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Abstract

This paper develops a novel asymptotic theory for panel models with
common shocks. We assume that contemporaneous correlation can be
generated by both the presence of common regressors among units and
weak spatial dependence among the error terms. Several characteristics of
the panel are considered: cross sectional and time series dimensions can ei-
ther be fixed or large; factors can either be observable or unobservable; the
factor model can describe either cointegration relationship or a spurious
regression, and we also consider the stationary case. We derive the rate
of convergence and the distribution limits for the ordinary least squares
(OLS) estimates of the model parameters under all the aforementioned
cases.
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1 INTRODUCTION

There is a growing body of literature dealing with limit theory for nonstationary

panels. While the first generation of these contributions assumed independence

across units (see for instance Phillips and Moon (1999), Kao (1999)), in the

second generation this assumption is relaxed, and hypothesis testing and esti-

mation methods are evaluated assuming alternative degrees of cross dependence

(see Bai (2003, 2004), Bai and Ng (2002, 2004), Stock and Watson (2002)). We

can distinguish the case where regressors are cross-sectionally dependent (see

Donald and Lang (2004), Moulton (1990)) from the case where it is the error

terms across unit to be dependent (see for instance Bai and Kao, 2005; Moon

and Perron, 2004) or both (see for instance Ahn, Lee and Schmidt (2001), Pe-

saran (2006)).

The main aim of this paper is to propose a novel asymptotic theory for panels

with common shocks. We generalize the limit theory developed by Phillips and

Moon (1999) and Andrews (2005) by employing and extending the theory for

factor models in Bai (2003, 2004) and Bai and Ng (2004).

Phillips and Moon (1999) analyze nonstationary panels when both n and T

are large. They derive the seminal result that as n → ∞ a long-run average

relationship between two nonstationary panel vectors exists even when the sin-

gle units do not cointegrate. A similar result is also reported in Kao (1999).

However, the asymptotics derived in Phillips and Moon (1999) is based on the

assumption of cross section independence though the authors point out that

their results still hold when certain degree of weak dependence among panel

units is allowed. Thus, the case of Phillips and Moon (1999) with arbitrary

dependence amongst units remains largely unexplored, and it is likely to lead to

different asymptotics. Asymptotic normality may not hold, for example, when

all or part of the regressors are aggregates, and may result in mixed asymptotic

normality, as Andrews (2005) has demonstrated in a cross-sectional context. 1

Andrews (2005, see Theorem 4, p. 1567) proves that the presence of common

1See also the discussion in Moon and Perron (2004).
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factors among the cross-sectional units makes the limiting distribution of the

least squares estimator of β mixed normal and not normal as in the classical

regression analysis. Note that in this case mixed normality of the least squares

estimator of β holds even if regressors are I (0) and independent of errors. This

finding is also obtained in our paper when studying the distribution limit for the

least square estimator of β for the T fixed case (see equation 24 in Theorem 2 be-

low), while when we consider the T →∞ case, not explored by Andrews (2005),

we show that in the stationary case as T →∞ the least squares estimator of β

is normally distributed.

In this paper we consider the following panel regression model with common

shocks

yit = αi + β0Ft + uit, (1)

i = 1, ..., n, t = 1, ..., T , where β is a k × 1 vector of slope parameters and
Ft = (F1t, ..., Fkt)

0 is a k × 1 vector of common shocks,

Ft = Ft−1 + εt.

Equation (1) could be either a spurious regression or a cointegration relationship

depending on whether uit is I(1) or I (0), respectively. When common shocks

are not observable, we assume that a set of exogenous variables, zit, is observable

such that

zit = λ0iFt + eit (2)

where λi is a vector of factor loadings and eit is an idiosyncratic component.

For the sake of the simplicity of the notation, we assume throughout the paper

that the number of the zits is the same as that of the yits. However, the panel

dimensions of yits and the zits may be different, for example yits may refer to

individuals while zits may index several macro variables.

To extend our results to the stationary panel model case, we also consider

the first-differenced form of model (1),

∆yit = β0∆Ft +∆uit. (3)
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Our asymptotic theory considers several features of the underlying model.

First, we assume that contemporaneous correlation can be generated by both

the presence of common regressors (e.g. macro shocks, aggregate fiscal and

monetary policies) among units and weak spatial dependence among the error

terms. Second, the common shocks can either be known or unobservable. Clas-

sical examples of observed common shocks are index models such as those used

in national trade, labor economics, urban regional, public economics and finance

literature. Most often, shocks are unknown, as in the cases of index extraction

and indicators aggregation in economics (Quah and Sargent (1993), Forni and

Reichlin (1998), Bernanke and Boivin (2000)), while in finance the seminal mul-

tifactor framework of the arbitrage pricing theory has generated huge number

of contributions in the attempt to identify the unobserved factors underlying

the behavior of asset returns. Factor models are useful for forecasting purposes,

as is well documented by Stock and Watson (1999, 2005). Bai (2003, 2004),

Bai and Ng (2002, 2005) and Boivin and Ng (2005) discuss numerous areas of

research where factor models could be employed and some applications in macro

and finance. Third, regression model (1) may describe either a cointegration re-

lationship or a spurious regression. Fourth, the time series dimension T and the

cross-sectional dimension n can be either fixed or large. We develop our limit

theory by considering cases where the time series dimension T and the number

of units n are large and we also include the case of when either n or T is fixed2.

A short overview of the results we find under the conditions mentioned above

is reported in Table 1.

The remainder of the paper is organized as follows. Section 2 introduces and

comments on the main assumptions. In Section 3, we report the asymptotic

2 It is important to notice that the notion of fixed or ”small” n or T is not well specified.
Pesaran (2005) cites n < 10 as the case when the number of cross sectional units is small.
More generally, one could think as fixed n or T a number of cross sectional units or time series
observations such that the cross-sectional or the time series average is still far away from the
asymptotic limit, but such definition depends on the degree of cross sectional dependence or
serial correlation in the panel and is therefore of scarce operational use.
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Table 1: Consistency (C) and Limiting Distribution (LD) of β̂OLS : yit = αi + β0Ft + uit,

Ft known Ft unknown
(n, T ) C LD (n, T ) C LD

Cointegration: uit ∼ I(0)

Fixed n
T →∞ Yes Mixed Normal (Eq.10) Yes Non Standard (Eq. 47)

Fixed T
n→∞ Yes Mixed Normal (Eq.14) Yes Mixed Normal (Eq.14)

(n, T )→∞ Yes Mixed Normal (Eq.18) √
n/T → 0 Yes Mixed Normal (Eq. 32)√
T/n→ 0 Yes Non Standard (Eq. 34)

Spurious Regression: uit ∼ I(1)

Fixed n
T →∞ No Non Standard (Eq. 12) No Non Standard (Eq. 49)

Fixed T
n→∞ Yes Non Standard (Eq. 16) Yes Non Standard (Eq. 16)

(n, T )→∞ Yes Non Standard (Eq. 20) √
n/T → 0

T/
√
n→ 0√

n/T
2→ 0

Yes Non Standard (Eq. 36)

T 2/
√
n→ 0 Yes Non Standard (Eq. 34)

First Differences: β̂
FD

OLS : ∆yit = β0∆Ft +∆uit.

F ixed n
T →∞ Yes Normal (Eq. 22) No Degenerate (Eq. 51)

Fixed T
n→∞ Yes Mixed Normal (Eq. 24) Yes Mixed Normal (Eq. 24)

(n, T )→∞ Yes Normal (Eq. 26)
n/T → 0 Yes Degenerate (Eq. 38)
T/n→ 0 Yes Degenerate (Eq. 40)
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theory of the least square estimators of β in models (1) and (3). We analyze

both the cases of known factors (Section 3.1) and unknown factors (Section 3.2),

and we distinguish the cases of large n and T , finite T and large n and finite n

and large T . Section 4 concludes. Proofs are reported in the Appendix.

Notation is fairly standard. Throughout the paper, kAk denotes the Euclid-
ean norm of matrix A,

p
tr (A0A), ”→” the ordinary limit, ”⇒” weak conver-

gence, ”
p→” convergence in probability. Stochastic processes such as B (r) on

[0, 1] are usually written as B, integrals such as
R 1
0
B (r) dr as

R
B and stochastic

integrals such as
R 1
0
B (r) dB (r) as

R
BdB.

2 MODEL AND ASSUMPTIONS

We assume that yit is generated as follows

yit = αi + β0Ft + uit,

Ft = Ft−1 + εt. (4)

zit = λ0iFt + eit

i = 1, ..., n; t = 1, ..., T ; β is a (k × 1) vector of slope parameters; Ft =

(F1t, ..., Fkt)
0 is a k×1 vector of common shocks; uit may be I(1) or I (0) (spuri-

ous regression or cointegration relationship); zit, is a set of observed exogenous

variables.

The following set of assumptions are used throughout the paper:

Assumption 1: (a) either (i) (cointegration case) uit = Di (L) ηit, or (ii)

(spurious regression case) ∆uit = Fi (L) ηit with Fi (1) 6= 0 and such thatP
i uit ∼ I (1); for both cases, ηit ∼ iid

¡
0, σ2η

¢
over t and i, with E |ηit|

8
< M ,P∞

j=0 j |Dij | < M ,
P∞

j=0 j |Fij | < M and D2
i (1)σ

2
η > 0, F 2i (1)σ

2
η > 0; (b)

(time series and cross sectional correlation) letting E (uitujs) = τ ij,ts = τ ij,|t−s|

and E (∆uit∆ujs) = γij,ts = γij,|t−s|, as n→∞ a Law of Large Numbers and a

Central Limit Theorem hold for the quantities n−1/2
P

i uit and n
−1/2P

i∆uit.

Assumption 2: εt = C (L)wt where C (L) =
P∞

j=0 CjL
j ; (a) wt ∼ iid (0,Σu)
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with E kwtk4+δ ≤M for some δ > 0; (b) V ar (∆Ft) = Σ∆F =
P∞

j=0CjΣuC
0
j is

a positive definite matrix; (c)
P∞

j=0 j kCjk < M and (d) C (1) has full rank.

Assumption 3: E kF0k4 ≤M and E |ui0|4 ≤M .

Assumption 4: The loadings λi are non random quantities such that (a)

kλik ≤M ; (b) either n−1
Pn

i=1 λiλ
0
i = ΣΛ if n is finite, or limn→∞ n−1

Pn
i=1 λiλ

0
i =

ΣΛ, if n → ∞; in both cases, the matrix ΣΛ is positive definite and such
that the eigenvalues of the matrix Σ1/2Λ Σ∆FΣ

1/2
Λ and of the stochastic matrix

Σ
1/2
Λ

R
BεB

0
εΣ

1/2
Λ are distinct with probability 1.

