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Abstract

We develop a dynamic duopoly, where �rms have to take into account a
technological externality, that reduces over time their innovation costs,
and an inter-�rm spillover, that lowers only the second comer�s R&D
cost. This spillover exerts its e¤ect after a disclosure lag. We identify
three possible equilibria, which are classi�ed, according to the timing
of R&D investments, as early, intermediate, and late. The intermedi-
ate equilibrium is subgame perfect for a wide parameters range. When
the innovation size is large, it implies that the duopolistic market equi-
librium involves underinvestment. Hence, even in presence of a mod-
erate degree of inter-�rms spillover, the competitive equilibrium calls
for public policies aimed at increasing the research activity. When we
focus on minor innovations �the case in which, according to the ear-
lier literature, the market equilibrium underinvests �our results imply
that the policies aimed at stimulating R&D have to be less sizeable
than suggested before, despite the presence of an inter-�rm spillover.
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1 Introduction

Understanding �rms�decision to innovate is of fundamental importance to
provide policy advice aimed at maximizing welfare. The �rms�decisions are
driven by their incentives; hence the market structure in which �rms operate
plays a crucial role in determining the pace of technical progress. Because
oligopoly is the most widespread market con�guration, the attention that it
has attracted is far from being surprising.

Some early oligopoly models, such as Loury (1979) and Lee and Wilde
(1980), assume that a new technique becomes suddenly available, and trig-
gers the industry investment in R&D. The competitive pressure induced by
the market structure implies that the equilibrium involves an R&D invest-
ment that is higher than the social optimum.1

More recently, many contributions adopt a di¤erent approach, in which
the R&D cost shrinks over time thanks to general advances in knowledge and
technology. Fudenberg and Tirole (1985) �building on Reinganum (1981)
�provide the prototype framework for this literature, which is excellently
surveyed by Hoppe (2002). Fudenberg and Tirole identify two possible mar-
ket equilibria: an early and a late one. Two driving forces characterize the
equilibria: the length of the follower�s strategic delay, and the intensity of
the competitive pressure, which leads to rent equalization.

In the early equilibrium, the second innovator delays his decision to
invest for a relatively long period. This choice is driven by the desire to
grasp the bene�t of technical progress, that reduces the innovation cost
as time goes by. The follower�s optimal choice implies a long competitive
advantage period for the innovator leader, which favors the latter�s payo¤
at the expenses of the former�s one. Hence, to avoid preemption, the �rst
mover invests �very soon�.

In contrast, a late equilibrium arises once technical progress has sub-
stantially reduced the innovation costs, so that an innovation leader cannot
emerge, because the rival would immediately copy her decision. In this case,
any innovator �anticipating that there will be no leadership �waits until her
choice maximizes the joint discounted stream of net pro�ts. The collusive

1This result can partially be ascribed to the tournament nature of the models proposed
by Loury and by Lee and Wilde. Delbono and Denicolò (1991) �nd that the equilibrium
R&D e¤ort can be lower than the social optimum when instead the innovation is non-
drastic. This happens when the marginal cost of the innovation is low.
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�avour of this equilibrium is apparent: accordingly, Fudenberg and Tirole�s
analysis implies that this type of market equilibrium underinvests. Instead,
when the early equilibrium prevails, the R&D investment is socially exces-
sive. Their contribution also suggests that the early equilibrium is subgame
perfect when the size of the innovation is large. In this case, in fact, the per
period �rst innovator pro�ts are considerable, which triggers the preemptive
behavior.

When the oligopolistic competition is driven by the innovative activity,
inter-�rm spillovers play an important role. In fact, they alter the length of
the follower�s strategic delay, and hence the leader�s cost advantage period.
The importance of spillovers for R&D is discussed in De Bondt (1996),
who provides many reference to earlier contributions, which, however, adopt
static even if multi-stage frameworks.

In our duopoly game, �rms, in addition to the standard technological
externality, take into account a spillover that lowers the second comer�s in-
novation cost.2 This spillover exerts its e¤ect after a time period which we
label �disclosure lag�.3 In our set-up, a third type of equilibrium arises in
addition to those identi�ed in the previous literature. We label it as inter-
mediate, since the decisions to innovate take place, for both �rms, at dates
positioned between the early and the late ones. This happens because the
�rst innovator knows that the second comer will exploit the spillovers as soon
as the relevant information is obtained, i.e. exactly at the end of the dis-
closure lag. Because in the early equilibrium the follower waits more than
the disclosure lag, the leader�s competitive advantage period is shorter in
the intermediate equilibrium than in the early one. This harms the leader�s
discounted pro�ts, but the follower is bene�ted. Therefore the competitive
pressure�that leads to rent equalization�is weaker than in the early equi-
librium, and does not force the leader to invest �very soon�. However, the
competitive pressure is high enough to avoid a late equilibrium.

We select the equilibrium for the overall game by applying the subgame

2The presence of an inter-�rm spillover assimilates our model to the framework pro-
posed by Katz and Shapiro (1987). However, they introduce an extreme form of techno-
logical spillover, assuming that, in a duopoly, the follower can adopt at no cost the new
technology as soon as the leader has invested. This hypothesis induces the possibility of
a second mover advantage. A similar approach is followed in Dasgupta (1988).

3The literature following Mans�eld (1985) quanti�es the imitation lag. In particular,
Cohen et al. (2002) estimate this lag for the US and for Japan.
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perfection criterion, and we �nd that the intermediate equilibrium is par-
ticularly relevant because it is the prevailing one for a large range of the
parameters set. Notice that � in our framework � the natural indicators
of an highly competitive environment, namely an equilibrium with R&D
di¤usion and rent equalization, do not imply that the R&D investment is
excessive from the social planner�s perspective.

The intermediate equilibrium implies that the duopolistic market equilib-
rium involves underinvestment also when the innovation size is large. Hence,
even in presence of a moderate degree of inter-�rms spillover, the compet-
itive equilibrium calls for public policies aimed at increasing the research
activity.

When we focus on minor innovations, the equilibrium we describe is more
realistic than the late one, which is characterized by simultaneous adoptions,
a phenomenon seldom observed in the real world. Notice that, with minor
innovations �the case in which, according to the earlier literature, the mar-
ket equilibrium underinvests �the prevalence of the intermediate equilibrium
imply that the policies aimed at stimulating R&D have to be less sizeable
than suggested before, despite the presence of an inter-�rm spillover.

To understand why the intermediate equilibrium is subgame perfect,
consider �rst the case of an innovation of moderate size. In this situation,
when the spillover is (relatively) high, the follower grasps (relatively) large
bene�ts from investing at the end of the disclosure lag, so that he �nds
optimal to select this strategy for a long time interval. This makes the
leader unwilling to wait until the late equilibrium prevails, which gives rise
to the intermediate equilibrium. When, instead, the spillover is very low, the
subgame perfect equilibrium is the late one, because the �immediate reply�
strategy for the follower becomes optimal at earlier dates.4 In contrast,
when the innovation size is large, an early equilibrium may emerge, because a
major innovation, bringing a large cost advantage to the leader, enhances her
incentive to be �rst. However, due to the reduction in innovation costs, the
higher the spillover, the sooner is the second comer optimal investment date
in reply to an early leader�s investment. This reduces the leaders�e¢ ciency
advantage period, leading to the dominance of the intermediate equilibrium.
Moreover, a (relatively) high spillover increases the second comer�s payo¤

4As in the previous literature, a small cost reduction, implying a weak incentive to
innovate �rst, does not give rise to a equilibrium with preemption.
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in the intermediate time interval, and this softens the leader�s preemption
incentive to invest. This milder competition implies higher payo¤s for both
�rms in the intermediate equilibrium.

These results, being driven by the assumption of an inter-�rm spillover
coupled with the one of a disclosure lag, di¤er from the ones already obtained
in the literature. In fact, Riordan (1992) focuses on the early equilibrium,
and analyses the impact of price and entry regulations on the timing of
adoption. Because these regulatory schemes tend to reduce the �rst innova-
tor�s rents, they are likely to delay the early adoption, which can be socially
bene�cial.

Stenbacka and Tomback (1994) analyze the role of experience, which
implies that the probability of successful implementation of an innovation
is an increasing function of the time distance from the investment date.
As for welfare, they show that a collusive adoption timing may improve
welfare when compared with the market equilibrium. This happens when
the pace of technical progress is fairly high: when this is the case, a collusive
adoption is bene�cial because the industry can fully take advantage of the
reduction of innovation cost. In contrast, a competitive market equilibrium,
being driven by the incentives to obtain a strategic advantage, induces a
premature adoption.

In Hoppe (2000) �rms are uncertain about the pro�tability of the inno-
vation. Her framework di¤ers from the one by Fudenberg and Tirole, thanks
to the presence of a technological uncertainty, which induces an asymmetry
between the leader and the follower. The latter observes the leader�s out-
come, and hence becomes aware about the actual pro�tability characterizing
the new technique. This informational spillover may bring about a second-
mover advantage. Moreover, an high probability of failure induces a late
simultaneous adoption because it curtails the �rst mover expected payo¤.
When the late equilibrium is subgame perfect, Hoppe �nds that an earlier
simultaneous adoption would be welfare increasing, while the result are less
de�nite when the early equilibrium prevails.

Weeds (2002) presents a tournament version of Fudenberg and Tirole
(1985), in which pro�ts evolve stochastically. She suggests that the early
(late) equilibrium over(under)-invests; however the late equilibrium is closer
to the social optimum than the early one.

The paper proceeds in the standard way. In Section 2 we present our
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model. In Section 3 we discuss the equilibrium concept adopted in the
analysis and we compute the di¤erent market equilibria, in which �rms
compete both in the innovation and in the product stages. Then, sub-game
perfectness is invoked as a selection device among market equilibria. In
Section 4 we spell out the welfare implications of our analysis. Concluding
comments in Section 5 end the paper.

