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The study of avalanche events is particularly important to assess and predict the degree of risk

involved in a given area and time. In this work we propose an alternative methodology based on a

space-time point process where the intensity function indicates the limiting expected rate of occurrence

of snow avalanches occurring on day t at location (x, y), conditioned on the historical information

available prior to time t. Also, we use a self-exciting model to deal with unobserved random space-time

effects. The model depends also on some environmental variables (degree of slope, exposure, altitude,

etc.) which may be considered as covariates. To show the ability of the model in estimating and

forecasting the avalanche hazard we consider the application to the digitalized Avalanche Database of

the Trentino region, Italy.

1 Introduction

Avalanches are natural phenomena that in a mostly mountainous territory may significantly affect

land use. In recent years the study of avalanche phenomena has attracted growing interest especially

for the increase of accidents and deaths, now comparable with those related to natural disasters. This

is mainly due to a wide anthropization of mountain areas which has often brought a rapid growth of

recreational activities, transportation, and constructions in high-altitude areas without an adequate

assessment of avalanche hazard. Hence, the analysis of avalanche activity is extremely important to

prevent damage and for activities aimed at land use planning in mountain areas.

Many scientists have been studying avalanches to try to map the risk and improve predictions.

To that end several statistical methods have been proposed based on different approaches. While some

papers are aimed to predict the long-return period avalanche for a given avalanche path (Meunier,

and Ancey, 2004; Eckert, et al. 2008; Eckert, et al. 2010), others try to find variables that are

correlated with avalanche events that can be used as predictors in a statistical model (Baggi and

Schweizer, 2009; Ancey, 2001). For example, Baggi and Schweizer (2009) studied the characteristics

of wet-snow avalanche activity for 20 years of observations from a high alpine valley in Switzerland.

From the analysis of the occurrence data in combination with meteorological and snowpack data, they

found that snow depth, precipitation and air temperature have the highest correlation with avalanche

activity. Ancey (2001) distinguishes tree fixed parameters related to the avalanche path given by the

mean slope, the new slope and the wind. In particular, his findings can be summarized as follows:

(i) the average inclination of starting zones ranges from 27 to 50 degrees; (ii) most of time, snowfall

is the cause of avalanches, hence the hazard increases significantly with the increase in the depth

of new snow; (iii) the wind is an additional factor which significantly influences the stability of a

snowpack since it causes uneven snow redistribution (accumulation on lee slopes), which accelerates



snow metamorphism, forms cornices, whose collapses may trigger avalanches. The latter approaches

are aimed to study avalanche activity on a small spatio-temporal scale. Climate change has been

considered by some authors for characterizing the avalanche activity at a larger scale (Eckert et al.,

2010, Jomelli and Pech, 2004). For example, while Jomelli and Pech (2004) suggest that at low

altitudes, avalanche magnitude has declined since 1650 in the Massif des Ecrins, in the French Alps,

Jomelli et al. (2007) found no significative correlation between the fluctuations in avalanche activity

between 1978 and 2003 and large-scale atmospheric patterns, in the Maurienne Valley in France. Few

models have been proposed for forecasting the risk of avalanche in a spatio-temporal framework. Straub

and Grêt-Regamey (2006) proposed a Bayesian probabilistic model for spatial mapping and hazard

risk assessment, based on a deterministic dynamic model combined with an explicit representation of

different parameter uncertainties and Eckert et al. (2010) introduced a spatio-temporal hierarchical

model inspired from spatial epidemiology to study the fluctuations of avalanche occurrence possibly

resulting from climate change.

In this work we propose an approach based on space-time point processes (see Daley, and Vere-

Jones, 1998 for an introduction) for modeling the avalanche risk. In particular, the intensity function

of the process indicates the limiting expected rate of occurrence of snow avalanches occurring on day

t at location (x, y), conditioned on the historical information available prior to time t. Also, we use a

self-exciting model to deal with unobserved random space-time effects. The location (x, y) represents

the baricenter of the polygon which draws the shape of avalanche. For showing the effect of some

covariates (such as elevation, slope, temperature, etc.) different models are proposed. Application

to the digitalized Avalanche Dataset of Trentino region (Italy) illustrates the ability of the models

to forecast the risk avalanche. Although this approach has not been previously applied to avalanche

events, it has been used for analysis spatio-temporal analysis of earthquakes occurrences (Ogata, 1998;

Brix and Diggle, 2001) and wildfire risk (Peng et al. 2005; Schoenberg et al. 2007; Brillinger et al.

