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Noncommutative approach to the cosmological constant problem
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In this paper, we study the cosmological constant emerging from the Wheeler-DeWitt equation as an
eigenvalue of the related Sturm-Liouville problem. We employ Gaussian trial functionals and we perform
a mode decomposition to extract the transverse-traceless component, namely, the graviton contribution, at
one loop. We implement a noncommutative-geometry—induced minimal length to calculate the number of
graviton modes. As a result, we find regular graviton fluctuation energies for the Schwarzschild, de Sitter,
and anti-de Sitter backgrounds. No renormalization scheme is necessary to remove infinities, in contrast to

what happens in conventional approaches.

DOI: 10.1103/PhysRevD.83.064021

I. INTRODUCTION

The emergence of a minimal length is widely accepted
as a natural requirement when quantum features of space-
time are considered. Indeed, the spacetime structure at
small distances is rather different from the conventional
description in terms of a smooth differential manifold.
When extreme energies probe spacetime, quantum gravi-
tational fluctuations appear and prevent any measure of
better accuracy than a natural length scale, e.g., the Planck
length (see, for instance, [1]). Qualitatively, we can
describe the spacetime in such an extreme regime as a
quantum foam, namely, a complex turbulent storm-tossed
sea which accounts for the seething fabric of the Universe
[2]. The presence of a minimal length implies that singu-
larities in general relativity and ultraviolet divergences in
quantum field theory are nothing but spurious effects due to
the inadequacy of the formalism at small scales/extreme
energies, rather than actual physical phenomena. Along
this line of reasoning, the renormalization procedure, too,
even if very effective for its capacity of providing reliable
and testable data, is nothing more than an artificial mecha-
nism to get an ad hoc treatment for the bad short-distance
behavior of quantum fields. As a further criticism to renor-
malization, there is also the well-known limitation of a
systematic employment of regularization schemes when
gravity is taken into account. A related problem is provided
by the calculation of the cosmological constant: it is not yet
clear what is the prescription which leads to a finite
and reasonably small value, since trivial infinity subtrac-
tions are not viable in the presence of a gravitational
coupling.
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Given this background, great efforts have been devoted
to implementing a minimal length in physical theories and
curing the aforementioned pathologies or limitations of
conventional approaches. For instance, we recall the route
opened by the generalized uncertainty principle (GUP),
according to which the Heisenberg commutation relation
among coordinates and momenta would be deformed in
order to include the effects of an ultraviolet (and/or an
infrared) cutoff [3]. In the same spirit, several models of
noncommutative geometry (NCG) have been extensively
studied, i.e., geometries for which coordinate operators
might fail to commute, giving rise to an effective graini-
ness of the spacetime manifold (for general reviews on the
topic, see [4]). Even if both the GUP and NCG are often
regarded as mere effective tools or low-energy limits of
more fundamental formulations [5], they turn out to be
quite successful for their capacity of providing testable
predictions and foreseeing new reliable scenarios [6].
Among the most relevant results, we recall that, with a
minimal length induced by averaging noncommutative
coordinate fluctuations [7-9], the curvature singularity
of conventional black hole spacetimes has been tamed
[10-12], and a new thermodynamically stable final stage
of the Hawking evaporation has been determined [13,14]
(for a review on these topics, see [15]).

In light of the above results, in this paper, we would like
to do a step forward. In particular, we would like to apply
some of the NCG properties to the computation of the
cosmological constant. This procedure is based on the
employment of the Wheeler-DeWitt (WDW) equation
with the cosmological constant considered as an eigen-
value of a certain Sturm-Liouville problem. This approach
has been initiated by one of us [16], with the purpose of
computing the zero-point energy generated by the graviton
fluctuations. In other words, zero-point energy is a
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Casimir-like energy. We recall that, for calculating the
Casimir energy, one generally invokes a subtraction pro-
cedure between zero-point energies having the same
boundary condition. At the semiclassical level, one em-
ploys a zeta function regularization scheme to determine
finite energy densities, when the graviton one-loop contri-
bution to a classical energy is computed. As a goal of this
paper, we want to implement in the WDW equation a
NCG-induced minimal length and show how the resulting
zero-point energies naturally arise as finite quantities with-
out invoking any regularization scheme.