2 The model

2.1 The production stage and its welfare implications

We consider an industry composed of two �rms, 1 and 2, which, in each
(in�nitesimally short) period, are involved in a two�stage interaction: �rst
they decide whether to innovate or not, and then they compete à la Cournot.
Time is continuous and �rms� horizon is in�nite. Firms discount future
pro�ts at the common rate r. Market demand is linear and equal to: P =
a � bQ, where P is the market clearing price and Q = q1 + q2 is the total
quantity supplied. Each �rm has a unit cost of production c.

The R&D cost evolves over time.5 In each period t �rm i (i = 1; 2)
decides whether to invest in R&D or not. This investment immediately
yields a cost-reducing process innovation, which shrinks the unit production
cost by an amount x, with x < c. Hence �rm i�s post�innovation production
cost is C(qi) = (c� x)qi.

Each �rm�s payo¤ will depend not only on its adoption date but also on
its rival�s one. If both �rms have not invested up to period t, their individual
pro�ts in the Cournot sub-game at t are those of the pre�innovation stage,
i.e.

�00i =
A2

9b
; (1)

where A = a � c: The superscript f00g indicates that both �rms do not
innovate at t: The instantaneous welfare (computed à la Marshall) is then
equal to:

5The functional forms and dynamics for the �rms�R&D costs are modeled in Section
2.2.
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W 00 =
4

9

A2

b
: (2)

If instead only one �rm, say �rm 1; invests in R&D at t, it bene�ts of
an e¢ ciency advantage, and obtains a higher market share. The market
price at t decreases in comparison with the pre-innovation level, while the
individual pro�ts become:

�101 =
(A+ 2x)2

9b
;�102 =

(A� x)2
9b

; (3)

where f10g indicates that �rm 1 has invested in R&D while �rm 2 has not.
Notice that �101 > �102 ; �

10
1 > �001 and �102 < �002 : Because q

20
2 = A�x

3b ;

to preserve the duopolistic structure characterizing our market we need to
introduce:

Assumption 1: A > x.
This hypothesis implies that, in a Cournot environment, the cost-reducing

innovation is non�drastic (see, Denicolò (1996)). In case of asymmetric be-
havior at t, welfare is:

W 10 =
8A(A+ x) + 11x2

18b
; (4)

with W 10 > W 00:

Finally, we need to compute the outcomes when both �rms have inno-
vated at instant t. In this case they, being more e¢ cient, they both produce
more than in the status quo; therefore, the market price is lower. Individual
pro�ts at t are:

�11i =
(A+ x)2

9b
; (5)

where the superscript f11g indicates that both �rms have innovated.
Obviously, �101 > �111 ; notice, moreover, that the di¤erence between �

10
1

and �111 is increasing in x: when only one �rm enjoys a cost advantage, she
obtains a larger market share while bene�ting from an higher price to cost
margin.

When both �rms have innovated, the social welfare is:

W 11 =
4(A+ x)2

9b
; (6)
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with W 11 > W 10 (by Assumption 1).
When �rms simultaneously invest in R&D, individual pro�ts rise from

(1) to (5) and welfare jumps from (2) to (6). Alternatively, �rms may behave
asymmetrically, so that there are both an innovation leader and a follower.
Under these circumstances individual pro�ts �rst increase from to (1) to (3)
(and welfare from (2) to (4)) and then from (3) to (5) (and welfare from (4)
to (6)).

2.2 R&D costs

In our set-up, �rms decides whether to invest in a �xed-size research project.
For the �rst �rm investing in R&D, the innovation cost evolves over time
according to the following equation:

C1(t1) = 
xe
��(t1�t0); for t1 2 [t0;1); (7)

where t1 is the calendar time when the �rst �rm has introduced the inno-
vation. Hence, we are assuming that the innovation becomes technically
feasible at time t0 at a cost, 
x, which then decreases at the constant rate
� � 0; thanks to the advances in pure research and to the availability of new
results obtained in related �elds. Of course, this form of technical progress
is exogenous to any single �rm. We assume that the initial cost is very high
so that no �rm �nds pro�table to innovate at t0: It is clear from (7) that, if
a �rm innovates in period t, R&D costs are sunk at that time.

As for the second �rm introducing the innovation, the cost evolution is
described by the following equation:

C2(t2) =

�

xe��(t2�t0) for t2 2 [t1; t1 +�)
(1� �)
xe��(t2�t0) for t2 2 [t1 +�;1)

; (8)

where � 2 [0; ��] is an inter-�rm spillover parameter, �� < 1;6 and � is the de-
lay needed to grasp the bene�t stemming from the rival�s innovative activity.
Hence, � is the exogenously determined disclosure lag.

Notice that � must be strictly lower than unity: with � = 1, the follower �
bearing no innovation cost �would always invest at the end of the disclosure

6 If � were equal to unity, the follower would not bear any innovation cost, therefore he
would always invest at the end of the disclosure lag. Hence, this (irrealistic) particular
case would deliver trivial results.
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lag. Hence, this (irrealistic) particular case would deliver trivial results. In
particular, to make the problem interesting, we introduce the following:

Assumption 2: �� � max
�

x
A+x ; 1�

4A
6A+3x

�
1 + r

�
2A+3x
6A+3x

� �
r

�
:

The purpose of this assumption is to allow for su¢ ciently high spill-over
levels, which makes the discussion more interesting.

Whenever � > 0 the innovation is only partially appropriable: the sec-
ond comer enjoys a reduction in R&D costs by imitating his competitor at
t2 � t1 + �.

7 In our formulation, it takes time to imitate an innovation:
in his classic study, Mans�eld (1985) reports that in 59% of cases the in-
novator�s rival knows the relevant information in more than twelve months.
More recently, Cohen et al. (2002) compute that the average adoption lag
for unpatented process innovation is, respectively, 2.03 and 3.37 years in
Japan and in the US. An obvious but important consequence of our as-
sumption is that the introduction of an innovation grants to the leader a
cost advantage (and hence higher pro�ts) for a time period equal to �. We
stylize an extremely simple form of spillover: it would have been preferable
to consider a stochastic inter-�rm spillover, in which the probability of in-
formation di¤usion depends upon the time elapsed from the introduction
of the innovation and on the follower�s imitation e¤ort. However, even the
simplest stochastic formulation�namely the one involving a constant proba-
bility of information di¤usion�precludes the attainment of explicit results.8
Hence, our formulation has been chosen as the optimal compromise between
analytical tractability and �realism�.

In what follows we will restrict the values for � and 
: In particular, we
now introduce the following technical assumptions:

Assumption 3: � � �� = 1
r ln

�
1 + r

�
2A+3x
6A+3x

�
;

Assumption 4: 
 � �
 = 4A exp(� ��)

9b(r+�)(1���) :

The purpose of Assumption 3 is to limit the number of cases that we need

7 In principle, it is possible to endogenize the spillover: for example we could have
followed Jin and Troege (2006), which suggest that � can be raised by �rms, paying a
convex imitation cost. Nevertheless, we preferred not to pursue this potential development
of the model, because our framework, due to its dynamic nature, is already fairly complex:
any further complication would have required a much heavier use of numerical techniques
to determine and select the equilibrium.

8We do not judge a constant probability of information disclosure an improvement upon
our formulation, since the sparse empirical evidence available suggests that the probability
of successful imitation increases over time.
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to consider. To verify that Assumption 3 does not restrict � to values too
short to be sensible, we compute �� when x approaches 0 (since this choice
lowers ��); the annual interest rate is 0.03, and � = {0.01, 0.05, 0.09}.9

With these values, �� becomes, respectively, equal to {23.105, 6.077, 3.512}.
Hence, the restriction implied by Assumption 3 is realistic in most contexts.
From the vantage point of economic analysis, a low � is interesting, because
it makes relevant the role of the inter-�rms spillovers.

Assumption 4 guarantees the existence of all the three types of equilibria
in the space [0; ��] x [0; ��]:

3 The market equilibria

In this Section we discuss the equilibria in the non-cooperative R&D game.
To this purpose, we �rst explain the equilibrium concept adopted to solve
the model. Because the payo¤ functions will not, in general, be single-
peaked, we have to deal with the existence of multiple equilibria. We shall
divide time in three sub-intervals, in such a way that in each interval the
equilibrium is unique. We will then select the globally unique equilibrium
referring to the concept of subgame perfectness.

3.1 The equilibrium concept

As already mentioned, in our set-up only one research project is available to
the �rms: hence, the choice to innovate at time ti is an irreversible stopping
decision. Therefore, our model belongs to the class of symmetric timing
games, which can be divided into two sub-classes, depending upon which
�rm (the one that moves �rst or the one that moves second) obtains the
higher payo¤.

We can make this point more precise, by assuming for the moment that
we have exogenously assigned the task of moving �rst to one of the two
�rms. In this case, there is a �rst mover advantage if the �rm that must
move �rst obtains the higher payo¤. If, instead, the �rst mover obtains the
lower payo¤, there is a second mover advantage. Obviously the �rst mover is

9These values for � have a relevant economic interpretation that will become apparent
later.
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assumed to behave optimally, choosing the innovation time that maximizes
its payo¤, given the second mover optimal choice.

To deal with �rst mover advantage games, we drop the hypothesis of
exogenously assigned roles and we follow Hoppe and Lehman-Gruber (2005)
assuming that:

Assumption 5: If the two �rms are indi¤erent between being the �rst or
the second mover at any date t, then the role of the leader is played by the
�rm with a female CEO10 and the role of the follower is played by the other
�rm, which is run by a male CEO.