Assumption 5: eit = Gi (L) νit where (a) νit ∼ iid
¡
0, σ2vi

¢
, E |vit|8 < M ,P∞

j=0 j |Gij | < M and G2i (1)σ
2
vi > 0; (b) E (νitνjt) = τ ij with

Pn
i=1 |τ ij | ≤

M for all j; (c) E
¯̄
n−1/2

Pn
i=1 [eiseit −E (eiseit)]

¯̄4 ≤ M for every (t, s); (d)

E
£
n−1

Pn
i=1 eiteis

¤
= γs−t,

¯̄
γs−t

¯̄
≤ M for all s and T−1

PT
s=1

PT
t=1

¯̄
γs−t

¯̄
≤

M ; (e) E |ei0|4 ≤M .

Assumption 6: {εt}, {uit} and {eit} are three independent groups.

Assumption 1(a) considers the possibility that equation (1) is either a coin-

tegration or a spurious regression. Processes uit and ∆uit are assumed to be

invertible MA processes as in Bai (2004) and Bai and Ng (2004), in a similar

fashion to processes εt and eit. Assumption 1(b) also considers the presence

of some, limited, cross sectional dependence among the uits or the ∆uits and

therefore it rules out the possibility that all the cross sectional dependence is

taken into account by the common factors Ft - see the related work by Conley

(1999).

Even if it refers to a different framework (panel data with common shocks as

opposed to factor models), we take a position similar to that in Bai (2003, 2004)

and Bai and Ng (2002, 2004). Using the factor models terminology, this means

having a model with an ”approximate factor structure”, e.g., see the discussion

in Chamberlain and Rotschild (1983) and Onatski (2005) - which differs from
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a strict common factor model where the uits are assumed to be independent

across i.

The amount of cross sectional dependence we allow for in Assumption 1(b)

is anyway limited, since we require that it allows the Law of Large Numbers

and a Central Limit Theorem to hold for the (rescaled) sequences
Pn

i=1 uit andPn
i=1∆uit.

Assumption 2 allows for some weak serial correlation in the dynamics of

εt. This process can be described as invertible MA process, implied by the

absolute summability conditions. Both the short run and the long run variance

of ∆Ft are positive definite (Assumptions 2(b) and 2(d), respectively). Note

that Assumption 2(d) rules out the possibility that the (common) regressors Ft

in model (1) are cointegrated. This requirement is standard in cointegration

analysis to have non-degenerate limiting distributions 3,

Assumption 3 is a standard initial condition requirement. Assumption 4

serves to identify the factors, which, merely for the purpose of a concise discus-

sion, are assumed to be non random. This requirement could be relaxed, as in

Bai (2003, 2004) and Bai and Ng (2004), assuming that the λis are randomly

generated and independent of εt and eit, and our results would keep holding.

Assumption 4(b) ensures that the factor structure is identifiable. Note that it

would be possible to relax this assumption by constraining the minimum eigen-

value of
Pn

i=1 λiλ
0
i to tend to infinity as n → ∞, as pointed out by Onatski

(2005). This structure would allow factors to be less pervasive than in our

framework, thereby allowing the idiosyncratic component eit in equation (2)

to have a greater impact in explaining the contemporaneous correlation among

the zits. Nonetheless, this would be made at the price of losing the possibil-

ity to model the zit as a serially correlated process, whilst in our framework

some limited time series and cross sectional dependence in model (2) is allowed

for - as one could realize from Assumption 5. As pointed out in Bai (2003),

3Note that Bai and Ng (2004) allow for factors to be cointegrated given that they consider
an approximate factor model with Fts as common factors. In our paper Fts denote instead
a set of regressors. Therefore, we need to rule out cointegration among regressors to have
non-degenerate limiting distributions.
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the conditions in Assumption 5 are fairly general and allow for consistency and

distribution results to hold for the principal component estimator.

Assumption 6 also rules out the existence of any form of dependence between

factors Ft and uit. Therefore, it is a stronger requirement than the simple lack

of correlation, and we need it in order to prove the main results in our paper.

The following definitions are employed throughout the paper.Bε is the Brown-

ian motion associated with the partial sums of εt with covariance matrix Ωεε,

B̄ε (r) is the demeaned Brownian motion associated to the partial sums of Ft,

i.e., B̄ε (r) = Bε (r) −
R 1
0
Bε (r) dr. Let hi (h∆i ) and hij (h∆ij) be the long run

variance for uit (∆uit) and the long run covariance between processes uit and ujt

(∆uit and ∆ujt) - we have hij =
PT

t=1

PT
s=1 τ ij,ts and h∆ij =

PT
t=1

PT
s=1 γij,ts.

Also, let h̄ = limn→∞ n−1
Pn

i=1

Pn
j=1 hij and h̄

∆ = limn→∞ n−1
Pn

i=1

Pn
j=1 h

∆
ij .

Last, the following variances arising from cross sectional aggregation of the uits

and the ∆uits are often used in our results: τ̄ ts = limn→∞ n−1
Pn

i=1

Pn
j=1 τ ij,ts,

and γ̄ts = limn→∞ n−1
Pn

i=1

Pn
j=1 γij,ts.

3 ASYMPTOTICS

The main objective of this paper is to derive the rate of convergence and limiting

distribution of β̂ and β̂
FD

defined where the OLS estimator for β in equation

(1) is given by:

β̂ =

"
nX
i=1

TX
t=1

¡
Ft − F̄

¢ ¡
Ft − F̄

¢0#−1 nX
i=1

TX
t=1

¡
Ft − F̄

¢
yit (5)

where F̄ = T−1
PT

t=1 Ft, or, when using equation (3), by:

β̂
FD

=

"
nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 " nX
i=1

TX
t=1

∆Ft∆yit

#
. (6)

We consider several features of (1) and (3):

1. the shocks Ft can either be known or (more likely) unobservable. The

asymptotics of β̂ and β̂
FD

are affected by the estimation errors if we

replace Ft by its estimate bFt;
10



2. the relationship described by equation (1) can be either a cointegration

relationship or a spurious regression. As pointed out by Kao (1999) and

Phillips and Moon (1999), convergence is obtained at rate
√
n in panel

spurious regression models and
√
nT for panel cointegrated models. In

this paper, we are going to face a similar issue, which is compounded by

the presence of common shocks in the panel regression (1);

3. the time series dimension T and the cross-sectional dimension n can be ei-

ther fixed or large. Asymptotics are likely to change depending on whether

one considers either dimension T or n large, keeping the other one fixed,

or whether both n and T are allowed to tend to infinity.

We first start with the exploration of the case of known common shocks

(Section 3.1) and then move to the case of unknown common shocks (Section

3.2).

3.1 Observable Ft

In the case when Ft is known we have:

β̂ − β =

"
nX
i=1

TX
t=1

WtW
0
t

#−1 " nX
i=1

TX
t=1

Wtuit

#
, (7)

where Wt = Ft − F̄ , and

β̂
FD − β =

"
nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 " nX
i=1

TX
t=1

∆Ft∆uit

#
. (8)

The convergence rate and the limiting distribution for β̂ are now stated in

the following theorem.

Theorem 1 Suppose Assumptions 1-6 hold, and let Z ∼ N (0, Ik) be indepen-

dent of the σ-field generated by the common shocks Ft.

For fixed n and T →∞
β̂ − β = Op

¡
T−1

¢
(9)
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T
³
β̂ − β

´
⇒ 1

n

µZ
B̄εB̄

0
ε

¶−1/2⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

Z (10)

if equation (1) is a cointegration relationship, and

β̂ − β = Op (1) , (11)

³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

(12)

if (1) is a spurious regression.

For fixed T and n→∞, we have

β̂ − β = Op

³
n−1/2

´
, (13)

√
n
³
β̂ − β

´
⇒
Ã

TX
t=1

WtW
0
t

!−1Ã TX
t=1

TX
s=1

WtW
0
sτ̄ ts

!1/2
Z, (14)

if (1) is a cointegration regression, whilst if it is a spurious relationship we have

β̂ − β = Op

³
n−1/2

´
, (15)

√
n
³
β̂ − β

´
⇒
Ã

TX
t=1

WtW
0
t

!−1Ã TX
t=1

Wtūt

!
, (16)

where ūt = limn→∞ n−1/2
Pn

i=1 uit.

When (n, T )→∞, one has

β̂ − β = Op

³
n−1/2T−1

´
, (17)

√
nT
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1/2p
h̄Z, (18)

if equation (1) is a cointegration relationship and

β̂ − β = Op

³
n−1/2

´
, (19)

√
n
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶p
h̄∆, (20)

if it is a spurious regression.
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Proof. See Appendix.

Equations (9)-(12) are the standard superconsistency and inconsistency re-

sults in the literature. With respect to the speed of convergence, when (n, T )→
∞ our results in equations (17) and (19) lead to the same orders as in Phillips

and Moon (1999) and Kao (1999) for both the cointegration and the spurious

regression case. Consistency is achieved under the spurious regression case as

well, where the rate of convergence is
√
n. This result, which follows the seminal

contributions of Kao (1999) and Phillips and Moon (1999), is reinforced for the

case when T is fixed and n → ∞. Equations (13) and (15) prove that irre-
spective of model (1) to be a cointegration regression or a spurious regression,

large n allows for consistency to hold. It is worth observing the complicated

distribution that arises when T is finite; this is essentially due, as outlined in

the proof, to the presence of serial correlation in the uits.

For the case of n and T large, the rate of convergence for β̂ is the same

as in Phillips and Moon (1999) under the case of contemporaneous indepen-

dence across units, but the limiting distributions in equations (18) and (20)

differ and are mixed normal rather than normal as in the Phillips and Moon

(1999) case. The mixed normality is due to both Ft being nonstationary and

common across units, as can be seen by considering equation (14) for T →∞.
The design matrix

¡
nT 2

¢−1Pn
i=1

PT
t=1 FtF

0
t = T−2

PT
t=1 FtF

0
t converge in dis-

tribution to a random matrix, namely
R
B̄εB̄

0
ε, rather than to a constant. Of

course,
¡
nT 2

¢−1Pn
i=1

PT
t=1 FtF

0
t would converge to a constant (in probability)

if Ft were not common shocks, i.e., if Ft were replaced by, say, Fit.

The convergence rates and the limiting distributions for β̂
FD

are reported

in the following theorem.