2006)

The paper is organized as follows. Section 2 and Section 3 provide a description of the data

set and a preliminary analysis of data, respectively. The analysis of space-time patterns is given in

Section 3. In Section 4, some forecasting models for avalanches are proposed. Results and conclusions

are in Section 5.

2 The data set

The data used in this work have been provided by the province of Trento through the availability of

digitalized Avalanche Database (based on a permanent survey on avalanches). The database collects

and documents the avalanche events since the seventies to today, including maps with the location

of various sites of avalanches and documents with the description and analysis of various phenomena

(dates, causes, altitude of posting, exposition, damages to people or things, etc.). For a large zone of the

Province of Trento (around 40%) the database include further detailed information of avalanche events

which were collected for drawing the CLPV (Map of Probable Localization of Avalanche) which shows

the dangerous areas and the avalanche events which happened before a given period of time (see Fig.

1). An online version of the data set is available on the web site http://www.territorio.provincia.tn.it/.

The Avalanche Database include 4693 well documented avalanche events over a period from January

1970 to January 2008 for 1108 sites distributed on the Trentino region as shown in Fig. 1 (left). How-

ever, some avalanche counts are missing or were not perfectly surveyed during the entire time period,

making certain data to be nonhomogeneous in space and time. In this study we will concentrated our

attention to some time periods where the permanent survey has been conducted as fully as possible.

Others data, considered in this work, which are supposed to be in a certain way connected with

avalanche activities include elevations, snowpack data and meteorological variables. Elevation data



Figure 1: Example of avalanche from a CLPV map (left): avalanche sites (center); permanent areas

where snow-related data are collected (right).

(In Fig. 3, left) are given by the web site http://eros.usgs.gov which provide the GTOPO30 data

set with 1km resolution. GTOPO30 is a global digital elevation model (DEM) consisting of a raster

grid of regularly spaced elevation values that have been primarily derived from the U.S. Geological

Survey (USGS) topographic map series. Snow-pack and meteorological data for Trentino province

are collected from the public meteorological centre “Meteotrentino” (www.meteotrentino.it). The

database include data from 36 permanent areas where daily are registered hand made observations of

temperatures, snowpack parameters and avalanche activity (Fig. 1, right).

3 Preliminary analysis of data
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Figure 2: Yearly avalanche events from 1979 to 2008 (upper left); Monthly avalanche events from

1983 to 1988 (upper right); Monthly average snow depth (upper left); Monthly average temperature

(bottom right).

The number of avalanche events in Trentino change significantly in time from January, 1970
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Figure 3: Elevations (left); Avalanche events from January 30 to February 2, 1986 (middle); (c)

Avalanche events from December 9 to December 12, 1990 (right).

to January, 2008 (Fig. 2). In particular, a large number of avalanches occurred in the period from

1979 to 1988 while it decreased significantly in the last 20 years. There is not a clear reason for this

decreasing temporal behavior but it is known that this period is characterized by different meteoro-

logical conditions. While the winter 1985-1986 is remembered for its frequent snowfalls, the winter

2006-2007 is known for being the warmest in the last 60 years. For showing the relationship between

avalanche events and meteorological variables we have chosen the period 1983-1988 from November

to April which is characterized by a large number of avalanche events. Figs. 2 a), 2 b), and 2 c)

show the monthly number of avalanches, the monthly average level of snow, and the monthly average

temperature, respectively: the highest numbers of monthly avalanches are often associated to high

levels of snow and cold winters. The data on the average level of snow and the monthly average

temperature are missing for the month of November 1984 and 1985. Although the amount of new

snow and temperature are important factors for assessing the risk of avalanches, other factors can be

responsible of avalanches (such as elevation, slope, snowpack, presence of skiers, etc.). The winter

season starts September 1st of a given year and ends June 30th of the following year, but the major

avalanches in Trentino region occur between November and April with peaks during the months of

February and April. In fact, the latter months are often characterized by snowstorms (February) and

thaw (April) which contribute to increase the level of danger.