Assumption 5 is used to rule out, as it happens in most of the literature,
the possibility of coordination failures as an equilibrium outcome. In other
words, �rms do not choose to move at the same instant of time if they know
that they would regret this choice afterwards. 11

The logic to obtain the unique sub-game perfect equilibrium in �rst-
mover advantage games can be described by exploiting Panel (a) in Figure
1. The payo¤ function V1(t1; T

�
2 ) gives �rm�s 1 net pro�ts when she invests at

time t1; while the rival invests at time T
�
2 ; these pro�ts are discounted back

to time t0 for convenience. V2(t1; T
�
2 ) gives �rm�s 2 discounted payo¤ when

he invests at time T �2 ; while the �rst invests at time t1: Because V1(t1; T
�
2 )

is single-peaked at t1 = T �1 ; the �rst �rm would like to move �rst at T �1 :
But the roles of innovation leader and follower are not pre-assigned. Hence,
when the second �rm knows that the other will adopt at time T �1 , it is in his
interest to preempt at time T �1 � dt. By backward induction, we conclude
that the equilibrium strategy for the �rst innovator is to invest as soon as
the leader�s payo¤ is equal to the follower�s one (i.e. at T

¯ 1
). (Assumption

5 grants us that the �rst innovator is actually �rm 1.) Notice that the
preemption argument spelled out above yields equal payo¤s to the two �rms
in the subgame perfect equilibrium. Hence, in this case the equilibrium
involves what is often referred to in the literature as rent dissipation.

[Figure 1 about here]

In dealing with second mover advantage games, we rely again on Hoppe
10Say �rm 1, which will henceforth be referred to as if it were a female.
11From a technical standpoint, � as Hoppe and Lehman-Gruber (2005) remark � an

equilibrium involving coordination failures cannot be obtained in the case of a continuous-
time game without a grid, in which equilibria are de�ned to be the limits of discrete-time
mixed strategies (Fudenberg and Tirole, (1985) and (1991)).
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and Lehman-Gruber�s analysis. In this case, they assume that the equilib-
rium is driven by expectations and make the following hypothesis:

Assumption 6: Whenever the innovation leader payo¤ is lower than the
second comer�s, �rm 1 believes that �rm 2 never enters �rst.

The logic to obtain the unique sub-game perfect equilibrium in this case
can be explained by means of Panel (d) in Figure 1. V1(t1; T

�
2 ) is single-

peaked at t1 = T
�
1 ; moreover, the V1(t1; T

�
2 ) curve lies below the V2(t1; T

�
2 )

curve for any t1 � T �1 : Hence �rm 1 chooses t1 = T
�
1 (the date granting her

the highest possible payo¤) while no �rm has an incentive to preempt its
rival before date t1:

Assumption 6 (and therefore the equilibrium it implies) may seem ar-
bitrary. In fact, it rules out the mixed-strategies equilibria, often referred
to as a war of attrition (Fudenberg and Tirole (1991)). However�if we re-
ject Assumption 6�our �rms would start to randomize at T �1 , obtaining, in
every instant of time an expected payo¤ equal to the leader�s one. Hence,
the rejection of Assumption 6 leads �in the second mover advantage cases �
to the attainment of equilibria implying later adoption dates but the same
expected payo¤ than the one we study. In what follows, we shall highlight
that this acts against our preferred result.

3.2 Alternative market equilibria

In the next Sub-sections, we divide the time line [t0;1) into three sub-
intervals, in which three di¤erent equilibria arise.

When the innovation leader decides to invest �very early�, the follower�s
optimal strategy is to wait more than � periods before imitating the leader.
This gives rise to an early equilibrium, which will be analyzed in Sub-section
3.2.1.

We then consider the equilibrium that arises when the innovation leader
delays her innovation, so that the follower�s optimal choice is to invest ex-
actly � periods after the leader, grasping the inter-�rm spillover as soon as
possible. We shall refer to this situation as the intermediate equilibrium,
which will be analyzed in Sub-section 3.2.2.

Finally, the innovation leader may decide to invest �very late�. In this
case, the R&D cost is so low that it is optimal for the second �rm to imme-
diately enter upon the rival�s investment, without exploiting the inter-�rm
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spillover. An equilibrium with these characteristics is labeled the late one
and it will be discussed in Sub-section 3.2.3.

We denote by V1(t1; t2) the discounted stream of future pro�ts obtained
by the �rst �rm investing at t1 while her rival sinks the innovation cost at
t2, that is:

V1(t1; t2) =

Z t1

t0

�001 e
�r(t�t0)dt+

Z t2

t1

�101 e
�r(t�t0)dt+ (9)

+

Z 1

t2

�111 e
�r(t�t0)dt� C1(t1)e�r(t1�t0):

Accordingly, the second �rm�s payo¤ is:

V2(t1; t2) =

Z t1

t0

�002 e
�r(t�t0)dt+

Z t2

t1

�102 e
�r(t�t0)dt (10)

+

Z 1

t2

�112 e
�r(t�t0)dt� C2(t2)e�r(t2�t0):

3.2.1 The early equilibrium

By investing early, the leader incurs a high innovation cost (equation (7)),
because pure research has not yet provided many results upon which to
build upon. The high innovation cost is the reason why the follower prefers
to invest with a delay longer than � years: in fact, if he waits more than �,
he not only nets the bene�ts from imitation, but he can also grasp relevant
additional gains from pure research, which is still producing results that are
quantitatively important for reducing the R&D cost.

Maximizing (10) with respect to t2; we obtain the follower�s optimal
choice, which is to invests at

T �2 = t0 �
1

�
ln

�
4A

9b
(r + �)(1� �)

�
: (11)

The above solution applies when the leader sinks the costs at t1 � T �2��,
hence, an early equilibrium exists for t1 2 [t0; T �2 ��]:12

The comparative statics on T �2 gives sensible results. In particular, the
higher the inter-�rms spillover, the sooner the second comer invests: a high
12 It is easy to show that Assumption 3 guarantees that T �2 �� � t0 for any � 2 [0; ��]:
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� reduces� ceteris paribus�the follower�s costs and therefore anticipates his
investment date.13

Having quali�ed the follower�s optimal investment timing, we analyze
the leader�s behavior. It is important to distinguish the situations leading
to a �rst mover advantage from those implying a second mover advantage.

We �nd that our timing game is of the �rst mover advantage type in two
cases. First, it belongs to this sub-class when the leader�s payo¤ function
V1(t1; T

�
2 ) has an inverted-U shape, and, at the unique local maximum for

V1(t1; T
�
2 ); i.e. at

T �1 = t0 �
1

�
ln

�
4(A+ x)

9b
(r + �)

�
; (12)

we have that V1(T �1 ; T
�
2 ) > V2(T

�
1 ; T

�
2 ): The second case arises when V1(t1; T

�
2 )

and V2(t1; T �2 ) are increasing in [t0; T
�
2 ��], and V1(T �2 ��; T �2 ) � V2(T �2 �

�; T �2 ):

Figure 1, panel (a), portrays the �rst sub-case, for which the equilibrium
is obtained applying the preemption argument; hence, we conclude that
the equilibrium strategy for the �rst innovator is to invest as soon as the
leader�s payo¤ is equal to the follower�s one (at T

¯ 1
� T �1 in panel (a)). In

the Appendix, it is shown that this case applies when � � minf~�; �0(�)g;
i.e. in area A in Figure 2.14 To grasp the intuition for this result, bear
in mind that the U-shape of the leader�s payo¤ function is determined by
two opposing forces. An increase in the leader�s adoption time induces a
reduction in her innovation cost, which increases V1(t1; T �2 ), but implies also
a shortening in her e¢ ciency advantage period, which reduces V1(t1; T �2 ).

13An increase in A or a decrease in b induce an expansion in per-period pro�t and hence
they anticipate the second comer�s decision to innovate; an increase in 
 or in r delays his
investment decision, because the innovation is more costly or the future pro�ts are more
heavily discounted. The technical progress parameter � plays a twofold role: on the one
hand, its increase implies that, at any date t2, the innovation costs are lower, which calls
for an earlier investment; on the other hand, a faster reduction in innovation costs may
induce a �rm to wait because it knows that the cost will quickly become smaller. With a
low spillover, the �rst direct e¤ect prevails over the second indirect one; in contrast, when
� is high, the impact of an increase in � on T �2 may well be positive for realistic parameter
values.
14The restriction � � �0(�) � 1 � A

A+x
e�� grants that the inequality T �1 � T �2 �� is

satis�ed, which implies an inverted-U shaped �rst mover�s payo¤ function. The condition

� � ~� � 1� A
A+x

h
1 + 4xr

�3(2A+x)+r(2A�x)

i �
r
implies that V1(T �1 ; T

�
2 ) � V2(T �1 ; T �2 )).
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When t1 is relatively low; the former e¤ect dominates the latter because
the cost reduction induced by the technological externality is quantitatively
relevant. A low � allows for the typical inverted-U leader�s payo¤ function
because, when � is low, T �2 is large. In fact, a low �, implies an high follower�s
costs, and hence postpones his optimal investment date, which gives room
for the second e¤ect to prevail.

[Figure 2 about here]

The second sub-case is represented in Figure 1, panel (b), which high-
lights a preemptive equilibrium at fT

¯ 1
; T �2 g: In this case, the inter-�rm

spillover parameter � is above the threshold �0(�); so that the �rst innova-
tor�s payo¤ does not reach an internal maximum in the interval [t0; T �2 ��];
but it is below the threshold �00(�); which implies V1(T �2 ��; T �2 ) � V2(T �2 �
�; T �2 ).