Theorem 2 Suppose Assumptions 1-6 hold and let Z ∼ N (0, Ik) be indepen-

dent of the σ-field generated by ∆Ft.

For fixed n and T →∞

β̂
FD − β = Op

³
T−1/2

´
, (21)
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√
T
³
β̂
FD − β

´
⇒ n−1Σ

−1/2
∆F

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Z. (22)

For T fixed and n→∞, we have

β̂
FD − β = Op

³
n−1/2

´
, (23)

√
n
³
β̂
FD − β

´
⇒
Ã

TX
t=1

∆Ft∆F
0
t

!−1Ã TX
t=1

TX
s=1

∆Ft∆F
0
sγ̄ts

!1/2
Z. (24)

When (n, T )→∞, one has

β̂
FD − β = Op

³
n−1/2T−1/2

´
, (25)

√
nT
³
β̂
FD − β

´
⇒ Σ−1/2∆F

p
h̄∆Z. (26)

Proof. See Appendix.

The results were derived for the case of no serial correlation. The presence

of time dependence in general involves a more complicated expression of the

limiting distributions, but rates of convergence would not be affected. Note

also that since the first differenced model is always stationary, irrespective of

whether equation (1) is a cointegration equation or a spurious regression, one

can always apply the CLT to obtain the limiting distribution of β̂
FD − β; this

is indirectly shown by the rate of convergence for the case when (n, T ) → ∞,
equal to

√
nT .

It is worth noticing the remarkable result in equation (26): one would expect

the limiting distribution of β̂
FD−β to be mixed normal given the strong depen-

dence across units due to the terms ∆Ft∆uit sharing the common element ∆Ft

across i, as we showed in (24) with large n and fixed T . However, the common

shocks are found not to play any role in the case of large n and large T . This

result is discussed thoroughly in the proofs of Theorems 1 and 2. and can also

be seen in equation (24) which gives the limiting distribution for T fixed and

n→∞. The design matrix T−1
PT

t=1∆Ft∆F
0
t is a random matrix for all finite

values of T . However, standard application of the LLN (its validity is ensured

by Assumption 2) shows that the design matrix converges to a constant matrix

14



as T →∞. Therefore, the mixed normality arising for finite T is wiped away by
the smoothing over time as well. Asymptotic normality is therefore determined

merely by design matrix T−1
PT

t=1∆Ft∆F
0
t being constant asymptotically.

3.2 Unobservable Ft

We turn now to the case when common shocks are unknown and thus they need

to be estimated. The asymptotics of β̂ and β̂
FD

are affected by the errors in

estimating shocks Ft.

Let F̂t be an estimate of the shock. Denote Ŵt = F̂t − T−1
PT

t=1 F̂t. Esti-

mations of β using the model in levels (β̂) or first differences (β̂
FD
) respectively

are now given by:

β̂ =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1 " nX
i=1

TX
t=1

Ŵtyit

#
, (27)

and

β̂
FD

=

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1 " nX
i=1

TX
t=1

∆F̂t∆yit

#
, (28)

with estimation errors:

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
, (29)

β̂
FD − β =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

(30)

In what follows, for the purpose of a concise discussion, we assume the

number of shocks k to be known4. We like to emphasize that this is does not

4An issue of importance that arises within this framework and that needs tackling prior to
estimating the common components Ft is to determine their number, k. In light of some recent
contributions, e.g., see Bai and Ng (2002) and Onatski (2005), it is natural to refer to model
(2) in order to extract both the common factors Ft and their number k. It is worth pointing
out though that determining k crucially depends on whether both n and T are large or if
either dimension is fixed. Under all cases, the literature provides methodologies to estimate
k consistently, i.e. to obtain an estimate k̂ such that, as either (n, T ) →∞ or, alternatively,

max {n, T}→∞ and min {n, T} is fixed, it holds that P k̂ = k = 1 and P k̂ 6= k = op (1).

Most often these methods treat estimation of k as a either model selection or a rank estimation
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lead to any loss of generality since the distribution of the estimated shocks does

not depend on whether k is known or estimated, and therefore the estimation

error that arises from using k̂ instead of k does not play any role as long as k̂

is consistent, e.g., see Bai (2003, p. 143, note 5) for an elegant proof of this

statement.

3.2.1 The case of n and T large

In this section, we estimate the common shocks Ft using the principal component

estimator. This means minimizing either

Vb (k) =
1

nT

nX
i=1

TX
t=1

¡
zit − λ0iFt

¢2
,

when considering Ft in levels, or

Va (k) =
1

nT

nX
i=1

TX
t=1

¡
∆zit − λ0i∆Ft

¢2
when estimating shocks ∆Ft from the first differenced version of model (2).

Consider the T × n matrix Z = (z1, ..., zT )
0, and the T × k matrix of shocks

F = (F1, F2, ..., FT )
0. Then each objective function Va (k) or Vb (k) can be

minimized by concentrating out λ and obtaining estimates ∆F̂ and F̂ using the

normalizations ∆F̂ 0∆F /̂T = Ik or F̂ 0F̂ /T 2 = Ik. The estimated shock matrices

∆F̂ and F̂ are
√
T times eigenvectors corresponding to the k largest eigenvalues

of the T × T matrices ∆Z∆Z0 or ZZ0. It is well known that the solutions to

the above minimization problems are not unique, e.g., when estimating shocks

∆Ft and Ft, these are not directly identifiable even though they are up to a

transformation. In our setup, the knowledge of H1∆Ft, H1Ft and H2λi is as

good as knowing ∆Ft, Ft, and λi. For sake of notational simplicity, in what

follows we shall assume that H1 (k × k) and H2 (n× n) are identity matrices.

problem, thereby employing some information criteria. For the case of either n or T fixed, the
contributions by Lewbel (1991), Donald (1997) and Cragg and Donald (1997) ensure consistent
estimation of the either the rank of the n×n matrix t ztz

0
t with zt ≡ [z1t, ..., znt]0 or of the

T × T matrix i ziz
0
i with zi ≡ [zi1, ..., ziT ]

0, depending on whether n or T is fixed. When
(n, T )→∞, the aforementioned procedures are no longer usable to obtain a consistent k̂ and
Bai and Ng (2002) propose a consistent estimator for k - see also Onatski (2005). Note that
assumptions 2-6 in our settings ensure the applicability of these methods to equation (2), as
it can be immediately verified.
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The convergence rate and the limiting distribution for β̂ are in the following

theorem.

Theorem 3 Suppose Assumptions 1-6 hold.

Let equation (1) be a cointegration relationship:

if
√
n/T → 0

β̂ − β = Op

³
n−1/2T−1

´
, (31)

√
nT
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1/2 ∙p
h̄Z1 +

q
β0Q̃BΓQ̃0BβZ2

¸
; (32)

if T/
√
n→ 0

β̂ − β = Op

¡
T−2

¢
, (33)

T 2
³
β̂ − β

´
⇒ 1

2
σ2e

∙Z
B̄εB̄

0
ε

¸−1
Ωεε; (34)

where Z1 ∼ N1 (0, Ik) and Z2 ∼ N2 (0, Ik) are independent, the random matrix

Q̃B is defined as

T−2
TX
t=1

ŴtW
0
t ⇒ Q̃B,

and

Γ = lim
n→∞

n−1
nX
i=1

nX
j=1

λiλ
0
jE (eitejt) ,

σ2e = lim
n→∞

1

n

nX
i=1

σ2ei,

where σ2ei is the long run variance of process {eit}.
Let equation (1) be a spurious regression:

if
√
n/T → 0, or T/

√
n→ 0 and

√
n/T 2 → 0

β̂ − β = Op

³
n−1/2

´
, (35)

√
n
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶p
h̄∆; (36)

if T 2/
√
n→ 0, then (33) and (34) hold.
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Proof. See Appendix.

Consistency is ensured in both cases, even though T/
√
n → 0 results in a

slower (than in the case of
√
n/T → 0) rate of convergence and in a degenerate

behavior of the numerator of β̂ − β. This is anyway not surprising given that

the shocks estimation errors (see Bai and Ng (2002), and Bai (2004) can be

decomposed in several terms of different asymptotic stochastic magnitude, which

have an impact only on the numerator. Notice the consequence of equation (1)

being a spurious regression: as long as the number of cross sectional units is

not exceedingly large, the classical
√
n consistency holds, and we have the same

limiting distribution as in equation (20). When n is far larger than T , we have

the same result as if relationship (1) were a cointegration relationship.

See below for the case when
√
n/T tends to a constant.

The convergence rate and the limiting distribution for β̂
FD

are in the fol-

lowing theorem.

Theorem 4 Suppose Assumptions 1-2 and 4-6 hold.

If n
T → 0

β̂
FD − β = Op

³
n−1/2T−1/2

´
, (37)

√
nT
³
β̂
FD − β

´
p→ Σ−1∆FQV −1β (38)

where V is the probability limit of the diagonal matrix consisting of the first k

eigenvalues of (nT )−1∆Z∆Z0 in decreasing order, and

Q = p limT−3/2
TX
s=1

TX
t=1

∆F̂t∆F̃
0
sn
−1

"
nX
i=1

¡
eiteis − γs−t

¢#
.

If T
n → 0

β̂
FD − β = Op

¡
T−1

¢
, (39)

T
³
β̂
FD − β

´
p→ h̄eV

−1β, (40)

where h̄e is the long-run variance of the process limn→∞ n−1/2
Pn

i=1 eit.

Proof. See Appendix.
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Notice that in this case we have degenerate limiting distributions, despite

having consistent estimates.

The condition n/T → 0 means that T is much larger than n, which in turn

implies a panel where time series observations outnumber the cross sectional

units. In such a case, we still have consistency. The condition T/n→ 0 implies

that the number of units n is far larger than T . In such a case, consistency is

ensured, even though at a ”slow” rate, given by T . In this case the impact of

n becomes ineffective, just as in Bai (2003, 2004) and Bai and Ng (2002, 2004),

where consistency depends on the minimum between T and n or some functions

of them. Further, the distribution limit is degenerate, and therefore convergence

in distribution can be achieved at a slower speed than Op

¡
T−1

¢
.

Finally, it can be observed that in both Theorems 3 and 4, the boundary

cases
√
n/T → τ or n/T → τ 0 (for τ and τ 0 are constants), are implicitly

analyzed. In these cases, the limit distributions are given by the sum of the

limit distributions in equations (32)-(34) and (38)-(40), respectively..