In order to better understand the dynamics of the avalanche activity, let’s analyze some of the

more intense avalanche days. Figs. 3 (middle) and 3 (right) represent the space-time distribution of

avalanche events in two different periods: from January 30 to February 2, 1986 and from December 9

to December 12, 1990. While in the first period the avalanche events cover all the Trentino region in

the second period the number of avalanche events are concentrated in the North East part. In both

periods, the avalanche activity lasted 4 days with a spatial clustered distribution for each day. This

means that if an avalanche occurs in a particular site, it is likely that other avalanches occur in the

neighborhood in the same day. As expected, no avalanche occurs at the same site on consecutive days.

In both examples the altitude is a very important variable for the spatial distribution of avalanche

events.

3.1 Space-time patterns

In a space-time analysis, the first task is to check how much the spatial pattern changes over time or,

equivalently, how much the temporal evolution changes as we move in space. If the spatial pattern

does not change in time, we can carry out a simple analysis by analyzing separately the marginal

spatial and temporal patterns rather than considering them jointly. This is so because the under



temporal invariance of the spatial pattern implies that the joint pattern is simply the product of a

marginal spatial pattern and a marginal temporal pattern.

Unfortunately, this is not the case in the point process representing the avalanche. To show this

lack of invariance and, at the same time, to motivate a more complex model, we will use a simple

kernel smoothing estimate of the point pattern intensity in three different time periods. For a purely

spatial point process, the intensity function at locations x is given by

λ(x) = lim
∥∆x∥→0

E (N(∆x))

∥∆x∥

where |∆x| is the area of a small region ∆x centered at x. Our kernel estimates use a correction for

edge effects and it is based on the quartic kernel function.

Figure 4 shows the point pattern of the avalanches on top of the kernel intensity estimate for

data broken up into three periods: from 1981 to 1984, from 1985 to 1988, and from 1989 to 1992. It

is visually distinct the changing spatial pattern. There is an increase in the NW corner and in the E

and NE corners of the map.

Pattern 1 Pattern 2 Pattern 3

Figure 4: Pattern 1 (left): from 1981 to 1984; Pattern 2 (middle): from 1985 to 1988; (c) Pattern 3

(right): from 1989 to 1992. On the background, we draw the kernel estimates of the intensity function

using a quartic kernel function with a border effect correction.

We carried out formal statistical tests to verify this visual impression of a changing spatial pat-

tern. Figure 5 shows the plot of the difference D(r) = K1(r) − K2(r) between a pair of estimated

Ripley’s K-functions (K1(r) and K2(r)), shown as solid lines. The dashed lines show the 95% con-

fidence bands under the hypothesis of equal underlying K-functions. The leftmost plot shows the

difference between the Ripley’s K-functions of patterns from time periods 1 and 2. The second plot

corresponds to the difference between the K-functions from the first and third periods. Finally, the

third plot is that connected with the difference between the K-functions from periods 1 and 3. The

first two D(r) = K1(r) − K2(r) curves lie completely outside the envelopes giving strong statistical

evidence of true difference between the underlying K-function of the initial period with the other two

time periods. The third plot shows that there is not significant difference between the second and

third periods. Therefore, the visual suggestion of Figure 4 that the avalanches intensity increased in

some regions is justified by the data evidence.

This brings a difficulty in terms of modeling and in terms of understanding of the phenomenon.

A good model should allow for a differential change in the spatial pattern as times evolves. It is not

clear which covariate could drive this change other than the longitude. We wonder if the increase of

human presence (traffic, occupation by households or leisure activities) increased in the period in the

regions where the intensity increased. This would indicate that the intensity is likely to have no trend

in time but that the recording of the avalanches increased in those regions. There is some anecdotal
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Figure 5: Test for the difference between two K-functions: periods 1 versus 2 (left), periods 1 and 3

(middle), and periods 2 and 3 (right). Bands of 95% confidence are shown as dashed lines.
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Figure 6: Kernel density of avalanches in time

evidence that leisure business has been initiated more intensively in this region in the 90’s and this

could imply a more intense surveillance of the region.