15 Hence, when � 2 (�0(�); �00(�)); i.e. in area B in Figure 2, there is
a �rst mover advantage in some left interval of T �2 �� and the preemption
argument applies. The spillover is high enough to make T �2 su¢ ciently small
that V1(t1; T �2 ) does not reach its maximum in [t0; T �2 � �]: However, � is
still small enough that the �rst mover payo¤ is higher than the follower�s
one in a large sub-interval of [t0; T �2 ��]:

We now need to discuss two cases in which our timing game is of the
second mover advantage type. First, we have a second mover advantage
game when V1(t1; T �2 ) and V2(t1; T

�
2 ) are increasing but V1(T

�
2 � �; T �2 ) <

V2(T
�
2 � �; T �2 ): In the second case, the leader�s payo¤ function V1(t1; T �2 )

has an inverted-U shape, but V1(T �1 ; T
�
2 ) < V2(T

�
1 ; T

�
2 ):

Figure 1, panel (c), depicts the �rst second mover advantage sub-case.
Here, the inter-�rm spillover parameter � is above the thresholds �0(�) and
�00(�) so that the �rst innovator�s payo¤ does not reach a maximum in the
interval [t0; T �2 � �]; and V1(T �2 � �; T �2 ) < V2(T

�
2 � �; T �2 ). In words, �

is su¢ ciently high that even the optimal timing for the �rst mover yields
her a payo¤ that is lower than the follower�s one. Assumption 6 implies
that the �rst �rm�s equilibrium adoption date is T �2 ��: This happens for
� > maxf�0(�); �00(�)g; i.e. in area C in Figure 2.

Finally, Figure 1, panel (d) portrays the case in which � is between ~� and
�0(�): the spillover is such that the �rst adopter payo¤ function reaches a
15 In the Appendix we show that V1(T �2 � �; T �2 ) = V2(T

�
2 � �; T �2 ) implies �00(�) �

1� 4Are(r+�)�

(r+�)(6A+3x)(er��1)+4Ar :
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maximum in [t0; T �2 ��]; (because � � �0(�)); but its maximum is below the
corresponding follower�s payo¤ (because � > ~�): In this case, being � small,
the leader�s payo¤ function is U-shaped even if the spillover parameter is
relatively high. However, � is high enough to guarantee that, even at T �1 ,
the �rst mover enjoys a payo¤ that is lower than the follower�s one. Again,
Assumption 6 implies that the �rst �rm�s equilibrium adoption date is T �1 :
In Figure 2, the Area, where this case applies is D.

The above arguments are formally presented in:

Proposition 1

When Assumptions 2, 3 and 4 are satis�ed, for t1 2 [t0; T �2 ��];
(a) if � 2 [0;minf~�; �0(�)g] the unique sub-game perfect equilibrium is

fmaxfT
¯ 1;
t0g; T �2 g; where T¯ 1 is the earliest adoption date for the �rst �rm,

such that, V1(T¯ 1
; T �2 ) � V2(T¯ 1; T

�
2 );

(b) if � 2 (�0(�); �00(�)]; the unique sub-game perfect equilibrium, is
fmaxfT

¯ 1;
t0g; T �2 g;

(c) if � 2 (maxf�0(�); �00(�)g; ��); the unique sub-game perfect equilib-
rium is fT �2 ��; T �2 g;

(d) if � 2 (~�; �0(�)]; the unique sub-game perfect equilibrium is fT �1 ; T �2 g:

Proof: See the Appendix.

3.2.2 The intermediate equilibrium

We now analyze what happens when the innovation leader invests after
T �2 ��:

When t1 > T �2 ��; the follower�s choice is among to copy immediately,
to wait less than �; and to wait exactly � before investing (to grasp the
inter-�rm spillover).16 We de�ne �T as the �rst date such that the second
�rm payo¤ gained by the �immediately following�strategy, becomes as high
as the payo¤ granted by the decision of waiting � periods before investing
in R&D. When t1 < �T ; the follower�s optimal choice is to wait exactly �
periods before innovating. In fact, the innovation cost is still high enough

16Waiting more than � can never be optimal for the follower, just because such strategy
calls for an investment at T �2 as a reply to a leader�s investment set up at t1 2 [t0; T �2 ��].
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that it is convenient for the follower to let the spillover reduce his R&D costs
even if this choice grants to the leader an e¢ ciency advantage for � periods.

Again, the nature of the equilibrium depends on the values taken by �
and by the spillover parameter �:

A high � (i.e. � 2 (�000(�); ��)17), grants to the follower a second mover
advantage for a large sub-interval of (T �2 � �; �T ]: In fact, if t1 is close to
T �2 ��; the leader bears an high innovation cost. Hence, the large spillover
induces a second mover advantage because its relevant size more than com-
pensates for the �rst innovator�s e¢ ciency advantage. When t1 is not too
far from �T , the technological externality has already made the innovation
cost rather low: this weakens the role of the inter-�rms spillover, leading
to a �rst mover advantage. This case is portrayed in Figure 3, Panel (a).
By Assumption 6 the unique equilibrium is fT̂1; T̂1 +�g; with T̂1 being the
maximum for V1(t1; t1 +�) in the interval t1 2 [T �2 ��; �T ]:

[Figure 3 about here]

When � 2 (�00(�); �000(�)]; the spillover parameter � is su¢ ciently low
to guarantee the existence of a �rst mover advantage in a large portion of
(T �2 ��; �T ]: This case is depicted in Figure 3, panel (b): in comparison with
the case in panel (a), the reduction in � has shifted downward the follower�s
payo¤ function, inducing the existence of a preemption equilibrium at the
intersection point T ip1 : There, the payo¤s for the two �rms are identical. In
fact, in this equilibrium the advantage in production costs, enjoyed by the
leader for� periods; is exactly compensated by the lower R&D costs granted
to the innovation follower by the joint e¤ects of the inter-�rm spillover and
of the technological externality.

When � 2 (0; �00(�)]; the imitation bene�t is small and the �rst �rm
payo¤ is always larger than the second �rm�s one. Panel (c) in Figure 3
depicts the behavior for the payo¤s functions, which allow to conclude that in
the interval (T �2 ��; �T ]; the equilibrium is a mixed strategy one.18 However,
such a mixed strategy equilibrium, cannot be subgame perfect when we

17With �000(�) = min
n
1; 1� [4Ar+�(6A+3x)](e�r��1)+r(2A+x)

re�(r+�)�[4(A+x)�(2A+3x)e�r�]

o
. Bear in mind that a bit

of algebra shows that �000(�) > �00(�); as depicted in Figure 2.
18 In this equilibrium, �rms start randomizing at T �2 ��:
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consider the whole interval [t0;1);19 and therefore it is not relevant for our
discussion.

The above arguments are summarized in:

Proposition 2

Let �T = t0 � 1
� ln

�
4A(1�e�r�)

9br
[1�(1��)e�(r+�)�]

�
:

When Assumptions 2, 3 and 4 are satis�ed, in the interval t1 2 (T �2 �
�; �T ];

(a) if � 2 (�000(�); ��); the unique sub-game perfect equilibrium is fT̂1; T̂1+
�g; where:

T̂1 = t0 �
1

�
ln

�
4(A+ x)� (2A+ 3x)e�r�

9b
(r + �)

�
;

(b) if � 2 [�00(�); �000(�)] the unique sub-game perfect equilibrium is
fT ip1 ; T

ip
1 +�g; where:

T ip1 = t0 �
1

�
ln

�
3(2A+ x)(1� e�r�)

9br
[1� (1� �)e�(r+�)�]

�
: (13)

(c) if � 2 [0; �00(�)); there is no pure strategy equilibrium in the interval
[T �2 ��; �T ]:

Proof: See the Appendix.

�T is raised by an increase in the inter-�rm spillover: in fact, a more
relevant bene�t from imitation postpones the undertaking of a line of action
that prescribes the forsaking of the bene�t itself.20

More interestingly, we see from (13) that in case (b) an increase in the
inter-�rm spillover delays the equilibrium. This happens because the equi-
librium fT ip1 ; T

ip
1 + �g is preemptive: the �rst innovator sinks the R&D

costs as soon as her payo¤s becomes larger than the rival�s one. Because an
higher � bene�ts the follower, it also softens the incentive to invest for the
leader and hence mitigates the competitive pressure.
19 In fact any �rm starting to randomize at T �2 �� would be preempted in the earlier

interval (consider Figure 1, panels (a) and (b), with Figure 3, panel (c), bearing in mind
that the payo¤ functions are continuous at T �2 �� and at T �2 ; respectively).
20Apart from the e¤ect of �; the comparative static for �T is quite similar to the one for

T �2 :
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We conclude this Sub-section by jointly discussing the results obtained
in Propositions 1 and 2, which allow us to select the equilibrium in the whole
interval [t0; �T ] for most parameters con�gurations.

When � > maxf�0(�); �00(�)g; which is in area C of Figure 2, the inter-
mediate equilibrium is the one described in Proposition 2, parts (a) and (b)),
while, in the interval [t0; T �2 ��]; the equilibrium is fT �2 ��; T �2 g (Propo-
sition 1, part (c)). Since V1(t1; t1 + �) is increasing in the whole interval
t1 2 (t0; T �2 � �] (Figure 1, panel (c)); the intermediate equilibrium is the
subgame perfect one in the interval [t0; �T ]: there is no �rst �rm deviation
payo¤ that can undermine this equilibrium for t1 2 [t0; �T ]:

When � � �00(�) (i.e. in the lower portion of area A and in area B of
Figure 2), the intermediate equilibrium is not relevant: any �rm investing
in [T �2 ��; �T ] would be preempted in the earlier interval (Bear in mind that
the two payo¤ functions are continuous at T �2 �� and at T �2 ; respectively,
and consider Figure 1, panels (a) and (b), and Figure 3, panel (c)). Accord-
ingly, the pure strategy preemption equilibrium which exist in [t0; T �2 ��]
�as granted by Proposition 1, parts (a) and (b) � is the subgame perfect
equilibrium in [t0; �T ]:

In the remainder of area A and in area D (i.e. for �00(�) < � < �0(�)),
the �rst innovator payo¤ function has local maxima both in (t0; T �2 ��] and
in (T �2 � �; �T ] (Proposition 1, parts (a) and (d) and Proposition 2, parts
(a). Refer also to panels (a) and (b) in Figure 1 and to panel (a) in Figure
3). In this case, the equilibrium selection on the ground of the subgame
perfectness criterion requires the use of numerical simulations. This analysis
will be carried out in Sub-section 3.3.