3.2.2 The case of T fixed and n large

When T is fixed and n is large, consistent estimation of shocks is still possible,

see e.g. Connor and Korajzcyk (1986) and Bai (2003). However, the following

restriction is necessary:

Assumption 7: E (eiteis) = 0 for all t 6= s.

Assumption 7 rules out the possibility of serial correlation in the data gen-

erating process of the eit, and therefore this is a constraint on Assumption 5(d).

However, contemporaneous correlation and cross sectional heteroscedasticity are

preserved.

Under Assumptions 4-7, we know that shocks estimation is
√
n consistent,

i.e. we have both

F̂t − Ft = Op

³
n−1/2

´
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and

∆F̂t −∆Ft = Op

³
n−1/2

´
for all t.

Theorems (5) and (6) do not anyway require
√
n consistency, since they

ensure the consistency of the OLS estimates β̂ and β̂
FD

for any consistent

estimate of the shocks, irrespective of the rate of convergence.

Theorem 5 Suppose Assumptions 1-7 hold; then for every consistent estimator

F̂t of Ft and for fixed T and n → ∞ we have the same results as in equations

(13)-(16).

Proof. See Appendix.

Theorem 6 Suppose Assumptions 1-7 hold; then for every consistent estimator

∆F̂t of ∆Ft and for fixed T and n→∞ we have the same results as in equations

(23) and (24).

Proof. See Appendix.

In both cases we have the same results as we would have if the Fts were

observable. Therefore, when T is fixed, having large n makes it indifferent to

use observed or estimated shocks as long as shocks are estimated consistently.

3.2.3 The case of n fixed and T large

In what follows, we provide a new inferential theory for the case when shocks

are unknown and the cross-sectional dimension n is finite. This case has not

been explored in the literature, the only exception being Gonzalo and Granger

(1995). Our contribution is aimed at making the estimated shocks usable in a

regression framework.

Rewriting model (2) in the vector form, one gets:

zt = ΛFt + et, (41)

where zt = (z1t, ..., znt)
0, et = [e1t, ..., ent]

0, and Λ = (λ1, λ2, ..., λn)
0. Here

too one can estimate Λ using the principal components estimator. A feasible
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estimator of Λ, Λ̂, is given by the
√
n times the eigenvectors corresponding

to the k largest eigenvalues of Z0Z. Notice that this estimator exploits the

normalization Λ̂0Λ̂/n = Ik, and it turns out to be computationally convenient

for the case of n < T . For sake of the notation, and without loss of generality,

from Assumption 4 we assume henceforth that n−1
Pn

i=1 λiλ
0
i = Ik.

The following theorem characterizes consistency and limiting distribution of

Λ̂.

Proposition 1 Under Assumptions 3-6 we have

Λ̂− Λ = Op

¡
T−1

¢
, (42)

T
³
Λ̂− Λ

´
⇒

∙
In − n−1Λ

Z
BεB

0
εΛ

0
¸µZ

dWeB
0
ε

¶µZ
BεB

0
ε

¶−1
−n−1Λ

µZ
dWeB

0
ε

¶
Λ

+n−1
∙
In − 2n−1Λ

Z
BεB

0
εΛ

0
¸
ΩeΛ, (43)

where We is the Wiener process associated to the partial sums of et and Ωe =

E (ete
0
t).

Proof. See Appendix.

Note that in this case we have a T -consistent estimate of the shock loadings,

even though the principal component estimator of Ft is not consistent (see Bai

(2004) and Proposition 2 below) when n is finite.

Henceforth, for sake of notation, we refer to the limiting distribution of

T
³
Λ̂− Λ

´
as D1

Λ, i.e. T
³
Λ̂− Λ

´
⇒ D1

Λ. Given the restriction Λ̂
0Λ̂/n = Ik,

the OLS estimator of Ft, obtained regressing the zts on the estimated loadings

Λ̂, is

F̂t = n−1Λ̂0zt.

The following Proposition characterizes (the inconsistency of) this estimator:
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Proposition 2 Consider F̂t = n−1Λ̂0zt, and also the first difference estimator,

∆F̂t = n−1Λ̂0∆zt. Then

max
1≤t≤T

°°°F̂t − Ft

°°° = Op (1) , (44)

and

max
1≤t≤T

°°°∆F̂t −∆Ft°°° = Op (1) (45)

uniformly in t.

Proof. See Appendix.

From Proposition 2 we note that the estimates of the shocks and of their

first difference are inconsistent. However this inconsistency has no impact on

the consistency of β̂ and β̂
FD
, though it affects their asymptotic law. See the

proofs of Theorems 7 and 8.

The convergence rate and the limiting distribution for β̂ are in the following

theorem.

Theorem 7 For the estimator β̂, we have:

β̂ − β = Op

¡
T−1

¢
, (46)

T
³
β̂ − β

´
⇒
∙Z

B̄εB̄
0
ε

¸−1⎧⎪⎨⎪⎩
R
B̄εdBu

³Pn
i=1

Pn
j=1 hij

´1/2
−n−1

£R
B̄εdB̄

0
eΛβ + n−1Λ0ΣeΛβ

¤
−n−1

R
B̄εB̄

0
ε

¡
D10
ΛΛ− Λ0D1

Λ

¢
β

⎫⎪⎬⎪⎭ , (47)

where B̄e is the demeaned Brownian motion associated to the partial sums of et

and Σe = V ar (et). When this is a spurious relationship, one gets

β̂ − β = Op (1) , (48)

β̂ − β ⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

. (49)

Proof. See Appendix.

Note that even though common shocks cannot be estimated consistently, β̂

is consistent when (1) represents a cointegration relationship but inconsistent
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when (1) represents a spurious regression. shock estimation has an impact on

the limit distribution of β̂ − β when equation (1) is a cointegration regression -

see equation (47) above. On the other hand, it does not affect the asymptotic

distribution when equation (1) is a spurious regression - see equation (49). This

can be seen comparing the two distribution limits with equations (10) and (12)

respectively, where shocks are assumed to be known.

Equations (47) and (49) show an important common feature of this theo-

retical framework. Only the numerators of equation (47) and (49) depend on

whether equation (1) is a cointegrating or spurious regression, whilst the de-

nominators are not affected. This is due to the fact (detailed in the proof)

that though F̂t is not a consistent estimator for Ft, the quantity
P

F̂tF̂
0
t is a

consistent estimator for
P

FtF
0
t for any consistent estimator of the loadings Λ̂.

The convergence rate and the limiting distribution for β̂
FD

are in the fol-

lowing theorem.

Theorem 8 For the first difference estimator β̂
FD
, we have:

β̂
FD − β = Op (1) , (50)

and

β̂
FD − β

p→ −β + n [Λ0Σ∆zΛ]
−1
Σ∆Fβ, (51)

where Σ∆e = V ar (∆et) and Σ∆z = ΛΣ∆FΛ0 +Σ∆e.

Proof. See Appendix.

The estimator β̂
FD

is inconsistent. As detailed in the proof, this is due to

the two terms
P
∆Ft∆F

0
t and

P
∆et∆e

0
t having the same asymptotic order,

rather than to the shock estimates being inconsistent. Also, this hold for any

consistent estimator Λ̂ (see discussion in the proof).

Theorems 7 and 8 hold if equation (2) represents a cointegration relationship.

We now turn to evaluate the case of eit ∼ I (1).
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4 CONCLUSION

This paper developed limiting theory for the OLS estimator for panel models

with common shocks, where contemporaneous correlation is generated by both

the presence of common regressors (e.g. macro shocks, aggregate fiscal and

monetary policies) among units and weak spatial dependence among the error

terms. We derived rates of convergence and limiting distributions under a com-

prehensive set of alternative characteristics of panels: several combinations of

the cross-sectional dimension n and the time series dimension T ; shocks be-

ing either observable or unobservable; and stationary and nonstationary panel

models, the latter representing either a cointegrating equation or a spurious

regression.

When the common shocks are observable, the OLS estimator always pro-

vides consistent estimates of the β, the case of spurious regression with fixed n

being the only exception. Consistency holds for all possible combinations of the

dimensions of n and T , including the case of n fixed, which so far has not been

addressed in the literature on nonstationary panel factor models. We extend

the study of consistency of OLS estimators to the case when the shocks are

unobservable and we prove that consistency always holds, the cases of spurious

regression and stationary regression when n is fixed being the only exceptions.

A central result is represented by the limiting distributions derived under the

strong cross-sectional dependence induced by the presence of common shocks. In

this case, we obtained a mixed normality as consequence of the common shocks

being nonstationary, while when shocks are stationary, normal distributions are

obtained.

In this paper, we consider a panel regression model with only latent shocks

Ft as regressors. This formulation can be extended to a more general framework

containing also idiosyncratic regressors, i.e. yit = αi + β0Ft + γ0xit + uit.

Another important extension is to relax the exogeneity hypothesis in As-

sumption 6(a). In this case, fully modified OLS (Phillips and Hansen, 1990)

and/or instrumental variable estimators may be employed.
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These interesting issues are beyond the scope of the present paper, and we

leave them for future studies.
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Appendix

Proof of Theorem 1. To prove the theorem, we refer to equation (7)

that contains the estimation error β̂−β = [
P

i

P
tWtW

0
t ]
−1 [

P
i

P
tWtuit]. The

proof be derived splitting this quantity into the denominator
P

i

P
tWtW

0
t and

the numerator
P

i

P
tWtuit, and analyzing the asymptotic behavior of both

quantities separately.

Let us start considering the denominator
P

i

P
tWtW

0
t . When T → ∞

and n is fixed, we have from Assumptions 2 and 3 that under both the cases

that equation (1) is a spurious regression or a cointegrating one it holds thatP
i

P
tWtW

0
t = Op

¡
T 2
¢
and

1

nT 2

nX
i=1

TX
t=1

WtW
0
t ⇒

Z
B̄εB̄

0
ε. (52)

As n→∞, and for fixed T , we have
P

i

P
tWtW

0
t = Op (n)

1

nT 2

nX
i=1

TX
t=1

WtW
0
t =

1

T 2

TX
t=1

WtW
0
t , (53)

whilst as both n and T are large we have
P

i

P
tWtW

0
t = Op

¡
nT 2

¢
1

nT 2

nX
i=1

TX
t=1

WtW
0
t ⇒

Z
B̄εB̄

0
ε. (54)

As far as the numerator is concerned, the proof be derived with respect to

three separate cases, following the same structure as in the theorem. We firstly

derive the rate of convergence and the limiting distribution of
P

i

P
tWtuit for

the case when T is large and n is fixed; we then study the opposite case, when

T is fixed and n is large; last, we analyze the case when both T and n are large.