II. THE WHEELER-DEWITT EQUATION AND
GRAVITON CONTRIBUTION

The WDW equation is a celebrated equation which
formally extends to the quantum realm the Hamilton-
Jacobi equation for general relativity, in the same fashion
of what the Schrodinger equation does for quantum
mechanics. It reads

HWY =0, (D

where W is a functional of field configurations on all of
spacetime, and the super-Hamiltonian F provides a
Hamiltonian constraint, i.e., restricts W to the physical
configuration of the geometry and matter content of the
Universe. The spacetime is supposed to be foliated into a
family of spacelike hypersurfaces 3. The Arnowitt-Deser-
Misner variables offer a valid example of such a foliation.
Explicitly, the metric background is written in the familiar
form

ds* = —N?di* + g;;(N'dt + dx')(N/dt + dx/).  (2)

N is called the lapse function N, and N; is the shift function.
The dynamical variables are, therefore, the three-
dimensional metrics g;;(x/, ), and their conjugate mo-
menta 77"/, which are called supermomenta. The replace-
ment of the dynamical variables with the corresponding
quantum operators

gt xk) — gii(t, xb), (3

0

it xk) — —i——
3g,-,-(t, x¥)

4

provides the quantization. In the following, for brevity,
we shall skip the ~ superscript for operator notation.
In terms of dynamical variables, we can define the super-
Hamiltonian, which reads

H = Qr)Gjymim — \2/—5(3R —2A), (5)

where k = 87G, Gjy; is the supermetric
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Gy = ——
ijkl 7 \/g
and 3R is the scalar curvature in three dimensions. The

main reason to work with the WDW equation becomes
more transparent if we formally rewrite it as

1 I Dlgi 1V g1 [s dBX/A\E)\P[gij]
\% fD[gij]\I’*[gij]‘P[gij]
IRV BxAs| W) _ A

% (VW) K ©)

(gik&ji + 8igjk — &ij&x):

where

V= [ d*x\/g (7
b
is the volume of the hypersurface X, and

As = QUG mia — 8 R/(2k). (8)

Equation (6) represents the Sturm-Liouville problem asso-
ciated with the cosmological constant. The related bound-
ary conditions are dictated by the choice of the trial wave
functionals which, in our case, are of Gaussian type.
Different types of wave functionals correspond to different
boundary conditions. We can gain more information if we
consider

8ij = &ij T hij,
where g;; is the background metric, and h;; is a quantum
fluctuation around the background. Thus, (6) can be
expanded in terms of &;;. Since the kinetic part of Ag is
quadratic in the momenta, we only need to expand the
three-scalar curvature [ d*x,/g*R up to the quadratic order.
However, to extract the graviton contribution, we also need

an orthogonal decomposition on the tangent space of
three-metric deformations [17]

hij =40 +2V - &)g;; + (LE);; + h. ©)

The operator L maps the gauge vector &; into symmetric
trace-free tensors

(L&) = Vié;j + V& — 3g,(V - &) (10)
hlL] is the traceless-transverse component of the perturba-
tion (TT), namely,

ghE =0,  Vini =0, (11)

and £ is the trace of h;;. It is immediate to recognize that
the trace element o = h — 2(V - £) is gauge-invariant. If
we perform the same decomposition also on the momen-
tum 77/, up to second order, (6) becomes

1 (Wl [y A + AL + AZIO|w)
4 (W)

A (12)
K
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Concerning the measure appearing in (6), we have to
note that the decomposition (9) induces the following
transformation on the functional measure Dh;; —
DhiJJf Dé Do, where the Jacobian related to the

gauge-vector variable &; is
J = [det(Agl + IViVi — Ri/)]'/2, (13)

This is nothing but the famous Faddeev-Popov determi-
nant. It becomes more transparent if &, is further decom-
posed into a transverse part &1, with V¢¢T =0, and a
longitudinal part fﬂ, with .fu = V,¢. Then, J can be ex-
pressed by an upper triangular matrix for certain back-
grounds (e.g., Schwarzschild in three dimensions). It is
immediate to recognize that, for an Einstein space in any
dimension, cross terms vanish, and J can be expressed
by a block diagonal matrix. Since detAB = detA detB,
the functional measure Dh;; factorizes into