3.2.3 The late equilibrium

Finally, if the innovation leader decides to invest �late� (i.e. when t1 2
[ �T ;1)) the R&D cost is so low that it is optimal for the second �rm to
immediately enter upon rival�s investment, without exploiting the inter-�rm
spillover.

In this case the �rst �rm is aware that�as soon as she innovates�the
second �rm will �immediately�follow her decision, and invest. Hence, each
�rm takes her decision anticipating such a follower�s behavior. This leads
to an equilibrium where the two �rms maximize their joint payo¤: knowing
that it will be immediately followed, each �rm delays its innovation until its
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discounted sum of pro�ts reaches its maximum. In this context, where �rms
remain symmetric, the maximization of a single �rm�s payo¤ coincides with
their joint maximization.

Formally, the innovation leader�s behavior is summarized by the following
proposition.

Proposition 3

When Assumptions 2, 3 and 4 are satis�ed, for t1 2 [ �T ;1);
(a) if � 2 [�̂(�); ��] where �̂(�) = 1 � e(r+�)�

h
1� (r + �)1�e�r�r

4A
2A+x

i
;

both �rms invest at �T ;
(b) if � 2 [1� r+�

r e
�� + �

r e
(r+�)�; �̂(�)); both �rms invest at:

T le = t0 �
1

�
ln

�
2A+ x

9b
(r + �)

�
: (14)

(c) if � 2 [0; 1 � r+�
r e

�� + �
r e
(r+�)�); the subgame perfect equilibrium

is either T le; or it is such that it cannot be subgame perfect in the interval
t1 2 [t0;1).

Proof: See the Appendix.

When the spillover is low, the scope for waiting � before investing is
limited and hence �T is low. Therefore, for a low � the payo¤-maximizing
choice for the adoption time is unconstrained and thus the late equilibrium
is given by (14).

3.3 Equilibrium selection

As already remarked, subgame perfectness is the criterion we use to se-
lect among the equilibria identi�ed in the previous Sub-section. Sub-game
perfectness requires that the equilibrium must survive all the possible o¤-
equilibrium deviations. Accordingly, in the present context, the equilibrium
selection must be carried out comparing the leader�s payo¤ at any candidate
equilibrium, with her payo¤ at any adoption date earlier than the one that
is part of the equilibrium. Unfortunately, this task cannot be performed
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analytically, due to the high degree of non linearity in our model. Hence,
we now present some numerical results.21

In our simulations, we normalize to unity the market dimension para-
meter A, and we �x the discount rate r to 0.03, which is consistent with
computing calendar time in years. The parameter 
 does not play any sub-
stantial role: the e¤ect of an higher 
 (i.e. of a less e¢ cient R&D) is to
postpone all of the equilibria, without changing their relative convenience.
Likewise, the choice for b is inconsequential: an increase in b always induces
a proportional contraction in per period pro�ts. Hence, we choose b = 1 and

 = 150 with no loss of generality. As for �; we study�in the schumpeterian
tradition�industry-speci�c rates of reduction in innovation costs. Industry
I is technologically mature, but it still bene�ts from some technical progress
in the sectors producing its machinery. Accordingly, � = 0:01: In industry
II, � = 0:05; which is the case of a fairly dynamic sector. Finally, industry
III is a sector involved in a �technical revolution�, and � = 0:09. To appre-
ciate our �gures, bear in mind that the average economy-wide increase in
productivity is of the order of 2% a year; moreover consider that, in a spe-
ci�c sector, faster-than-average technical progress may well go together with
an above-average increase in wages. In this case the cost-e¤ective technical
progress parameter, �; is lower than the productivity growth rate.

To preserve the duopolistic structure of our market, we consider only
non-drastic innovation (Assumption 1). Hence, the size of the R&D output,
x; is lower than A (x < 1): We investigate two types of innovative output:
a moderate innovation where x = 0:05A(= 0:05) and a major innovation
where x = 0:5A(= 0:5):

Figure 4 portrays the equilibria arising in the case of a moderate inno-
vation. Panel (a) highlights that in Industry I a low spillover implies, for a
given �; a late equilibrium, while as the spillover increases the intermedi-
ate equilibrium prevails. For instance, when � = 2; (refer to Table 1) the
late equilibrium prevails when � � 0:047, while if � > 0:047 we have the
intermediate equilibrium.

[Figure 4 about here]

21Our routine has been written in Gauss, and it is based on a discretization of the
space [� x �]; for � 2 [10(�10); 0:8] and � 2 [10(�10); 3]: We have used 240.000 gridpoints,
however our results do not relevantly change for any number of evaluation points larger
than 15.000. This routine is available upon request from the authors.
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The intuition for this result is the following: as underscored by Fuden-
berg and Tirole (1985), the smaller the cost reduction, the weaker is the
incentive to innovate �rst.22 Hence, a small x means that the highest de-
viation payo¤ for an early innovator is low, so that the early equilibrium
never prevails over the late one. Moreover, a low spillover gives rise to a
late equilibrium because it shrinks the intermediate region, since the second
�rm has a weak incentive to wait � to enjoy a modest R&D cost-reducing
spillover (refer to the de�nition for �T and to Figure 3, panel (c)). Hence,
the late equilibrium prevails over any possible deviation occurring in the
intermediate period.

Industry Innovation
moderate major

I � � 0:047 late � � 0:101 early
� > 0:047 intermediate � > 0:101 intermediate

II � � 0:056 late � � 0:104 early
0:056 < � � 0:063 early

� > 0:063 intermediate � > 0:104 intermediate
III � � 0:056 late � � 0:131 early

0:056 < � � 0:079 early
� > 0:079 intermediate � > 0:131 intermediate

Table 1: R&D equilibria (� = 2)

When � grows, the intermediate region enlarges, leading to a situation
in which the �rst �rm�s deviation payo¤ becomes larger than her late equi-
librium payo¤. This leads to the prevalence of the intermediate equilibrium.

Panel (b) in Figure 4 shows the equilibria arising in Industry II. Again,
for a given �; if the spillover is very low, the equilibrium in the R&D stage
is the late one, for the same reasons as explained before. However, as �
increases (but it is still lower than �00(�)), the early equilibrium prevails.
This happens in the small area contained between the two curves exiting
from the origin in Figure 4 (refer also to Table 1, which is drawn for � = 2:).
To understand this result, bear in mind that an increase in � raises the
payo¤s in the intermediate region, because the R&D costs are lower.23 The
increase in the deviation payo¤ in the intermediate region destroys the late

22This happens because the single innovator pro�t function, �101 ; is more convex in x
than �111 (see Sub-section 2.1)
23The e¤ect of � on the late equilibrium payo¤ is of course similar, but it is less signi�cant

since at that time the R&D cost are already very low.
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equilibrium, and moves the equilibrium to the early stage, because ��being
lower than �00(�)�is still small enough so that the intermediate equilibrium
is dominated by the early one (refer to Sub-section 3.2.2).

Finally, a further increases in � (above �00(�)), drives us into the region
in which the intermediate equilibrium exists; moreover, an increase in �; re-
ducing the �rst innovator�s payo¤ in the early stage, makes the intermediate
equilibrium dominant.

Figure 4, panel (c) shows the equilibrium selection in Industry III (� =
0:09): we have the same pattern observed for Industry II, with the only
di¤erence being that the � threshold that discriminates the intermediate
equilibrium from the early one is higher. This happens because the payo¤s
are higher in the early region than in the intermediate one. In fact, the
former payo¤s bene�t more from a rapid technical progress.

The case of a major innovation is portrayed in Figure 5. There, x =
0:50A(= 0:50): Here, the late equilibrium never prevails: a high x favors the
selection of the early equilibrium. However, in our framework, an early equi-
librium arises only for moderate values of the spillover parameter. In fact,
when � increases so that the intermediate equilibrium exists, the latter pre-
vails for two reasons. First, a high � negatively in�uences the �rst innovator
payo¤s in the early interval, because it anticipates the follower�s investment
date (equation (11)). Second, in the intermediate interval, as the spillover
increases, the second comer�s payo¤ gets larger, softening the incentive to
invest for the leader. This milder competition implies higher payo¤s for both
�rms, inducing the selection of the intermediate equilibrium.

[Figure 5 about here]

In sum, our analysis of the equilibrium selection process suggests that
the intermediate equilibrium is the sub-game perfect one in large portions
of the parameter space.

4 Welfare analysis

Having characterized the market equilibria, we can now analyze the benev-
olent planner problem.

In dealing with this issue, we introduce some hypotheses. First, we
adopt a second best perspective, assuming that neither the number of �rms
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acting in the market nor the way they compete in the second stage quantity
game lies within the regulatory power of the benevolent planner. Hence,
what the non-omnipotent planner can choose, is the timing of innovation.24

Therefore, its decisions will be based on the instantaneous welfare levels �
computed in Sub-section 2.1 �that have been obtained under the Cournot
decentralized solution.

Second, the informational advantage obtained by �rms engaging in a
joint R&D project at the dates induced by the planner, is the same that
is grasped by the second entrant waiting � (i.e., the joint R&D activity
grants a faster information �ow when compared to a decentralized solution).
The innovation costs incorporate the expenditures for the training of the
employees required by the new production process, for some new machineries
(or for adaptation of the existing plant), and so on (see De Bondt (1996)).
Hence, the spillover parameter cannot be signi�cantly increased by an R&D
agreement.