Case 1: large T and fixed n

We firstly focus our attention to the case where equation (1) is a cointegration

relationship.

Denote

ξnt = T−1Wt

Ã
nX
i=1

uit

!
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and

ξnT =
TX
t=1

ξnt.

Assumption 6 ensures that Ft and the uits are independent. Also, according to

Assumption 1(a), the process
P

i uit has covariance structure given by

E

"Ã
nX
i=1

uit

!Ã
nX
i=1

uis

!#
=

nX
i=1

nX
j=1

τ ij,ts.

Then the absolutely summability condition on τ ij,ts over time implied in As-

sumption 1(b), and Assumptions 2 and 3 ensure that a FCLT holds such that

ξnT ⇒
Z

B̄εdW,

where W is a Brownian motion with variance

lim
T→∞

1

T

TX
t=1

TX
s=1

nX
i=1

nX
j=1

τ ij,ts =
nX
i=1

nX
j=1

hij .

An alternative way to write the limiting distribution of ξnT is

ξnT ⇒

⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2µZ
B̄εB̄

0
ε

¶1/2
Z,

where Z ∼ N (0, Ik).

Hence we have a twofold result. First, the rate of convergence of the nu-

merator of β̂ − β is Op (T ); therefore, given equation (52) that ensures that

the denominator of β̂ − β is Op

¡
T 2
¢
, we have that β̂ − β = Op

¡
T−1

¢
, proving

equation (9). As far as the distribution limit is concerned, we know, combining

the asymptotic law of ξnT with equation (52), we have that"
1

T 2

nX
i=1

TX
t=1

WtW
0
t

#−1 "
1

T

nX
i=1

TX
t=1

Wtuit

#
⇒ 1

n

µZ
B̄εB̄

0
ε

¶−1/2⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

Z,

which proves equation (10). Note that independence between Z and B̄ε is

ensured by Assumption 6.

We can now consider the case when equation (1) is a spurious regression and

therefore uit ∼ I (1).
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Define first ξSnt = T−2Wt (
Pn

i=1 uit) and ξSnT =
PT

t=1 ξ
S
nt. The processPn

i=1 uit is still a unit root process with long run variance given by
Pn

i=1

Pn
j=1 h

∆
ij .

Therefore, a FCLT, which follows from Assumptions 1(a), 2 and 3, ensures that

ξSnT = Op (1). Together with equation (52), this proves that β̂ − β = Op (1), as

reported in equation (11). As far as the limiting distribution is concerned, here

the asymptotic law of the numerator of β̂ − β is given by

ξSnT =
1

T 2

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒
µZ

B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

.

Combining this with the asymptotic law of the denominator given in equation

(52), we get equation (12).

Case 2: large n and fixed T .

In this case the same approach as in the previous case be followed to prove

the main results in the theorem.

Consider first the cointegration case. Define ξ̃nt =Wt

¡
n−1/2

Pn
i=1 uit

¢
and

ξ̃nT =
TX
t=1

Wt

Ã
n−1/2

nX
i=1

uit

!
.

Assumption 1(a) ensures that a CLT holds for n−1/2
Pn

i=1 uit, so that as n →
∞ we have that, for every t, n−1/2

Pn
i=1 uit ⇒ ūt, where ūt is a normally

distributed, zero mean random variable with, after Assumption 1(b)

E [ūtūs] = τ̄ ts.

Therefore, the quantities Wtūt are mixed normals random variables (due to the

randomness of Wt) and it ultimately holds that

ξ̃nT ∼ N

"
0,

TX
t=1

TX
s=1

WtW
0
sτ̄ ts

#
=

Ã
TX
t=1

TX
s=1

WtW
0
sτ̄ ts

!1/2
Z,

where Z ∼ N (0, Ik); Assumption 6 ensures independence between Z and the

random variable
PT

t=1

PT
s=1WtW

0
sτ̄ ts.

Therefore, in this case the rate of convergence of the numerator of β̂ − β is

Op (
√
n). Combining this with the rate of convergence of the denominator, given
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by equation (53), we have that β̂ − β = Op

¡
n−1/2

¢
, thereby proving equation

(13). As far as the distribution limit is concerned, combining the asymptotic

law of ξ̃nT with equation (53), we ultimately obtain (14).

Under the spurious regression case, define ξ̃
S

nt = Wt

¡
n−1/2

Pn
i=1 uit

¢
and

ξ̃
S

nT =
PT

t=1 ξ̃
S

nt. Assumption 1(a) ensures the validity of the CLT for n
−1/2Pn

i=1 uit,

so that uniformly in t we have, as n → ∞, n−1/2
Pn

i=1 uit ⇒ ūt. The process

ūt is an aggregation of unit root processes, and in light of Assumption 1(a) it is

a unit root process with long run variance which by definition is equal to h̄∆.

From this we have that ξ̃
S

nT = Op (1), and combining this with equation (53),

we obtain β̂ − β = Op (1) as reported in equation (15). As far as the limiting

distribution is concerned, since ξ̃
S

nT is a finite sum, we have ξ̃
S

nT ⇒
PT

t=1Wtūt

as n→∞. Combining this with equation (53), we prove the validity of equation
(16).

Case 3: large n and large T .

Let us start with the case where equation (1) is a cointegration relationship.

Define ξ̌nt = T−1Wt

¡
n−1/2

Pn
i=1 uit

¢
, and let ξ̌nT =

PT
t=1 ξ̌nt. After As-

sumption 1(b), we know that the process n−1/2
Pn

i=1 uit has zero mean and

covariance structure given by

E

"Ã
n−1/2

nX
i=1

uit

!Ã
n−1/2

nX
i=1

uis

!#
=
1

n

nX
i=1

nX
j=1

τ ij,ts.

Moreover, Assumption 6 ensures that n−1/2
Pn

i=1 uit and Wt are independent.

Hence, in light of Assumptions 1(a), 2 and 3, the FCLT ensures that

ξ̌nT ⇒
Z

B̄εdW,

where the Brownian motionW has variance equal to n−1
Pn

i=1

Pn
j=1 hij . An al-

ternative formulation for the asymptotic distribution of ξ̌nT , as it is well known,

ξ̌nT ⇒

⎛⎝ 1
n

nX
i=1

nX
j=1

hij

⎞⎠1/2µZ
B̄εB̄

0
ε

¶1/2
Z,

where Z ∼ N (0, Ik) and B̄ε and Z are independent. As n→∞ we have

lim
n→∞

1

n

nX
i=1

nX
j=1

hij = h̄,
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and therefore, as n→∞

ξ̌nT ⇒
p
h̄

µZ
B̄εB̄

0
ε

¶1/2
Z.

Hence, as far as the rate of convergence of ξ̌nT is concerned, we have ξ̌nT =

Op (1). Combining this with equation (54), we get that β̂−β = Op

¡
n−1/2T−1

¢
,

proving equation.(17). As far as the distribution limit is concerned, combining

the asymptotic law of ξ̌nT with equation (54), we have:"
1

nT 2

nX
i=1

TX
t=1

WtW
0
t

#"
1√
nT

nX
i=1

TX
t=1

Wtuit

#
⇒
p
h̄

µZ
B̄εB̄

0
ε

¶−1/2
Z,

which corresponds to equation (18).

We now turn to the case when equation (1) is a spurious regression. Let

ξ̌
S

nt = T−2Wt

¡
n−1/2

Pn
i=1 uit

¢
and ξ̌

S

nT =
PT

t=1 ξ̌
S

nt. For fixed n the process

n−1/2
Pn

i=1 uit is still a unit root process with long run variance given by

n−1
Pn

i=1

Pn
j=1 h

∆
ij . Therefore, for fixed n and as T → ∞, a FCLT, which

follows from Assumptions 1(a), 2 and 3, ensures that ξSnT = Op (1). This result,

together with equation (54), proves that β̂ − β = Op

¡
n−1/2

¢
, as reported in

equation (19). As far as the limiting distribution is concerned as T → ∞ we

have

ξ̌
S

nT =
1

T 2

TX
t=1

Wt

Ã
1√
n

nX
i=1

uit

!
⇒
µZ

B̄εBu

¶⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

;

taking the limit for n→∞ leads to

µZ
B̄εBu

¶⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

→
p
h̄∆
µZ

B̄εBu

¶
. (55)

Combining this result with the one reported in equation (54), we ultimately get

equation (20).

Proof of Theorem 2. To prove the theorem, we refer to equation (8) that

contains the estimation error β̂
FD − β = [

P
i

P
t∆Ft∆F

0
t ]
−1
[
P

i

P
t∆Ft∆uit].

The proof be derived splitting this quantity into the denominator
P

i

P
t∆Ft∆F

0
t
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and the numerator
P

i

P
t∆Ft∆uit, and analyzing the asymptotic behavior of

both quantities separately.

Let us start considering the denominator
P

i

P
t∆Ft∆F

0
t . When T → ∞

and n is fixed, we have from Assumption 2 and the Law of Large Numbers that

under both the cases that equation (1) is a spurious regression or a cointegrating

one it holds that
P

i

P
t∆Ft∆F

0
t = Op (T ) and

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t

p→ Σ∆F . (56)

As n→∞, and for fixed T , we have

1

n

nX
i=1

TX
t=1

∆Ft∆F
0
t =

TX
t=1

∆Ft∆F
0
t , (57)

whilst as both n and T are large we have

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t

p→ Σ∆F , (58)

with
Pn

i=1

PT
t=1∆Ft∆F

0
t = Op (nT ).

As far as the numerator is concerned, as in the case of Theorem 1 the proof

be derived with respect to three separate cases, following the same structure

as in the theorem. We firstly derive the rate of convergence and the limiting

distribution of
P

i

P
t∆Ft∆uit for the case when T is large and n is fixed; we

then study the opposite case, when T is fixed and n is large; last, we analyze

the case when both T and n are large. The proofs for each of the three cases

are along the same lines as in Theorem 1. It is worth noticing though that both

under the case when equation (1) is a cointegration relationship and when it is

a spurious regression, ∆uit is a stationary process. Therefore, there is no need

to distinguish between the two cases unlike in Theorem 1.

Case 1: large T and fixed n

Denote

ξ∆nt = T−1/2∆Ft

Ã
nX
i=1

∆uit

!
and

ξ∆nT =
TX
t=1

ξ∆nt.
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Assumption 6 ensures that ∆Ft and the ∆uits are independent. Also, according

to Assumption 1(b), the process
P

i∆uit has zero mean and covariance structure

E

"Ã
nX
i=1

∆uit

!Ã
nX
i=1

∆uis

!#
=

nX
i=1

nX
j=1

γij,ts.