Dhi/’ _ (detA‘T/)l/Z(det[% A2 +ViRijVj])1/2
X D D™Dy, (14)

leading to the Faddeev-Popov determinant with (Ag)T =
Agi — R acting on transverse vectors. In writing the
functional measure Dh;;, we have here ignored the appear-
ance of a multiplicative anomaly [18]. Thus, the inner
product can be written as

| DhiDE Drv T LT T Lo TV

X W[o](detAT)/2(det2 A2 +V,RIV ]I/, (15)

Nevertheless, since there is no interaction between ghost
fields and the other components of the perturbation at this
level of approximation, the Jacobian appearing in the
numerator and in the denominator simplify. The reason
can be found in terms of connected and disconnected
terms. The disconnected terms appear in the Faddeev-
Popov determinant, and the above ones are not linked by
the Gaussian integration. This means that disconnected
terms in the numerator and the same ones appearing in
the denominator cancel out. Therefore, (12) factorizes into
three pieces. The piece containing E+, the contribution of
the TT tensors , is essentially the graviton contribution
representing true physical degrees of freedom. Regarding
the vector operator AQ, we observe that, under the action of
infinitesimal diffeomorphism generated by a vector field
€;, the components of (9) transform as follows [17]:

& te,  h—h+2V-& ki —hbo (16)

The Killing vectors satisfying the condition V;&; +
V;&; = 0 do not change &;; and thus should be excluded
from the gauge group. All other diffeomorphisms act on A;;
nontrivially. We need to fix the residual gauge freedom on
the vector &;. The simplest choice is & = 0. This new
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gauge fixing produces the same Faddeev-Popov determi-
nant connected to the Jacobian J and, therefore, will not
contribute to the final value. We are left with

1 (W] [y dx[AS]?|wL)

1% (TL|pl)
1P| [x PAAZIP1W7) A
+V RGNS = (17)

Note that, in the expansion of f s d3x\/§R to second order,
a coupling term between the TT component and the scalar
one remains. However, the Gaussian integration does not
allow such a mixing, which has to be introduced with an
appropriate wave functional. By extracting the TT tensor
contribution from (6) within second-order perturbation
theory in £;; onto the background g;;, we get

N 1 y
(4417 = 25 [, VB @K 0

1 ~
+ (Z—K)(AL)?KL(X, x)iakl]r (18)

where A is the modified Lichnerowicz operator

(Apht); = (Aght); — 4RERE +3RhE,  (19)
defined in terms of the Lichnerowicz operator
(ALh)l] = Ahl} - ZRikjlhkl + Rikhf' + lehi{,
(20)
A ==V,

The metric G/* represents the inverse DeWitt supermetric,
and all indices run from one to three. Note that the term

— 4RI + *Rh (21)

disappears in four dimensions when we use a background
which is a solution of the Einstein field equations without
matter contribution. The propagator KL (x, x);,;; can be
represented as

AOL @ADL )

N (22)

K V)jan = Z

where hg)l (X) are the eigenfunctions of A .- The parame-
ter 7 denotes a complete set of indices, and A(7) are a set of
variational parameters to be determined by the minimiza-
tion of (18). The expectation value of A% is easily obtained
by inserting the form of the propagator into (18) and
minimizing with respect to the variational function A(7).
As a result, the expectation value of f\é can be written in
terms of the eigenvalues w?(7) of A,. By means of (17),
we obtain a cosmological term due to the TT tensor one-
loop energy density
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provided w?(7) > 0. The above expression is interpreted as
the expectation value of graviton fluctuations on a given
background. In the above calculation, we did not consider
the scalar contribution coming from A<, since, in the
physically relevant cases, it is possible to show that it
does not contribute. To complete the picture, we need to
specify the form of the background g;;. In the next section,
we will work within the spherically symmetric case.

III. THE SPHERICALLY SYMMETRIC
BACKGROUND

The line element (2) can be recast in the following form:

2
S+ o> + sin0d¢?), (24)

r

ds* = —N*(r)dt®* +

where b(r) is termed the “shape function.” With the help
of the Regge and Wheeler representation, (Apht);
reduces to

2
[_i+ +1)
dx?