Therefore, the social planner maximizes �with respect to the adoption
dates t1 and t2 �the following welfare function

W1(t1; t2) =

Z t1

t0

W 00e�r(t�t0)dt+

Z t2

t1

W 10e�r(t�t0)dt+

Z 1

t2

W 11
1 e

�r(t�t0)dt

�
xe�(r+�)(t1�t0) � (1� �)
xe�(r+�)(t2�t0); (15)

where the (second best) instantaneous welfare levels, are given by Eqs. (2),
(4) and (6), and t1 � t2 is a natural constraint.

The maximization of (15) yields

TSP1 = t0 �
1

�
ln

�
8A+ 11x

18b
(r + �)

�
; TSP2 = t0 �

1

�
ln

�
8A� 3x

18b
(r + �)(1� �)

�
;

if � � 14x
8A+11x ; and

24This approach is standard in the literature: see Stenbacka and Tombak (1994), Hoppe
(2000), and Weeds (2002). The �rst best equilibrium for an omnipotent planner implies
the presence of only one �rm: whenever there are non-decreasing returns in the innovation
probability, it is optimal to have only one �rm to innovate and cover the entire market at
the marginal (post-innovation) cost.
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TSP = t0 �
1

�
ln

�
8A+ 4x

9b
(r + �)(2� �)

�
;

if not. The superscript SP stands for �social planner�.
To verify whether the decentralized solution induces overinvestment in

comparison with the centralized one, we compare the discounted innovation
costs implied by the sub-game perfect market solution with those obtained
by the social planner. When the market innovation costs are higher (lower)
than the planner solution ones, there is overinvestment (underivestment).
The di¤erence in the �rms�timings that characterize the centralized solution
and the decentralized one adds to the ine¢ ciency related to the use of a non-
optimal amount of resources.

Because the market game often does not have a closed form solution,
to appreciate the di¤erences in the (discounted to t0) innovation costs, we
need to rely on numerical simulations, which allow to obtain the following
results:

i) Whenever the early equilibrium prevails, the market solution implies an
excessive use of resources (i.e. overinvestment).

ii) Symmetrically, when the late equilibrium is subgame perfect, the decen-
tralized solution involves a too low level of investment.

iii) When the intermediate equilibrium dominates, it implies underinvest-
ment, but for a small parameters sub-set when the size of the inno-
vation is small, and the speed of the exogenous technical progress is
high.

While the �rst two results are intuitive, the third deserves more atten-
tion.

To understand why an overinvesting intermediate equilibrium is possible
only if the innovation size is small, consider the analysis in Sub-section 2.1.
There, we have shown that both the social welfare and the �rms pro�ts in-
crease more than proportionally with the size of the innovation. Accordingly,
also the wedge between the social and the private incentives to innovate in-
creases with x; which acts against the possibility of overinvestment with a
large innovation.
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An increase in � reduces both the social planner�s optimal adoption
date(s) and the intermediate equilibrium ones. In the market game, a steeper
cost reduction pro�le, has strong e¤ects on the innovation dates. For a given
leader�s optimal timing, a faster cost reduction bene�ts the follower�s payo¤.
This provides the incentive for his preemptive behavior, which may lead to
overinvestment.

Accordingly, the portion of the parameter space with overinvestment is
the widest, the largest is �, and the lowest is x. However, even in this case,
the overinvestment area is very small: e. g. for � = 0:09; x = 0:05, and � =
2, the intermediate equilibrium implies overivestment for � 2 [0:080; 0:115]:

Hence, not only the intermediate equilibrium prevails for most of the pa-
rameter con�gurations (as shown in Sub-section 3.3), but it also implies that
the duopolistic market equilibrium involves underinvestment. This applies
even when the innovation size is large, and hence the incentives to hasten
innovation are remarkable. Therefore, the market equilibrium calls for pub-
lic policies aimed at increasing the research activity even in this case, unless
the inter-�rm spillover is very low. Notice that the natural indicators of
a highly competitive environment, namely a di¤usion equilibrium and rent
equalization, do not necessarily imply that the R&D investment is excessive
from the social planner�s perspective.25

When we focus on minor innovations � the case in which the market
equilibrium underinvests, according to the earlier literature �our result im-
ply that the policies aimed at stimulating R&D have to be less sizeable
than suggested before, because the underinvesting intermediate equilibrium
is closer to the social optimum than the late equilibrium.

5 Conclusions

In our duopoly game, �rms, in addition to a technological externality, takes
into account a spillover that lowers the second comer�s innovation cost. This
spillover exerts its e¤ect after a �disclosure lag�. In this setting, a new

25Suppose instead that a joint R&D activity guarantees not only a faster but also an
easier, and hence less costly, information �ow. In this case the spillover parameter in Eq.
(15) should be higher than in the market game, and the social planner should dictate earlier
investment date(s). Under this alternative assumption, result ii) and iii) are una¤ected,
while result i) weakens. In fact, it is possible � for a relevant and somehow irrealistic
increase in � �that the second best optimal timing anticipates the early equilibrium ones.
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equilibrium arises, in which the R&D investment takes place at intermediate
dates in comparison with those already identi�ed in the literature.

Pre-emption, R&D di¤usion, and the possibility of rent equalization
characterize the intermediate equilibrium, which is competitive, although
in a mild form. The intermediate equilibrium is subgame perfect for a large
range of the parameters set; moreover, it is socially ine¢ cient, implying a
low level of investment in R&D.

This happens even in presence of major innovations, despite the large
incentive to invest in R&D provided by this type of innovation. This re-
sult has important implications for innovation policy. For example, research
joint ventures should be assessed in more favourable terms than those im-
plied by the literature following d�Aspremont and Jacquemin (1988), and
Kamien, Muller, and Zhang (1992). In fact, while a RJV may underinvest
in comparison to an highly competitive equilibrium, it is likely to improve
social welfare over a �mildly competitive�, underinvesting, market outcome.
Furthermore, our paper suggests that R&D subsidies should be set in place
in a range of market con�gurations wider than that has been previously pro-
posed. Finally, our analysis provides an argument against the use of entry
regulations (or price caps), which are sometimes used to slow technology
adoption, e.g. in telecommunication industries. We leave the analysis of
these policy instuments for further research.

When the innovation size is small, the prevalence of the intermediate
equilibrium implies that R&D enhancing policies must be less intense than
devised in the earlier literature. Actually, policies designed without taking
into account the inter-�rm spillover can be largely oversized, even when
the spillover is quantitatively modest. Notice also that the intermediate
equilibrium calls for moderate policies, which may prove easy to implement
from a political economy perspective.

Our setting can be extended in various directions, which however, would
require an heavy use of numerical techniques. For example, it would be inter-
esting to consider a stochastic inter-�rm spillover, in which the probability
of information di¤usion depends upon the time elapsed from the introduc-
tion of the innovation, and on the follower�s imitation e¤ort. Also, we would
like to consider the possibility that the leader actively (and hence costly)
attempts to prevent information leakages, thereby increasing the disclosure
lag. Whenever the �rms�e¤orts lenghten this lag, they reduce the follower�s
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equilibrium payo¤, and hence, also the leader�s one. Therefore, they tend to
reduce the intermediate equilibrium dominance area. However, the analy-
sis developed in Section 3.3 suggests that the e¤ect of the disclosure lag
on the dominance areas are weak. Hence, our main result should not be
undermined by the adoption of a richer framework.
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APPENDIX

Proof of Proposition 1
As a preliminary, notice that Assumption 4 guarantees that the interval [t0; T �2 �

�] is non empty for � 2 [0; ��]: Notice, moreover, that Assumption 2 implies
that all the four sub-cases in Proposition 1 are well de�ned. This is because
Assumption 2 can be written as: �� � max

n
x

A+x ; �
00( ��)

o
:

Proof of part (a). As it is standard, we start characterizing the optimal strategy
for the follower. When the �rst �rm has sunk the innovation cost at time
t1 2 [t0; T �2 ��], the payo¤ at time t0 for the second �rm, when it invests
at t2; is given by (10).

Suppose that the second comer decides to wait more than �; to grasp the inter-
�rms spillover; in this case Eq. (8) prescribes that the innovation cost is
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C2(T2) = (1 � �)
xe��(T2�t0); and a few straightforward calculations show
that T �2 ; as given by (11), maximizes V2(t1; t2):

Alternatively, the second comer could decide not to wait for � periods, and in
this case he should invest at:

T 02 = t0 �
1

�
ln

�
4A

9b
(r + �)

�
: (A.1)

This second alternative requires that T 02 2 [t1; t1+�). Had the latter restriction
not been satis�ed, the innovation follower would have bene�ted from the
spillover. Since T 02 > T

�
2 , whenever t1 2 [t0; T �2 ��] the innovation follower

grasps the imitation bene�ts and invests at T �2 : Because of this, his payo¤
can be written as:

V2(t1; T
�
2 ) =

A2

9br
�
�
(2A� x)x
9br

�
e�r(t1�t0)

+
�

r(r + �)

4Ax

9b

�
4A

9b
(r + �)(1� �)

� r
�

; (A.2)

which implies: @V2(t1;T �2 )
@t1

> 0; and @2V2(t1;T �2 )
(@t1)2

< 0 in the whole interval

[t0; T
�
2 ��]. Also notice that

@V2(t1;T �2 )
@� > 0 for every t1 2 [t0; T �2 ��]:

Having determined the optimal decision for the follower, we now determine the
leader�s best strategy. When t1 2 [t0; T �2 ��]; the innovation leader payo¤ is
given by (9) in which the innovation costs are provided by (7) and t2 = T �2 :

Exploiting equation (11), we obtain:

V1(t1; T
�
2 ) =

A2

9br
+

�
4(A+ x)x

9br
� 
xe��(t1�t0)

�
e�r(t1�t0)

�(2A+ 3x)x
9br

�
4A

9b
(r + �)(1� �)