This difficulty induced a analysis strategy. If we analyze the whole period as a single dataset we

will need to come up with a model for the changing patterns as well as a model for the prediction of

avalanches in steady state situations. We think that this mixing is not healthy and can lead to models

good for one purpose but not for the other. Since our main objective is to propose a predictive method

for avalanches under regular conditions, we decided to break the data into two periods and to analyze

only the the first one, from January 01, 1980 to December 31, 1989, covering 10 years of data. This

is the period that has a reasonably stable spatial pattern. It allows us to study the predictive power

of our methods in a situation that is not changing due to human intervention. Later, in a second

analysis to be pursued elsewhere, we will consider the time evolution of the spatial pattern, specially

its increase in the NE region.

3.2 The temporal pattern

The purely temporal trend can be seen in Figure 6. The deep and seasonal valleys in this intensity

function are due to the spring and summer periods in each year when there is no avalanches. It is

obvious that the mid years had a higher intensity compared to the earlier and the later years. Because

of the near zero intensity in the mid year months, we fitted our models using only the data from

November to April in each year. Therefore, each year is composed by five months only.

3.3 Effect of elevation and slope

Some covariates associated with the avalanches risks are exogenous, in the sense that its occurrence

is not causally affected by the avalanches point process. These covariates are elevation, temperature,

and the slope of the terrain. We are still collecting the data for temperature so we present here a

preliminary analysis.



To explore the possible influence of altitude on the avalanches intensity, we carried out a simple

spatial correlation analysis. First, it should be noted that, for all practical aspects, altitude is constant

during the analysis time frame. Hence, it can not be associated with any temporal changing pattern,

but only with the marginal spatial pattern. For this reason, we considered all point events during the

80’s, irrespective of their time of occurrence. The left hand side in Figure 7 shows the elevation map

with the events pattern superimposed. There is a clear association between the two with more events

clustered on regions of high altitude.
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Figure 7: Maps of elevation (left), slope (center) and maximum nearby slope (right) with the events

pattern superimposed.

On this same Figure, the middle map shows a map of the slope, calculated as the square length

of the gradient vector associated with the tangent plane on the elevation surface at each pixel. The

point pattern is also superimposed in this map. In this case, there is less association between the

events and the slope map than between the events’ intensity and elevation. The explanation is that

slope per se is not the correct variable as the avalanche risk is not linearly related with the terrain

inclination. There is a non-linear association as angles too close to zero or too steep present no risk

of avalanches. As pointed out in section 1, the angle with the horizontal plane must be between 25

and 50 degrees in order to present some avalanches risk. Therefore, we created a binary map with

areas with slopes’ angles within this (25, 50) range marked as white while pixels where the angles are

outside this range are colored in green. We see more matching between the events’ pattern and this

binary map than the slope per se.

3.4 Effect of time varying and endogenous covariates

Maybe the most important predictor for avalanches in the near future at a given location x is the

occurrence of other avalanches in the recent past days in the immediate neighborhood of x. This

variable can be easily collected and be used to forecast future avalanches. Therefore, at each pixel x

and time t, we considered the number of other avalanches in the previous two days that occurred in

a radius of 3.0 kilometers away from x.

4 A forecasting model for avalanches

4.1 Conditional intensity in point processes

Any spatialtemporal point process is uniquely characterized by its conditional intensity function

λ(t, x, y|Ht) given by the limiting conditional expectation

λ(x, y, t|Ht) lim
∆t,∆x,∆y↓0

E[N{(t, t+∆t)× (x, x+∆x)× (y, y +∆y)}|Ht]

∆t,∆x,∆y



provided the limit exists. This is a random function that depends on the prior history, Ht, of the point

process up to time t. Technically, this history is defined as the filtration {Ht : t ≥ 0}, the increasing

and right-continuous family of sigma-algebras determined by all events occurring up to time t plus all

initial conditions. The space-time process is Ht-measurable for every t ≥ 0 and it is said to be adapted

to this filtration. In practice, we can simply assume that Ht represents the set {(ti, xi, yi), ∀i : ti < t}
of all events that occurred previous to t where where ti is the time of i−th event and (xi, yi) is its

spatial location.