+Mmkm 02 f (),
[r = r(x)], (25)

where we have used reduced fields of the form f;(x) =
F;(x)/r and where we have defined two r-dependent
effective masses m?(r) and m3(r):

() :%[ b(rr)]
0-8[1-2]-

with x as the proper distance from the throat at r, =
ie.,

i=12

55 b'(r) — 23 b(r),
——b'(r) + b(r)
b(r,),

dr

There are two interesting cases where a symmetry in the
masses appears. The first case is the Schwarzschild metric
with r, = b(r,) = 2MG. Thus, masses m3(r) and m3(r)
read

dx = £

6 2MG 3MG

mi) = o (1-27) - 25,
(26)

2MG 3MG

(r)——(l— )+ s

r
In the range where r € [2MG, 5SMG], we have

m3(r) = —m3(r) = m§(r). (27
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The second case comes from the de Sitter (dS) [anti-
de Sitter (AdS)] metric with b(r) = A“S r (—%r*%).
Thus, m?3(r) and m3(r) become

6 A
m} = m3 = mig > (1 ;S 2) + Ags,
6 A
mi = m3 = myes = —2(1 =35 2) Anas

Note that, in the case of the dS background, r €

[0,4/3/A4s], while, for the AdS background, one works
in the range r € [0, o). In order to use the WKB approxi-
mation along the lines of the ‘t Hooft brick wall problem
[19], we can extract two r-dependent radial wave numbers
from (25):

k (r l a)l}’ll)

— m3(r), i=12

tnl

I(1+1)
2
(28)

It is now possible to explicitly evaluate (23) in terms of the
effective masses. To further proceed, we have to count the
number of modes with frequency less than w;, i = 1, 2.
This is given approximately by

(w;) = ﬁ) fres vi(l, )21 + 1)dI, (29)

where v;(I, w;), i = 1, 2 is the number of nodes in the mode
with ([, ®;), such that

1 + 00
vill, ;) = f R Lw).  G0)
T —00

Here, it is understood that the integration with respect
to x and [ is taken over those values which satisfy
klz(r, [, w;) =0, i =1,2. However, (29) is based on the
classical Liouville counting number of nodes

BrPKk

T e Gh

The procedure leads to divergent results. Conventionally,
one performs a renormalization absorbing the divergent
parts into the redefinition of bare classical quantities. In the
spirit of any efficient quantum gravity approach, such a
procedure must be reviewed. Indeed, both GUP and NCG
formulations predict a deformation of the integration mea-
sure in momentum space,

k|. 32
[[1 f(k)]”(' (32)

The function F (lg2 ) depends on positive powers of the

argument. As a result, j]:'(lg2 ) accounts for the suppression
in the UV region, when an effective minimal length models
the quantum gravity uncertainty. As shown in [13,14],

064021-4



NONCOMMUTATIVE APPROACH TO THE COSMOLOGICAL ...

NCG in coherent-state formalism provides a specific form
for the function F(k*). Thus, the number of states reads

BidPk Bidk 0
dn =22 gy 2220 F ——k.z), 33
" emr T Ry ‘”‘p( gki) 69
with
k2 = a)lznl m?(r), i=12. (34)

This deformation corresponds to an effective cutoff on the
background geometry (24). The UV cutoff is triggered only
by higher-momenta modes = 1/ /6 which propagate over
the background geometry. The virtue of this kind of defor-
mation lies in the fact that the exponential damping not
only fulfils the general requirement of UV completeness
for fields f;(x), but also provides the strongest possible
suppression of higher momenta. Even if we are dealing
with an effective approach that, strictly speaking, can
reliably work only until scales ~/6, this exponential
profile lets us have at least a glimpse at smaller scales.
To this purpose, we recall that this kind of deformation of
the integration measure has been already successfully em-
ployed in taming the nonperturbative behavior of the gravi-
tational field: curvature singularities in general relativity
have been cured, giving rise to new quantum corrected
regular geometries also at black hole centers without any
breakdown at small scales [10]. Plugging (30) into (29) and
taking account of (33), the number of modes with
frequency less than w;, i = 1, 2 is given by

1 [+ Lmax I(I+1
;) = _[ dx[ ‘/w%nl _K 5 )_ m?(r)(21+ 1)
T J— 0 ! r

X exp(—gk%)dl. (35)

After integration over modes, one gets

#o) =5 [ av (Gt —moF
X exp{— Z[w%nl - mlz(r)]}) (36)

This form of g(w;) allows an integration by parts in (23),
leading to

A dg(w
877G 47rzv Z[ doi

- Z f F(w)do, (37)