� r
�

: (A.3)

Hence, @V1(t1;T
�
2 )

@t1
? 0 when t1 7 T �1 (with T

�
1 given by 12). Notice that T

�
1 , in

general, need not be smaller than T �2 � �: Notice also that
@V1(t1;T �2 )

@� < 0

for every t1 2 [t0; T �2 ��]:
When � � �0(�); it is easy to show that T �1 � T �2 � �; because the latter
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inequality requires A + x � A
1��e

��; and hence � � 1 � A
A+xe

��: We now
check whether � when t1 = T �1� the leader�s payo¤ is larger than the
follower�s one. Exploiting equation (A.3), V1(T �1 ; T

�
2 ) can be easily written

as:

V1(T
�
1 ; T

�
2 ) =

=
A2

9br
+
4�(A+ x)x

9br(r + �)

�
4(A+ x)

9b
(r + �)

� r
�

� (2A+ 3x)x
9br

�
4A

9b
(r + �)(1� �)

� r
�

;

while, from (A.2), V2(T �1 ; T
�
2 ) is:

V2(T
�
1 ; T

�
2 ) =

=
A2

9br
� (2A� x)x

9br

�
4(A+ x)

9b
(r + �)

� r
�

+
�

r(r + �)

4Ax

9b

�
4A

9b
(r + �)(1� �)

� r
�

:

A few calculations allow us to show that V1(T �1 ; T
�
2 ) � V2(T �1 ; T �2 ) if � � ~�: Notice

moreover that ~� � �0(�) for� 2 [0;�0]; where�0 = 1
r ln

h
1 + r4x

�3(2A+x)+r(2A�x)

i
>

0: Hence, V1(T �1 ; T
�
2 ) � V2(T �1 ; T �2 ) and T �1 < T �2 �� if � � minf~�; �0(�)g:

Because �0 > 0; and �0(�) > 0; we have that ~� > 0; which guarantees that
the region � � minf~�; �0(�)g is non-empty.

To conclude that the �rst �rm equilibrium adoption date ismaxfT
¯ 1;
t0g; we follow

the argument developed in Fudenberg and Tirole (1985): when V1(T �1 ; T
�
2 ) >

V2(T
�
1 ; T

�
2 ); it is in each �rm�s interest to adopt at time T

�
1 if the other �rm

has not adopted up to that time. But if a �rm knows that the other will
adopt at time T �1 , it is in its interest to preempt at time T

�
1 � dt, whenever

V1(T
�
1 � dt; T �2 ) � V2(T �1 ; T �2 ): By backward induction, we conclude that the

equilibrium strategy for the �rst innovator is maxfT
¯ 1;
t0g; where T¯ 1 is the

earliest adoption date such that V1(T¯ 1
; T �2 ) � V2(T¯ 1

; T �2 ): In this case no
�rm wants to invest and anticipate the other to avoid be preempted later
on. Mixed strategy equilibria are ruled out by Assumption 4. Hence, Part
(a) is proved.

We now consider case (b), i.e. �0(�) < � � �00(�): A few calculations show that
the restriction � � �00(�); implies: V1(T �2 ��; T �2 ) � V2(T �2 ��; T �2 ): Hence,
the preemption argument sketched above applies again and the equilibrium
is {maxfT

¯ 1;
t0g; T �2 g (refer to Figure 1, panel (b)): Notice that, at � = �0;

�0(�0) = �00(�0)(= ~�):Therefore, this case applies only when � � �0: This
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completes the proof of Part (b).
To prove Part (c), split the restriction � > maxf�0(�); �00(�)g; into � > �0(�);

and � > �00(�) (which must hold simultaneously). The restriction � > �0(�)
implies that T �1 > T

�
2 �� and hence that V1(t1; T �2 ) is increasing in the whole

interval t1 2 [t0; T �2 ��]: In its turn, � > �00(�) implies V2(T �2 ��; T �2 ) >
V1(T

�
2 ��; T �2 ): Hence, it is in each �rm�s interest to wait until T �2 ��; while

the preemption argument does not apply. By Assumption 6, this completes
the proof of Part (c).

Finally, we analyze case (d), i.e. ~� < � � �0(�): The restriction � � �0(�)

implies T �1 � T �2 ��: However, if � > ~�, as shown in Part (a), V1(T �1 ; T �2 ) <
V2(T

�
1 ; T

�
2 ). Therefore, by Assumption 6, the �rst �rm becomes the leader

and invest at T �1 , while the second invests at T
�
2 : This completes the proof

of Part (d).

Proof of Proposition 2
As a preliminary, notice that Assumption 2 guarantees that all the sub-cases in

Proposition 2 are well de�ned.
Notice, moreover, that �T > T �2 �� for any � 2 [0; ��]:
Notice, �nally, that some tedious calculations grant that: �000(�) � �00(�):
As before, we start characterizing the optimal strategy for the follower.
When t1 � T �2 ��; the innovation follower will never wait more than �, simply

because t1 � T �2 ��: Hence, his available strategies are:
(1) wait exactly � periods to grasp the bene�t of the spillover,
(2) invest immediately after the innovation leader, and
(3) wait for a time span shorter than � (to exploit the exogenous technological

externality), and then invest (therefore, without exploiting the inter-�rm
spillover).

First we compare what the innovation follower obtains by waiting � periods
(strategy 1) with what he gets by investing immediately after the innovation
leader (strategy 2). Hence, we determine when V2(t1; t1 + �) � V2(t1; t1):

This inequality immediately boils down to:

4Ax

9br
e�r(t1+��t0) � (1� �)
xe�(r+�)(t1+��t0)

� 4Ax

9br
e�r(t1�t0) � 
xe�(r+�)(t1�t0);

which, in its turn, is satis�ed when: t1 � �T : Hence, the innovation follower
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never chooses to immediately follow the leader for any t1 2 [T �2 ��; �T ]:
Next, we compare strategy 1 with strategy 3.
In doing so, recall the de�nition of T 02 from (A.1), and distinguish the case:

�T � T 02 from the case �T < T 02: Notice that the inequality �T � T 02 is satis�ed
when � � 1 � r+�

r e
�� + �

r e
(r+�)�; and some calculations allow us to verify

that: �00(�) � 1� r+�
r e

�� + �
r e
(r+�)�:

Hence, in cases (a) and (b), �T � T 02.
Suppose now that the leader invests at t1 2 [T �2 ��; T 02��]: In this interval, the

payo¤ function for a follower who does not exploit the inter-�rm spillover is
always increasing. In fact, this function is concave with a global maximum
at t2 = T 02 8 t1(refer to the Proof for Proposition 1). Hence, it is optimal
for the follower to invest later than T 02 ��; which implies that the spillover
is actually exploited.

When t1 2 (T 02 � �; T 02]; the optimal strategy for the innovation follower must
be determined by comparing what it gets by delaying its investment for �
periods with what can be obtained by investing at T 02: Hence, we need to
determine when V2(t1; t1+�)� V2(t1; T 02) � 0: This inequality immediately
boils down to:

4Ax

9br

h
e�r(t1+��t0) � e�r(T 02�t0)

i
�
x

h
(1� �)e�(r+�)(t1+��t0) � e�(r+�)(T 02�t0)

i
� 0: (A.4)

It is easy to show that the left hand side of (A.4) is non-increasing in t1 in
the whole interval (T 02 � �; T 02]: Evaluate equation (A.4) at t1 = T 02, and�
exploiting equation (A.1)�substitute out T 02 when convenient, to obtain:

e�r(T
0
2�t0) 4Ax

9br

"
e�r� � 1� r(1� �)e

�(r+�)�

r + �
+

r

r + �

#
� 0;

which is ful�lled when � � 1 � r+�
r e

�� + �
r e
(r+�)�: Hence, under this re-

striction, the follower�s strategy of waiting � periods is chosen for any
t1 2 (T 02 ��; T 02]:

Finally, strategy 3 can never be optimal for t1 2 (T 02; �T ] just because the payo¤
function for a follower who does not exploit the spillover is decreasing in
t2 2 (t1; �T ] and thus there is no point in waiting when the leader has already
invested; recall moreover that the immediate investment strategy has already
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been proven to be dominated by a time � delay.
Hence, in cases (a) and (b) the follower�s optimal reply to the innovation leader�s

decision to invest is to wait exactly� periods to grasp the inter-�rm spillover
and then invest.

The analysis for case (c) must be splitted into two sub-cases.
c1) When � 2 [1 � r+�

r e
�� + �

r e
(r+�)�; �00(�)); then �T � T 02 and the analysis

developed above applies.
c2) When � 2 [0; 1� r+�

r e
��+ �

r e
(r+�)�); then �T < T 02: Notice, however, that it is

possible to prove that T 02�� < �T : In the time interval t1 2 [T �2 ��; T 02��]
the optimal strategy is again to wait � and exploit the inter-�rm spillover,
because the follower�s payo¤ function V2(t1; t2) is increasing in t2 2 [t1; T 02�
�]:

When t1 2 (T 02 ��; �T ]; the optimal strategy for the innovation follower must be
determined by comparing what he gets by delaying his investment for � pe-
riods with what can be obtained by investing at T 02: Unfortunately, it is not
possible to characterize analytically the sub-intervals in which the two al-
ternative strategies prevail. Let us denote by �T1 the instant when V2(t1; t1+
�) = V2(t1; T

0
2):

�T1 2 (T 02 � �; �T ] because: V2(t1; t1 + �) � V2(t1; T 02) is
non-increasing in t1; lim�!0 [V2(T 02 ��+ �; T 02 + �)� V2(T 02 ��+ �; T 02)] >
0 and V2( �T ; �T + �) � V2( �T ; T 02) < 0, in fact, by de�nition V2( �T ; �T + �) =
V2( �T ; �T ) and V2( �T ; �T ) < V2( �T ; T 02): Hence, for t1 2 (T 02 ��; �T1] strategy (1)
is optimal, while for t1 2 ( �T1; T 02] the innovation follower decides to innovate
at T 02 (strategy 3).