The importance of the conditional intensity function is that, if it depends on a vector-valued

parameter β = (β0, β1, . . . , βk) ∈ Rk+1, then the likelihood based on the observed events (ti, xi, yi) for

i = 1, . . . , n is given by

L(β) =

n∏
i=1

λβ (xi, yi, ti|Hti) exp

(
−
∫ ∫ ∫

λβ(x, y, t|Ht) dxdydt

)
(1)

The difficulty to evaluate this likelihood function is the random integral term. When there is a large

dataset and the conditional intensity depends on a complex way of the past events, this can be a hard

task.

The parameter θ is estimated by maximizing the log-likelihood function

l(β) =

n∑
i=1

logλβ (xi, yi, ti|Hti)−
∫ ∫ ∫

λβ(x, y, t|Ht) dxdydt .(2)

The second derivative matrix with respect to θ of the log-likelihood function l(θ) evaluated at the

maximum likelihood estimator can be used in a usual way to derive confidence intervals and hypothesis

tests concerning the parameter values. Therefore, statistical inference is straightforward with the main

difficulties concentrated on the numerical aspects of evaluating the likelihood and its derivatives.

4.2 Conditional intensity models for avalanche risk

In this preliminary analysis, we considered a small number of models that should capture the main

aspects of the avalanche dataset. One first class of models is nonparametric and has separable spatial

and temporal effects. This is given by

λ1a(x, y, t|Ht) = λ(x, y, t) = β0 + β1S(x, y) + β2T (t)(3)

or by

λ1m(x, y, t|Ht) = exp (β0 + β1S(x, y) + β2T (t))(4)

where β is the parameter vector to be estimated. So, one is an additive model while the other is a

multiplicative model. In these models, S(x, y) is a deterministic function of the location (x, y) and it

is estimated by a two-dimensional kernel smoother

S(x, y) =
1

n0

n0∑
j=1

K

(
x− x0j

ϕx

)
K

(
y − y0j
ϕy

)
where K is a suitable kernel function, taken as the quartic kernel in this paper. The function T (t) is a

periodic with trend deterministic function, also estimated by kernel methods using the events’ times.

This function is shown in Figure 6. The determinist aspect of these functions make the conditional

intensity independent of the past, justifying the first equality in (3). To have an identifiable model

and to avoid numerical instabilities, we centered all covariates at zero.

It is likely that this model has less predictive power than other models as it does not incorporate

important additional information. For this reason, we want to use the covariates to improve this model.



Models Intercept S(x) T (t) Elevation Slope Log-Lik

Model 1 0.16017 0.00027 0.01559 NA NA -1803.152

Model2 -0.24441 0.00034 0.07505 0.34093 0.74741 -1815.353

At this moment, we have the elevation E(x) and the binary slope S(x), that do not vary in time and

is available for all points x in the map. We need to add a factor to control for the temporal changes.

This has no fixed parametric shape and we simply allow one arbitrary value for each year. As in the

previous model, we centered the covariates at zero.

Hence, another class of models has an intensity varying only with the exogenous covariates and

the temporal components. We again have λ(x, y, t|Ht) = λ(x, y, t) for these models, a deterministic

intensity function. It is given by

λ2a(x, y, t) = λ1a(x, y, t) + β3E(x) + β4S(x) + β5(year− c)(5)

where c is the mid period date so the linear trend variable is centered at zero. Another version of this

model is the multiplicative form where

λ2m(x, y, t) = λ1m(x, y, t) exp (β3E(x) + β4S(x) + β5(year− c))(6)

We can test for the additional improvement of this model with respect to the first class of models by

means of the difference between the log-likelihood maximum values of each model.

We have one additional covariate, the number of avalanche events nearby each pixel in the

previous days. We made an arbitrary choice concerning the proximity thresholds using 4 days for the

previous history and a radius of 5 km for the distance around each pixel. Of course, the results can

be impacted by different choices and a sensitivity analysis is needed to confirm the findings presented

here. The final class of models we are going to consider are those that include this history of previous

avalanches events in the area near each point. The conditional intensity is a truly random function

that depends on the previous occurrences. Let

H(x, t) =

∫ ∫ ∫
IBx(r)×[t−ϵ,t)(x, y, t)N(dx, dy, dt)

where IA(·) is the indicator function of the set A and Bx(r) is a small disc centered at x and with

radius r. That is, H(x, t) is the number of events from the point process N that are inside the

three-dimensional cylinder Bx(r) × [t − ϵ, t). Clearly, H(x, t) is Ht-measurable. Then, the models

incorporating this previous history are of two types, an additive model,

λ3a(x, y, t|Ht) = λ2a(x, y, t) + β6H(x, t) ,(7)

and its multiplicative version,

λ3m(x, y, t|Ht) = λ2m(x, y, t) exp(β6H(x, t)) .(8)