This is the graviton contribution to the induced cosmologi-
cal constant at one loop. To get this result, we have used
(27) and we have included an additional 47 coming from
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the angular integration. As a result for the Schwarzschild
case, we find for the energy

o Tl ] o

Extracting the energy density, we find

A L{ [ " o — () Pe 0/ —mn)]
87G 67 [ () 0

+ [ - [w2+m%(r)Pe‘<0/4>[w2+m5<r>1}. (39)
0

(38)

In the Appendix, we explicitly evaluate the previous inte-
grals. Plugging the result of (A11) into (39), we get

A1 4y DAY A Y
87G 127 (5) [y“’“‘(i) y S‘“(i)]’“ (5)

y y
+ y?cosh(= )Ko 3 ) 40
y? cosh(3 o) (40)
where
2
_ mg(r)@ _ 3M(%}6" @)
4 47

The asymptotic properties of (40) show that the one-loop
contribution is regular everywhere. Indeed, when we
rescale the radial coordinate to the wormhole throat

r

P =omG

with p € [1, 5/2], we have

1 0

5,7 GIGF 42)

y =

This means that, when MG < 6, we have y — oo. From
the expression (A12), we find that, when y — +oo,

A

g™ 1277 \/7[3 + (8y? + 6y + 3)exp(— y)]}

(43)

namely, we recover the correct behavior, according to
which, for a vanishing background gravity, i.e., M = 0,
the one-loop energy must go to zero. Conversely, when
MG > 6, we have y — 0 and, from expression (A13), we

obtain
o= (o) 2 G amG) )25

87G  122\0 8 4 \4) 4V T 3207
(44)
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a finite value for A. This shows the effect of the NCG
cutoff \/5 at work.

For the dS and AdS cases, we find that the effective
masses contribute in the same way at one loop. Thus, (37)
becomes

A 1 +oo 2_ .2
A o b ST — m2(r) e 6/9w=min]
Py P f T [w? — m§(r)Pe o

(45)

Plugging the result of (A3) into (37), we get

s (T )+ (ool
(46)

where
z=ml(r0/4 or z=mi(NO/4  (47)

To analyze these results, we recall that, in the de Sitter
case, the radial coordinates r € [0, 4/3/A4s]. Therefore, at
short distances r <K \/5, we have
_30 _Awb |

2r 4
From expansions (A7) and (A8), we find

A 1 423‘/?
N a(2) 2 =0, 48
87G 67r2<6>8 z (“48)

when z — oo. This corresponds to the correct behavior in a
spacetime region where the curvature vanishes. On the

other hand, for r = /3/A4 > /0, we have
_Agsb
Ty

Z

— 0,

which implies

A 1 [4\2 z 7 3. /(z 3
— ()l -2+ ——=—ZIn[>) -y [
87G 67 (a){ 2 [ 16 8 n(4) 87]1}
8
— ) 49
37%0? “9)
i.e., a finite value of the cosmological term. The same

conclusion holds for the anti-de Sitter case.

IV. SUMMARY AND CONCLUSIONS

In this paper, we calculated the cosmological constant as
an eigenvalue of the Sturm-Liouville problem related to the
Wheeler-DeWitt equation. With the help of Gaussian trial
functionals, we extracted the one-loop contribution of the
transverse-traceless component, namely, the graviton.
Instead of embarking in conventional regularization
schemes, we implemented a natural UV cutoff in the
background geometry, invoking a NCG-induced minimal
length. As a result, we get a modified counting of graviton
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FIG. 1 (color online). Plot of A/87G in Planck units as a
function of the scale-invariant y, which depends on the back-
ground choice. For dS and AdS backgrounds, the variable y is
replaced by z.