We conclude our characterization for the follower�s optimal strategy by noting
that V2(t1; t1 + �) is a concave function with its maximum at the right of
T �2 ��:

We now proceed to analyzing the �rst �rm�s behavior.
If � 2 (�000(�); ��] (case a), the �rst innovator is aware of the fact that her com-

petitor will always invest with a delay of � periods. Hence, she computes
her payo¤ for t1 2 [T �2 ��; �T ] which is:

V1(t1; t1 +�) =
A2

9br
+��

4(A+ x)x

9br
� 
xe��(t1�t0)

�
� (2A+ 3x)x

9br
e�r�

�
e�r(t1�t0):

Notice that � � �00(�) (which involves � � �000(�)); implies that V2(T �2 ��; T �2 ) �
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V1(T
�
2��; T �2 ); notice moreover that the payo¤ function V1(t1; t1+�) reaches

its maximum at t1 = T̂1:
Consider now the equation: V1(t1; t1 +�) = V2(t1; t1 +�); which has a unique

solution: T ip1 = t0 � 1
� ln

�
3(2A+x)(1�e�r�)

9br
[1�(1��)e�(r+�)�]

�
: Notice that T ip1 > T̂1 if

� > �000(�); hence for � 2 (�000(�); ��]; T ip1 2 [T̂1; �T ]: (This happens because
the inter-�rm spillover is very high, implying a high payo¤ for the second
�rm). Because the V2(t1; t1 + �) curve lies above the V1(t1; t1 + �) curve
for t1 2 [T �2 ��; T̂1]; no �rm has an incentive to preempt its rival before T̂1:
The �rst �rm, under Assumption 6, has no incentive to delay her adoption
beyond T̂1; because V1(t1; t1 + �) is decreasing for t1 2 [T̂1; �T ]: Hence, in
the interval [T �2 ��; �T ]; the unique sub-game perfect equilibrium is t1 = T̂1;
t2 = T̂1 + �: The �rst panel in Figure 3 portrays the situation analyzed
here. This proves Part (a).

In case (b) (� 2 [�00(�); �000(�)]); the �rst innovator is aware, again, of the fact
that her competitor will invest with a delay of � periods. In this case,
however, T ip1 2 [T �2 � �; T̂1]: in fact, with respect to the previous case,
the reduction in the spillover parameter shifts downward the follower�s pay-
o¤ function (as depicted in Figure 3, panel (b)) and, for t1 2 [T

ip
1 ;
�T ] the

V2(t1; t1 + �) curve lies below the V1(t1; t1 + �) curve. Hence, t1 = T
ip
1 is

part of the unique pure strategy equilibrium, due to the usual preemption
argument. This proves Part (b).

When considering the follower�s optimal strategy in case (c), we must distinguish
again the two sub-cases: c1) � 2 [1 � r+�

r e
�� + �

r e
(r+�)�; �00(�)); and c2)

� 2 [0; 1� r+�
r e

�� + �
r e
(r+�)�):

c1) When � 2 [1 � r+�
r e

�� + �
r e
(r+�)�; �00(�)); the �rst innovator is aware of

the fact that her competitor will invest with a delay of � periods. In this
case one can show that the unique solution for the equation V1(t1; t1+�) =
V2(t1; t1 + �); lies outside the interval [T

�
2 � �; �T ]: (i.e. T

ip
1 < T �2 � �):

Because the follower�s payo¤ is lower than the �rst innovator�s one, in the
whole interval [T �2 ��; �T ]; and standard arguments imply the existence of
a mixed strategy equilibrium, in which �rms start to randomize at T �2 ��:
This case is portrayed in panel (c) of Figure 3.

c2) When � 2 [0; 1� r+�
r e

��+ �
r e
(r+�)�); the �rst �rm is aware that, if she chooses

t1 2 [T �2 ��; �T1]; the follower picks an innovation time characterized by a
delay of span �; while if she chooses t1 2 [ �T1; �T ] the follower innovates at
time T 02 > �T :
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Suppose �rst that the follower innovates with a delay of �: In this case, because
T ip1 < T �2 ��; it is obvious that V1(t1; t1 +�) > V2(t1; t1 +�) for any t1 2
[T �2 ��; �T ] and hence, a fortiori, for any t1 2 [T �2 ��; �T1]: Suppose now that
the follower innovates at time T 02: In this case, again, V1(t1; T

0
2) > V2(t1; T

0
2)

for t1 2 [T 02��; �T ] and hence, a fortiori, for any t1 2 [ �T1; �T ]: (To show this,
consider that V1(T 02; T

0
2) = V2(T

0
2; T

0
2) and that @[V1(t1; T

0
2)�V2(t1; T 02)]=@t1 <

0:). Hence, in the whole interval [T �2 ��; �T ]; the follower�s payo¤ is lower
than the �rst innovator�s one; again standard arguments imply the existence
of a mixed strategy equilibrium, in which �rms start to randomize at T �2 ��:
This proves Part (c).

Proof of Proposition 3.
Notice, as a preliminary, that Assumption 2 guarantees that all the sub-cases in

Proposition 3 are well de�ned.
As usual, we start characterizing the optimal strategy for the follower.
The proof of Proposition 2 implies that the innovation follower will never wait

�; for any t1 � �T : Hence, his available strategies are:
(1) invest immediately after the innovation leader, and
(2) wait for a time span shorter than � (to exploit the exogenous technological

externality) and then invest without exploiting the inter-�rm spillover.
The proof of Proposition 1 implies that �when the innovation follower decides to

wait �he invests at T 02; for any t1 2 (T 02��; T 02]. In fact, the payo¤ function
for the follower, V2(t1; t2) has a maximum at T 02:

In the proof for Proposition 2, we showed that, for � 2 [1� r+�
r e

��+ �
r e
(r+�)�; 1];

then �T � T 02. Hence, under this parameter restriction, the second innovator
invests immediately after the innovation leader. In fact, it is never in the
follower�s interest to wait � periods, because t1 > �T ; while the follower�s
payo¤ function is decreasing in t2 in the whole interval t1 2 [ �T ;1): Hence,
the follower has no point in waiting.

In contrast, when � 2 [0; 1� r+�
r e

��+ �
r e
(r+�)�); then T 02�� < �T < T 02 (as shown

in the proof for Proposition 2). Therefore, under this parameter restriction,
the second innovator invests at T 02 when t1 2 [ �T ; T 02]; when t1 2 (T 02;1); the
innovation follower invests immediately after the innovation leader because
its payo¤ function is decreasing in t2.

We now analyze the �rst �rm�s behavior.
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Suppose �rst, that � 2 [1� r+�
r e

��+ �
r e
(r+�)�; ��]; so that the �rst �rm knows that

�as soon as she innovates �the rival �rm immediately sinks the innovation
cost.

Hence, the payo¤ for the �rst �rm is:

V1(t1; t1) =

Z t1

t0

�001 e
�r(t�t0)dt+

+

Z 1

t1

�111 e
�r(t�t0)dt� 
xe�(r+�)(t1�t0): (A.5)

Maximization of (A.5) with respect to t1 under the constraint t1 � �T yields that
the �rst �rm optimal timing is:

�T if � � �̂(�) = 1� e(r+�)�
h
1� (r + �)1�e�r�r

4A
2A+x

i
;

T le = t0 � 1
� ln

�
2A+x

9b
(r+�)

�
if � < �̂(�):

It is now easy to show that �̂(�) � 1 � r+�
r e

�� + �
r e
(r+�)�: Accordingly, when

� � �̂(�); both �rms invest at �T : This proves part (a).
To prove part (b), notice �rst that � when � 2 [1� r+�

r e
��+ �

r e
(r+�)�; �̂(�))� the

second �rm invests immediately after the �rst �rm. Hence, the equilibrium
is T le:

Finally, consider part (c), which requires. � 2 [0; 1� r+�
r e

�� + �
r e
(r+�)�): When

t1 2 [ �T ; T 02] the second �rm invests at T 02; when t1 2 [T 02;1); the second
�rm invests immediately after the �rst one. For the �rst �rm, the optimal
reply to T 02 would be to invest at �T : In fact,

@V1(t1;T 02)
@t1

< 0 for t1 2 [ �T ; T 02]
(di¤erentiate V1(t1; T 02) and check that �T � T �1 ): Notice that, for t1 2 [ �T ; T 02)
the innovation leader�s payo¤ is higher than the follower�s one. (This is
shown by noting that V1(T 02; T

0
2) = V2(T

0
2; T

0
2); and that

@V1(t1;T 02)
@t1

� @V2(t1;T 02)
@t1

for t1 2 [T 02 � �; T 02]; and therefore, a fortiori, for t1 2 [ �T ; T 02].) The �rst
mover advantage interval t1 2 [ �T ; T 02] gives rise to preemptive behaviors if
V1( �T ; T

0
2) � V1(T

le): Hence, in the interval t1 2 [ �T ;1); the equilibrium is
T le when V1( �T ; T 02) < V1(T

le). Instead, when V1( �T ; T 02) � V1(T le); we have
a mixed strategy equilibrium, in which �rms start randomizing at �T : (How-
ever, notice that the preemption argument implies that such an equilibrium
is not subgame perfect for t1 2 [t0;1), in fact �rms adopt earlier than at
f �T ; T 02g: Refer to Figure 3, Panel (c)). This proves Part (c).
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Figure 3: Alternative behaviors for the firms’ discounted
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Figure 4 Equilibrium selection − minor  
innovation (x = 0.05)
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Figure 5 Equilibrium selection − major  
innovation (x = 0.50)
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