5 Results and conclusions

In this preliminary report, we did not fit the models (7) and (8). They require a much heavier

numerical work as each time unit (day, in our case) has an associated map with the covariate H(x, t)

that enters the likelihood maximization in each iterative step. We are working on this model and

should have final results soon.

The results for the models 4 and 6 are in Table 5.



The difference between the log-likelihood of these models should be tested against a chi-square

distribution with 2 degrees of freedom.

We expect other covariates to matter, such as temperature and the amount of snow accumulated

in the soil. Both are time varying and should be useful in terms of prediction of avalanche events.

We are in the process of collecting these covariates and we expect to have an extended version of this

paper incorporating these additional information in the near future.

REFERENCES

Ancey, C. (2001). Snow Avalanches. In Lecture Notes in Physics, N.J. Balmforth and A. Provenzale

(Eds), Springer-Verlag, Berlin Heidelberg, Volume 582/2001, Chapter 13, 319-338.

Assunção, R. and Correa, T. (2009). Surveillance to detect emerging space-time clusters. Computational

Statistics and Data Analysis, 53, 2817-2830.

Baggi, S. and Schweizer, J. (2009). Characteristics of wet-snow avalanche activity: 20 years of observa-

tions from a high alpine valley (Dischma, Switzerland). Natural Hazards (50), 97108.

Brillinger, D. R., Preisler, H. K. and Benoit, J. W. (2006), Probabilistic risk assessment for wildfires.

Environmetrics (17) 623633.

Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. Journal of

the Royal Statistical Society: Series B, 63, (4), 823841.

Cressie, N.A. (1993). Statistics for Spatial Data, revised ed. Wiley, New York.

Daley, D. and D. Vere-Jones (1998). An Introduction to the Theory of Point Processes. Springer, NY.

Jomelli, V. and Pech P. (2004). Effects of the little ice age on avalanche boulder tongues in the French

Alps (Massif des Ecrins). Earth Surface Processes and Landforms (29),553564

Jomelli V., Delval C., Grancher D., Escanded S., Brunstein D., Hetu B., Filion L. and Pech P. (2007).

Probabilistic analysis of recent snow avalanche activity and climate in the French Alps. Cold Regions Science

and Technology (47),180192

Laternser M. and Schneebeli M. (2002). Temporal trend and spatial distribution of avalanche activity

during the last 50 years in Switzerland. Natural Hazards (3), 201-230.

Eckert, N., Parent, E., Naaim, M., and Richard, D. (2008). Bayesian stochastic modelling for avalanche

predetermination: from a general system framework to return period computations. Stoch. Env. Res. Risk

Ass., 22, 185–206.

Eckert, N., Parent, E., Kies, R. and Baya, H. (2010). A spatio-temporal modelling framework for assessing

the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the

northern French Alps. Climatic Change (101), 515-553.

Meunier, M. and Ancey, C. (2004). Towards a conceptual approach to predetermining long-return-period

avalanche run-out distances. Journal of Glaciology (50), 268–278.

McClung, D.M. and Mears, A.I. 1991 Extreme value prediction of snow avalanche runout. Cold Regions

Science and Technology (19), 163–175.

Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. An- nals of the Institute

for Statistical Mathematics (50), 379-402.

Peng, R. D., Schoenberg, F. P., Woods, J. (2005). A space-time conditional intensity model for evaluating

a wildfire hazard index. Journal of the American Statistical Association, 100 (469), 26–35.

Schoenberg, F., Chang, C., Keeley, J., Pompa, J., Woods, J., and Xu, H. (2007). A critical assessment

of the Burning Index in Los Angeles County, California. International Journal of Wildland Fire, 16, 473-483.

Straub, D. and Gray-Regamey, A. (2006). A Bayesian probabilistic framework for avalanche modelling

based on observations. Cold Regions Science and Technology (46), 192–203.