Therefore the process ξ∆nt has zero mean and covariance structure given by

E
h
ξ∆ntξ

∆0
nt

i
=
1

T

⎛⎝ nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F
0
s) .

After Assumption 1(b) and 2, that ensure weak dependence over time a CLT

holds. Therefore, as T →∞, we have

ξ∆nT ⇒

⎡⎣ lim
T→∞

1

T

⎛⎝ nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F
0
s)

⎤⎦1/2 Z (59)

=

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
1/2
∆FZ,

where Z ∼ N (0, Ik). Hence we have a twofold result. First, the rate of con-

vergence of the numerator of β̂
FD − β is Op

³√
T
´
; therefore, given equation

(56) that ensures that the denominator of β̂
FD − β is Op (T ), we have that

β̂
FD − β = Op

¡
T−1/2

¢
, proving equation (21). As far as the distribution limit

is concerned, combining the asymptotic law of ξ∆nT with equation (56), we have

that"
1

T

nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 "
1√
T

nX
i=1

TX
t=1

∆Ft∆uit

#
⇒ 1

n

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
−1/2
∆F Z,

which proves equation (22).

Case 2: large n and fixed T .

In this case the same approach as in the previous case be followed to prove

the main results in the theorem.

Define ξ̃
∆

nt = ∆Ft
¡
n−1/2

Pn
i=1∆uit

¢
and

ξ̃
∆

nT =
TX
t=1

ξ̃nt.
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Assumption 1(a) ensures that a CLT holds for n−1/2
Pn

i=1∆uit, so that as

n → ∞ we have that, for every t, n−1/2
Pn

i=1∆uit ⇒ ūt, where ∆ūt is a

normally distributed, zero mean random variable with covariance structure

E [∆ūt∆ūs] =
TX
t=1

TX
s=1

γ̄ts.

Hence, in light of Assumption 6, ξ̃
∆

nt is a zero mean random variable whose

covariance structure is given by (after Assumption 1(a))

E
h
ξ̃
∆

ntξ̃
∆0
ns

i
=

TX
t=1

TX
s=1

γ̄tsE (∆Ft∆F
0
s) .

Since ξ̃
∆

nT is a finite sum of normally distributed random variables, we have that

ξ̃
∆

nT ∼
Ã

TX
t=1

TX
s=1

∆Ft∆F
0
sγ̄ts

!1/2
Z,

where Z ∼ N (0, Ik); Assumption 6 ensures independence between Z and the

random variable
P

t

P
s∆Ft∆F

0
sγ̄ts. Therefore, in this case the rate of con-

vergence of the numerator of β̂
FD − β is Op (

√
n). Combining this with the

rate of convergence of the denominator, given by equation (57), we have that

β̂
FD − β = Op

¡
n−1/2

¢
, thereby proving equation (23). Also, combining this

with equation (57), we ultimately obtain (24).

Case 3: large n and large T .

Define ξ̌
∆

nt = T−1/2∆Ft
¡
n−1/2

Pn
i=1∆uit

¢
, and let ξ̌

∆

nT =
PT

t=1 ξ̌
∆

nt. In light

of the passages derived above, the ξ̌
∆

nts are random variables with zero mean and

covariance structure given by

E
h
ξ̌
∆

ntξ̌
∆0
ns

i
=
1

T

⎛⎝ 1
n

nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F
0
s) .

From equation (59) we know that, for fixed n and as T →∞

ξ̌
∆

nT ⇒

⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
1/2
∆FZ,

33



with Z ∼ N (0, Ik). As n→∞ we have

lim
n→∞

⎛⎝ 1
n

nX
i=1

nX
j=1

hij

⎞⎠1/2

Σ
1/2
∆F →

p
h̄∆Σ

1/2
∆F .

Hence, as far as the rate of convergence of ξ̌
∆

nT is concerned, we have ξ̌
∆

nT =

Op (1). Combining this with equation (58), we get that β̂
FD−β = Op

¡
n−1/2T−1/2

¢
,

proving equation.(23). As far as the distribution limit is concerned, we know that

ξ̌
∆

nT ⇒
p
h̄∆Σ

1/2
∆FZ,

as (n, T ) → ∞ with Z ∼ N (0, Ik). Combining this result with equation (58),

we have:"
1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 "
1√
nT

nX
i=1

TX
t=1

∆Ft∆uit

#
⇒
p
h̄∆Σ

−1/2
∆F Z,

which corresponds to equation (24).

Lemma 1 Let Assumptions 1-6 hold. Then the following results hold for the

estimated shocks F̂t when (n, T )→∞:

1.

VnT

³
F̂t − Ft

´
= T−1

TX
s=1

F̂sγs−t + T−1
TX
s=1

F̂sζst + T−1
TX
s=1

F̂sηst + T−1
TX
s=1

F̂sξst,

where γs−t = E
£
n−1e0tes

¤
,

ζst =
e0tes
n
− γs−t,

ηst =
1

n
∆F 0sΛ

0et,

ξst =
1

n
∆F 0tΛ

0es,

and VnT is a diagonal matrix containing the largest k eigenvalues of

(nT )−1 ZZ0 in decreasing order;
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2. Denote CnT = min {
√
n, T}. Consistency of F̂t is expressed as

(a) max
1≤t≤T

°°°F̂t − Ft

°°° = Op

¡
T−1

¢
+Op

¡
n−1/2T 1/2

¢
and

(b)
PT

t=1

°°°F̂t − Ft

°°°2 = Op

¡
TC−2nT

¢
;

3. It holds that:

(a)
PT

t=1

³
F̂t − Ft

´0
et = Op

¡
TC−2nT

¢
;

(b)
PT

t=1

³
F̂t − Ft

´0
Ft = Op (1) +Op

¡
n−1/2T

¢
= Op

¡
TC−2nT

¢
;

(c)
PT

t=1

³
F̂t − Ft

´0
F̂t = Op

¡
TC−2nT

¢
.

4. When
√
n
T → 0 as (n, T )→∞, we have

√
n
³
Wt − Ŵt

´
=

1

T 2

TX
s=1

ŴsW
0
s

1√
n

nX
i=1

λieit,

with

n−1/2
nX
i=1

λieit ⇒ Zt,

where Zt v N (0,Γ) and T−2
PT

s=1 ŴsWs ⇒ Q̃B; Q̃B and Z are inde-

pendent - see Bai (2004).

Proof. See Bai (2004).

Lemma 2 Lemma 1 ensures that

1. T−2
PT

t=1 ŴtŴ
0
t = T−2

PT
t=1WtW

0
t + op

¡
T−1/2C−1nT

¢
;

2. n−1/2T−1
Pn

i=1

PT
t=1 Ŵtuit = n−1/2T−1

Pn
i=1

PT
t=1Wtuit +Op

¡
C−1nT

¢
;

3. T−1
PT

t=1 Ŵt

³
Ft − F̂t

´
= T−1

PT
t=1W

0
t

³
Ft − F̂t

´
+Op

¡
C−2nT

¢
;
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Proof. Proof is as follows:

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2

TX
t=1

³
Wt + Ŵt −Wt

´³
Wt + Ŵt −Wt

´0
=

1

T 2

TX
t=1

WtW
0
t +

1

T 2

TX
t=1

Wt

³
Ŵt −Wt

´0
+
1

T 2

TX
t=1

³
Ŵt −Wt

´
W 0

t +
1

T 2

TX
t=1

³
Ŵt −Wt

´³
Ŵt −Wt

´0
= I + II + III + IV.

Consider II and III. Using the Cauchy-Schwartz inequality we get straightfor-

wardly

1

T 2

TX
t=1

Wt

³
Ŵt −Wt

´0
= Op

µ
1√
T

¶
Op

µ
1

CnT

¶
op (1) = op

µ
1√

TCnT

¶
.

Consider now IV. In this case, Lemma 1.2.(b) states that

T−2
TX
t=1

³
Ŵt −Wt

´³
Ŵt −Wt

´0
= Op

¡
T−1C−2nT

¢
.

Then

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2

TX
t=1

WtW
0
t + op

µ
1√

TCnT

¶
+Op

µ
1

TC2nT

¶
,

which proves part 1 of the Lemma. Consider now part 2:

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit+
1√
nT

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit = I+II.

For term I, Theorem 1 ensures that n−1/2T−1
Pn

i=1

PT
t=1Wtuit = Op (1). As

far as II is concerned, using the Cauchy-Schwartz inequality we get°°°°° 1√
nT

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit

°°°°°
=

°°°°° 1T
TX
t=1

³
Ŵt −Wt

´ 1√
n

nX
i=1

uit

°°°°°
≤

Ã
1

T

TX
t=1

°°°Ŵt −Wt

°°°2!1/2
⎛⎝ 1
T

nX
i=1

°°°°° 1√
n

nX
i=1

uit

°°°°°
2
⎞⎠1/2

= Op

µ
1

CnT

¶
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given that T−1
PT

t=1

°°°Ŵt −Wt

°°°2 = Op

¡
C−2nT

¢
and n−1/2

Pn
i=1 uit = Op (1).

Hence,

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit +Op

µ
1

CnT

¶
,

proving part 2 of the Lemma. To prove part 3, we note that

1

T

TX
t=1

Ŵ 0
t

³
Ft − F̂t

´
=
1

T

TX
t=1

W 0
t

³
Ft − F̂t

´
+
1

T

TX
t=1

³
Ŵt −Wt

´0 ³
Ft − F̂t

´
= I+II.

Term I is bounded by Op

¡
C−1nT

¢
- see Lemma 1.3.(c) - whilst II is bounded byÃ

1

T

TX
t=1

°°°Ŵt −Wt

°°°2!1/2Ã 1
T

TX
t=1

°°°Ft − F̂t

°°°2!1/2

= Op

µ
1

CnT

¶
Op

µ
1

CnT

¶
= Op

µ
1

C2nT

¶
.

Hence,

1

T

TX
t=1

Ŵt

³
Ft − F̂t

´
= Op

µ
1

CnT

¶
+Op

µ
1

C2nT

¶
.

Proof of Theorem 3. According to equation (29)

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
.

Let us first consider the denominator of this expression. Assumption 3 and

Lemma 2.1 imply that

nX
i=1

TX
t=1

ŴtŴ
0
t = Op

¡
nT 2

¢
, (60)

and ¡
nT 2

¢−1 nX
i=1

TX
t=1

ŴtŴ
0
t ⇒

Z
B̄εB̄

0
ε; (61)

this holds under both the cases of cointegration and spurious regression.

