.871 0.827 0.793 0.818
Ancona 1.000 1.000 1.000 1.000 1.000
Brindisi 0.608 0.733 0.669 0.675 0.671
Bergamo 1.000 1.000 1.000 1.000 1.000
Bologna 1.000 1.000 1.000 1.000 1.000
Bari 0,736 0,785 0,833 0,843 0,799
Cagliari 0.851 0.873 0.804 0.816 0.836
Catania 1.000 0.963 0.978 1.000 0.985
Rome Ciampino 1.000 1.000 1.000 1.000 1.000
Rome Fiumicino 1.000 1.000 1.000 1.000 1.000
Florence 1.000 1.000 1.000 1.000 1.000
Forl̀ı 0,687 0,755 0,787 0,72 0,737
Genoa 0,836 0,877 0,906 0,857 0,869
Milan Linate 1.000 1.000 1.000 1.000 1.000
Lampedusa 0.888 1.000 1.000 1.000 0.972
Milan Malpensa 1.000 1.000 1.000 1.000 1.000
Naples 1.000 1.000 1.000 1.000 1.000
Olbia 0.781 0.786 0.782 0.744 0.773
Parma 1.000 1.000 1.000 1.000 1.000
Palermo 0,878 0,93 0,884 0,897 0,897
Pantelleria 1.000 1.000 1.000 1.000 1.000
Pisa 0.94 1.000 1.000 0.967 0.977
Pescara 1.000 0.819 0.828 0.821 0.867
Reggio Calabria 0.609 1.000 0.759 0.76 0.782
Rimini 1.000 1.000 1.000 1.000 1.000
Lamezia 0.721 0.819 0.853 0.83 0.806
Trapani 0.81 0.717 0.876 0.885 0.822
Turin 0.937 0.932 0.972 1.000 0.96
Trieste 0.755 0.836 0.868 1.000 0.865
Treviso 1.000 0.932 0.95 0.929 0.953
Brescia 0.999 0.651 0.93 0.51 0.773
Venice 1.000 1.000 1.000 1.000 1.000
Verona 1.000 1.000 1.000 1.000 1.000
Total 0.903 0.918 0.924 0.911 0.914

Efficiency score are reported as input oriented, then
variable between 0 and 1, with unity represent airports
on the technological frontier
Outliers are marked in bold
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