modes. This lets us obtain regular values everywhere for
the cosmological constant, independently of the chosen
background, which, nevertheless, is of a spherically sym-
metric type. We show this for the Schwarzschild, de Sitter,
and anti-de Sitter backgrounds. The strength of our ap-
proach lies in the specific kind of integration measure
deformation in momentum space we derived from NCG.
This lets us overcome previous attempts which only led to
mild effects and just a reduction of the degree of diver-
gence [20,21]. Although the result seems to be promising,
we have to note that the evaluation is at the Planck scale,
and, even if Fig. 1 shows a vanishing behavior, one has to
bear in mind that this behavior corresponds to the switch-
ing off of the Schwarzschild background. The paper is
subjected to future developments. First, we restricted the
attention only on spherically symmetric backgrounds like
Schwarzschild or de Sitter/anti-de Sitter backgrounds. A
further extension should be the inclusion of rotations,
which considerably increase the technical difficulty level.
Moreover, regarding the Schwarzschild background, we
worked with the “classical Schwarzschild” and not with
the smeared solution predicted by the noncommutative
theory developed in configuration space, having a shape
function b(r) of the form

AMG (3 r2)
J7 \2'40)

The use of byc(r) instead of b(r) could introduce new
features of the full noncommutative theory, allowing a
better exploration of the wormhole throat. As a further
point, we have to observe that, even if we have a finite

bne(r) = (50)

064021-6



NONCOMMUTATIVE APPROACH TO THE COSMOLOGICAL ...

value for the cosmological constant, it will still come too
large with respect to its observed value. This seems to be a
general fact, as far as one employs a UV natural cutoff
[22]. A possible solution to this problem could be found in
the fact that the cosmological constant might arise from
fluctuations of vacuum energy [23], rather than from the
vacuum energy itself. Therefore, we believe that the paper
is opening a new route to further investigations.
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APPENDIX: INTEGRALS

In this Appendix, we explicitly compute the integrals
coming from (37). We begin with

+ 00 J'—‘——‘— 5 5
[w2 — m2(r)Pe@/DNe’—m(N] g
j:/mf,(r) 0
1 j‘+00 ‘Ji _ ! dx
_ - [x—mz(r)]3e 0/ [x—mg(r)] =2
w=x2 ) Jomm 0 Jx
2 _
_ mo(r)0:|1<g> (/2 — <§)
exp[ |5\ mg(r)I’ 3
2(r)6 2(ro
Xexp[—mog) ]W—l,—ll:mO(r) ]

4
where we have used the following relationship:

+o00
[ XN x — u)» e Brdx

u

(AD)

= Ig*[(wu)/z]u(v+u72)/2r(’u)
(A2)

Bu

X CXP(_ ) )W(yw)/z,(lww)/z(ﬁu),

Reu >0, ReBu >0,

where W, ,(x) is the Whittaker function, and I'(») is the
gamma function. Further manipulation on (A1) leads to

L) om0 Eon o) o

where
m3(r)0
xX=——"
4

It is useful to write an asymptotic expansion for K(3) and
K, (3). We get

(A4)
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1
Ko(x/2) = x/;f"/zf“/z)(l - 4—) + 0[x~6/2],

* (AS)

3
K (x/2) = «/We_x/zx_(l/z)(l + 4—) + O[x~6/2],
X

Plugging expansion (AS5) into expression (A3), one obtains
that the asymptotic behavior is given by

L A2 2]

+ O[x6/2] (A6)

and, after a further simplification, one gets
O
2\4) 8V
while, when x — 0, one gets
1/6\2 X 7 3 (x 3
—(= l—=+]———=-Inl=)—= 2L (A8
2(4> { 2 [ 6 8 “(4) sy]x} (A9

For the other integral, we proceed in the same way and
we get

[*“ [l + (P e O/ il g,
0

m3(r)071 (6\~(/2)
- e -5 (3)

(A7)

1 3(r)6
X mg(r)r<—)wl ][mo(r) ] (A9)
2) - 4
Converting to Bessel functions, (A9) yields
1/60\2x X x2 X X
iy (1 + )+ = - -
2(4) [2 ( x)K1<2) 2 Ko(z)]e"p< 2)’ (A1O)
whose sum with Eq. (A3) gives
0\ —2
%(Z) [x cosh(g) - x? sinh(%)][( i (g)
X X
+ x2 cosh( = )Ky( =) All
X~ cos (2) 0(2) ( )
Thus, the asymptotic expansion for (A1) yields
0\-2(1
l(—) {—‘/EB + (8x% + 6x + 3) exp(—x)]}. (A12)
2\4 8V x
On the other hand, when x — 0, one gets
1/0\2 7 3. (x 3
—(=) 12-|=s+>In(>)+ >y XL Al
2<4) { [8 4 “(4) 47]x} (A1)
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