We now prove Theorem 3 for the case when equation (1) is a cointegration

relationship. The numerator of β̂ − β is given by

n
TX
t=1

Ŵt

³
Wt − Ŵt

´0
β +

nX
i=1

TX
t=1

Ŵtuit = I + II.

37



Let us consider II. We know from Theorem 1 and Lemma 2.2 that, as far as

II is concerned

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit + op (1) = Op (1) ,

and therefore
1√
nT

nX
i=1

TX
t=1

Ŵtuit ⇒
µZ

B̄εB̄
0
ε

¶1/2p
h̄Z, (62)

where Z ∼ N (0, Ik).As far as term I is concerned, two cases are possible:

1. if
√
n/T → 0, we know from Lemma 1.4 that

√
n
³
Wt − Ŵt

´
=

1

T 2

TX
s=1

ŴsW
0
s

1√
n

nX
i=1

λieit,

and
1√
n

nX
i=1

λieit ⇒ Zt,

with Zt v N (0,Γ) for every t. Therefore the asymptotic magnitude of

term I is the same as that of term II and equal to Op (
√
nT ). This proves

equation (31). As far as the distribution limit is concerned, we can write

1

T

TX
t=1

Wt

√
n
³
Wt − Ŵt

´0
β

=
1

T

TX
t=1

Wt

"
1

T 2

TX
s=1

ŴsW
0
s

Ã
1√
n

nX
i=1

λieit

!#0
β + op (1) ,

and since by definition T−2
PT

s=1 ŴsW
0
s ⇒ Q̃B, we have

1

T

TX
t=1

Wt

"
1

T 2

TX
s=1

ŴsW
0
s

Ã
1√
n

nX
i=1

λieit

!#0
β ⇒

µZ
B̄εB̄

0
ε

¶1/2 ³
β0Q̃BΓQ̃

0
Bβ
´1/2

Z,

with Z ∼ N (0, Ik). Combining this with the asymptotic law of II and

with equation (61), we obtain equation (32);

2. if T/
√
n→ 0, after Lemma 1.3.(c), we have

TX
t=1

Ŵt

³
Wt − Ŵt

´0
= Op

³
n−1/2T

´
+Op (1) ,
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and the term that dominates is the one with asymptotic magnitude Op (1).

Therefore, I =
Pn

i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
= Op (n), and term II =Pn

i=1

PT
t=1 Ŵtuit = Op (

√
nT ) is dominated. The order of magnitude

of the numerator is now Op (n), and combining this with equation (60) we

have

β̂ − β = Op

¡
T−2

¢
,

which proves equation (33). As far as the limiting distribution is con-

cerned, following Bai (2004), we can write

TX
t=1

Ŵt

³
Wt − Ŵt

´0
=

1

T 2

TX
s=1

TX
t=1

WtW
0
s

Ã
1

n

nX
i=1

eiteis

!
+ op (1) ,

and asymptotically we have:

1

T 2

TX
s=1

TX
t=1

WtW
0
s

Ã
1

n

nX
i=1

eiteis

!
=
1

n

nX
i=1

Ã
1

T

TX
t=1

Wteit

!Ã
1

T

TX
s=1

W 0
seis

!
.

We know that T−1
PT

t=1Wteit ⇒
R
B̄εdBei, where Bei (r) is the Brownian

motion associated to the partial sums of eit with long run variance σ2ei;

therefore, applying a LLN, the limit for n→∞ is given by

lim
n→∞

1

n

nX
i=1

E

∙µZ
B̄εdBei

¶µZ
B̄0
εdBei

¶¸
= lim

n→∞

1

n

nX
i=1

V ar

µZ
B̄εdBei

¶
.

Since we have that V ar
¡R

B̄εdBei

¢
= σ2eiE

¡R
B̄εB̄

0
ε

¢
, it holds that

lim
n→∞

1

n

nX
i=1

V ar

µZ
B̄εdBei

¶

=

Ã
lim
n→∞

1

n

nX
i=1

σ2ei

!
E

µZ
B̄εB̄

0
ε

¶
=
1

2
σ2eΩεε,

given the definition of σ2e and that E
¡R

B̄εB̄
0
ε

¢
= 1/2Ωεε. Combining this

equation (61), equation (34) is proved.

We now prove results when we equation (1) is a spurious regression. Here,

as far as term
Pn

i=1

PT
t=1 Ŵtuit in equation (29) is concerned, we have

nX
i=1

TX
t=1

Ŵtuit =
nX
i=1

TX
t=1

Wtuit +
nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit.
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After equation (19) we know

nX
i=1

TX
t=1

Wtuit = Op

¡√
nT 2

¢
.

As per
Pn

i=1

PT
t=1

³
Ŵt −Wt

´
uit, application of the Cauchy-Schwartz inequal-

ity leads to

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit

=
TX
t=1

³
Ŵt −Wt

´Ã nX
i=1

uit

!

≤
"

TX
t=1

°°°Ŵt −Wt

°°°2#1/2
⎡⎣ TX
t=1

°°°°°
nX
i=1

uit

°°°°°
2
⎤⎦1/2

= Op

³√
TC−1nT

´
Op

¡√
nT
¢
,

and therefore
Pn

i=1

PT
t=1

³
Ŵt −Wt

´
uit is always dominated by

Pn
i=1

PT
t=1 Ŵtuit.

Hence, we have

1√
nT 2

nX
i=1

TX
t=1

Ŵtuit =
1√
nT 2

nX
i=1

TX
t=1

Wtuit + op (1) ,

and, after equation (55), we have

1√
nT 2

nX
i=1

TX
t=1

Ŵtuit ⇒
µZ

B̄εBu

¶p
h̄∆.

Consequently, there are two possibilities for the rate of convergence and the

limiting distribution of the numerator:

• when
√
n/T 2 → 0, two subcases are possible:

—
√
n/T → 0, and in such case we have

Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β =

Op (
√
nT ); therefore the term that dominates is

Pn
i=1

PT
t=1 Ŵtuit;

combining this with equations (60) and (61), equations (35) and (36)

can be obtained;

40



— T/
√
n→ 0 and

√
n/T 2 → 0, and here

Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β =

Op (n); in this case, again the term that dominates is
Pn

i=1

PT
t=1 Ŵtuit

combining this with equations (60) and (61), equations (35) and (36)

hold;

• when T 2/
√
n → 0, we have that

Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β = Op (n),

and this is the dominating term. This leads to the same results as in

equations (33) and (34).

Lemma 3 Let Assumptions 1-2 and 4-6 hold. Then, for the estimated shocks

∆F̂t, it holds that

1.

VnT

³
∆F̂t −∆Ft

´
= T−1

TX
s=1

∆F̂sγs−t + T−1
TX
s=1

∆F̂sζst + T−1
TX
s=1

∆F̂sηst + T−1
TX
s=1

∆F̂sξst,

where γs−t = E
£
n−1

Pn
i=1 eiteis

¤
,

ζst = n−1
nX
i=1

eiteis − γs−t,

ηst = n−1∆F 0sΛ
0et,

ξst = n−1∆F 0tΛ
0es,

and VnT is a diagonal matrix containing the largest k eigenvalues of (nT )
−1
∆Z∆Z0

in decreasing order;

2. Denote δnT = min
n√

n,
√
T
o
. Consistency of ∆F̂t is ensured by

(a) max
1≤t≤T

°°°∆F̂t −∆Ft°°° = Op

¡
T−1/2

¢
+Op

¡
n−1/2T 1/2

¢
;

(b)
PT

t=1

°°°∆F̂t −∆Ft°°°2 = Op

¡
Tδ−2nT

¢
;

3. It holds that:
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(a)
PT

t=1

³
∆F̂t −∆Ft

´0
et = Op

¡
Tδ−2nT

¢
;

(b)
PT

t=1

³
∆F̂t −∆Ft

´0
∆Ft = Op

¡
Tδ−2nT

¢
;

(c)
PT

t=1

³
∆F̂t −∆Ft

´0
∆F̂t = Op

¡
Tδ−2nT

¢
;

4. The relationship between shocks and ζst is given by
PT

t=1

PT
s=1∆Ft∆F

0
sζst =

Op

¡
n−1/2T 3/2

¢
.

Proof. See Bai and Ng (2002) and Bai (2003).

Proof of Theorem 4. Recall equation (30):

β̂
FD − β =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

We firstly study the rate of convergence and the distribution limit of the de-

nominator. The following decomposition holds:

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t = n

TX
t=1

∆Ft∆F
0
t + n

TX
t=1

∆Ft

³
∆F̂t −∆Ft

´0
+n

TX
t=1

³
∆F̂t −∆Ft

´
∆F 0t + n

TX
t=1

³
∆F̂t −∆Ft

´³
∆F̂t −∆Ft

´0
= I + II + III + IV.

After Assumption 2 we have

I = n
TX
t=1

∆Ft∆F
0
t = Op (nT ) .

Also

II = n
TX
t=1

³
∆F̂t −∆Ft

´
∆F 0t = Op

¡
nTδ−2nT

¢
,

and

IV = n
TX
t=1

³
∆F̂t −∆Ft

´³
∆F̂t −∆Ft

´0
= Op

¡
nTδ−2nT

¢
,

using Lemma 2.3.(b) and 2.2.(b) respectively. Therefore

1

nT

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t =

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t +Op

¡
δ−2nT

¢
(63)
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and, for (n, T )→∞
1

nT

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

p→ Σ∆F . (64)

Let us now turn to the numerator of β̂
FD − β. We have

nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸

=
nX
i=1

TX
t=1

∆Ft∆uit +
nX
i=1

TX
t=1

³
∆F̂t −∆Ft

´
∆uit

+n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = I + II + III.

We know, from equation (25) in Theorem 2 that:

I =
nX
i=1

TX
t=1

∆Ft∆uit = Op

³√
nT
´
.

Also, following Bai (2003, pp. 163-164), we could prove

II =
nX
i=1

TX
t=1

³
∆F̂t −∆Ft

´
∆uit = Op

¡√
nTδ−2nT

¢
.

Lemma 2.3.(c) ensures that

III = n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
= nOp

¡
Tδ−2nT

¢
= Op

¡
nTδ−2nT

¢
.

Note that term III dominates term II by a shock
√
n. Also, III always dom-

inates I since it always holds that nTδ−2nT >
√
nT ; in fact, this is the same as

writing

√
n
√
T = min

³√
n,
√
T
´
max

³√
n,
√
T
´
> δ2nT =

h
min

³√
n,
√
T
´i2

.

Therefore, term III in the numerator always dominates. According to Lemma

3.1, III can be decomposed into four terms of magnitude

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = Op

³√
Tδ−1nT

´
+Op

³
Tn−1/2δ−1nT

´
+Op

Ãr
T

n

!
+Op

Ãr
T

n

!
= a+ b+ c+ d.

Two cases may occur:
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1. n
T → 0; in this case, δnT =

√
n. The dominating term is b and

b = n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

n

T

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sζstV

−1β + op (1) ,

where

ζst =
1

n

nX
i=1

¡
eiteis − γs−t

¢
= Op

³
n−1/2

´
.

After similar passages as above, we have

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sζstV

−1β =
TX
t=1

TX
s=1

∆Ft∆F
0
sζstV

−1β + op (1) .

After Lemma 2.4, we know that T−1
PT

t=1

PT
s=1∆Ft∆F

0
sζst = Op

¡
n−1/2T 1/2

¢
.

Therefore the order of magnitude of the numerator is Op

¡
n1/2T 1/2

¢
, and

combining this with equation (63) we obtain equation (37). As per the

limiting distribution, since by definition

Q = p lim
1

nT 3/2

TX
s=1

TX
t=1

∆F̂t∆F̃
0
sζst,

combining this with equation (64), one can derive equation (38);

2. T
n → 0, and in such case, given that δnT =

√
T , the dominating term is a.

Given its definition, after Lemma 2.2.(a), we have

a =
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sγs−tV

−1β + op (1) ,

and

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sγs−t

=
TX
t=1

TX
s=1

∆Ft∆F
0
sγs−t +

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´
∆F 0sγs−t

+
TX
t=1

TX
s=1

∆Ft

³
∆F̃s −∆Fs

´0
γs−t +

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´³
∆F̃s −∆Fs

´0
γs−t.

Then we can show that:
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(a)
TX
t=1

TX
s=1

∆Ft∆F
0
sγs−t = Op (T ) ;

(b)

TX
t=1

TX
s=1

∆Ft

³
∆F̃s −∆Fs

´0
γs−t ≤ max

t
k∆Ftkmax

s

°°°∆F̃s −∆Fs°°° TX
t=1

TX
s=1

¯̄
γs−t

¯̄
= Op (1)Op

³
T−1/2

´
Op (T ) = Op

³
T 1/2

´
;

(c)

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´³
∆F̃s −∆Fs

´0
γs−t

≤
³
max
s

°°°∆F̃s −∆Fs°°°´ TX
t=1

TX
s=1

¯̄
γs−t

¯̄
= Op

¡
T−1

¢
Op (T ) = Op (1) .

Therefore, the dominating term is the first one with

n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = Op (nT ) .

Combining this with the rate of convergence of the denominator as

given in equation (63), we obtain equation (39). As far as the distri-

bution limit is concerned, we have

1

nT

TX
t=1

TX
s=1

∆F̂t∆F̂
0
sγt−sV

−1β
p→ h̄eΣ∆FV

−1β.

Combining this with equation (64), and recalling the definition of

Σ∆F , we can derive equation (40).

Proof of Theorem 5. The results stated in the theorem hold for any

consistent estimator of Ft; we therefore consider an estimator, F̆t, such that for

all t

F̆t − Ft = Op

¡
n−δ

¢
,
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for some δ > 0. In this case we have

TX
t=1

nX
i=1

F̆tuit =
TX
t=1

nX
i=1

Ftuit +
TX
t=1

nX
i=1

³
F̆t − Ft

´
uit

= Op

³
n1/2

´
+Op

¡
n−δ

¢
Op

³
n1/2

´
= Op

³
n1/2

´
,

where the first term is Op

¡
n1/2

¢
as proved in Theorem 1 and the second one is

always dominated. Note that the summation over t does not play any role since

T is fixed. Moreover, in light of the consistency of F̆t we have

TX
t=1

nX
i=1

F̆tF̆
0
t =

TX
t=1

nX
i=1

FtF
0
t + op (1) = Op (n) .

Proof of Theorem 6. This theorem can be proved following the same

lines as for Theorem 5 and therefore is omitted.

Proof of Proposition 1. Equation (42) follows from Lemma 3 in Bai

(2004).

As far as equation (43) is concerned, let F̄t be the principal component

estimator for Ft as defined in Bai (2004). Then we know (see e.g. the proof of

Lemma 3 in Bai, 2004) that T
³
Λ̂− Λ

´
can be decomposed as

T
³
Λ̂− Λ

´
=
1

T

"
TX
t=1

etF
0
t +

TX
t=1

et
¡
F̄t − Ft

¢0
+ Λ

TX
t=1

¡
Ft − F̄t

¢
F̄ 0t

#"
1

T 2

TX
t=1

F̄tF̄
0
t

#−1
.

(65)

As far as the denominator of this expression is concerned, let Ξ =
R
BεB

0
ε. We

have

TX
t=1

F̄tF̄
0
t =

TX
t=1

FtF
0
t+

TX
t=1

¡
F̄t − Ft

¢
F̄ 0t+

TX
t=1

F̄t
¡
F̄t − Ft

¢0
+

TX
t=1

¡
F̄t − Ft

¢ ¡
F̄t − Ft

¢0
,

where
TX
t=1

FtF
0
t = Op

¡
T 2
¢
,

TX
t=1

¡
F̄t − Ft

¢
F̄ 0t = Op (T ) ,
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TX
t=1

¡
F̄t − Ft

¢ ¡
F̄t − Ft

¢0
= Op (T ) ;

the last two equalities come directly from Lemma B.4(ii) and Lemma B.1 in Bai

(2004). Therefore

T−2
TX
t=1

F̄tF̄
0
t = T−2

TX
t=1

FtF
0
t +Op

¡
T−1

¢
and

T−2
TX
t=1

F̄tF̄
0
t ⇒ Ξ.

As far as the numerator of equation (65) is concerned, we study each term. First

of all we know that T−1
PT

t=1 etF
0
t ⇒

R
dWeBε. The limiting distribution ofPT

t=1 et
¡
F̄t − Ft

¢0
can be obtained from the following decomposition - see Bai

(2004, p. 164) for details:

F̄t − Ft = T−2
TX
s=1

F̃sγn (s, t) + T−2
TX
s=1

F̃sζst + T−2
TX
s=1

F̃sηst + T−2
TX
s=1

F̃sξst,

where (as in Lemma 1) we let γn (s, t) = E (e0tes/n), ζst = e0tes/n − γn (s, t),

ηst = F 0sΛ
0et/n, ξst = F 0tΛ

0es/n. Hence

1

T

TX
t=1

et
¡
F̄t − Ft

¢0
= T−3

TX
s=1

TX
t=1

etF̃
0
sγn (s, t) + T−3

TX
s=1

TX
t=1

etF̃
0
sζst

+T−3
TX
s=1

TX
t=1

etF̃
0
sηst + T−3

TX
s=1

TX
t=1

etF̃
0
sξst

= I + II + III + IV,

and

I = Op

¡
T−1

¢
sinceE

°°°etF̃ 0sγn (s, t)°°° ≤ |γn (s, t)|µmax
s,t

E
°°°etF̃ 0s°°°¶ andmax

s,t
E
°°°etF̃ 0s°°° =

Op (T );

II = n−1T−3
PT

s=1

PT
t=1 etF̃

0
se
0
tes − T−3

PT
s=1

PT
t=1 etF̃

0
sγn (s, t) and we

have

n−1T−3
TX
s=1

TX
t=1

etF̃
0
se
0
tes = n−1T−3

TX
s=1

TX
t=1

ete
0
tesF̃

0
s

= n−1T−1

Ã
T−1

TX
t=1

ete
0
t

!Ã
T−1

TX
s=1

esF̃
0
s

!
= Op

¡
T−1

¢
;
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III = n−1T−3
PT

s=1

PT
t=1 etF̃

0
sF

0
sΛ

0et with

n−1T−3
TX
s=1

TX
t=1

etF̃
0
sF

0
sΛ

0et = n−1T−3
TX
s=1

TX
t=1

ete
0
tΛFsF̃

0
s

= n−1

Ã
T−1

TX
t=1

ete
0
t

!
Λ

Ã
T−2

TX
s=1

FsF̃
0
s

!
= Op (1) ;

IV = n−1T−3
PT

s=1

PT
t=1 etF̃

0
sF

0
tΛ

0es and

n−1T−3
TX
s=1

TX
t=1

etF̃
0
sF

0
tΛ

0es = n−1T−3
TX
s=1

TX
t=1

etF
0
tΛ

0esF̃
0
s

= n−1T−1

Ã
T−1

TX
t=1

etF
0
t

!
Λ0

Ã
T−1

TX
s=1

esF̃
0
s

!
= Op

¡
T−1

¢
.

Therefore the term that dominates is III and

n−1

Ã
T−1

TX
t=1

ete
0
t

!
Λ

Ã
T−2

TX
s=1

FsF̃
0
s

!
⇒ n−1ΩeΛQ.

Finally, as far as the term Λ
PT

t=1

¡
Ft − F̄t

¢
F̄ 0t in equation (65) is concerned,

we have

T−1Λ
TX
t=1

¡
Ft − F̄t

¢
F̄ 0t = −T−3

TX
s=1

TX
t=1

F̃sF̄
0
tγn (s, t)− T−3

TX
s=1

TX
t=1

F̃sF̄
0
tζst

−T−3
TX
s=1

TX
t=1

F̃sF̄
0
tηst − T−3

TX
s=1

TX
t=1

F̃sF̄
0
tξst

= a+ b+ c+ d.

We have that the terms a and b follow from the proof of Lemma B.4 in Bai,

2004):

a = Op

¡
T−1

¢
;

b = Op

¡
T−1

¢
,

the term

c = n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tFsΛ

0et,
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with

n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tFsΛ

0et = n−1T−3
TX
s=1

TX
t=1

F̃sF
0
sΛ

0etF̄
0
t

= n−1

Ã
T−2

TX
s=1

F̃sF
0
s

!
Λ0

Ã
T−1

TX
t=1

etF̄
0
t

!
= Op (1) ;

and

d = n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tF

0
tΛ

0es,

with

n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tF

0
tΛ

0es = n−1T−3
TX
s=1

TX
t=1

F̃se
0
sΛF

0
t F̄

0
t

= n−1

Ã
T−1

TX
s=1

F̃se
0
s

!
Λ0

Ã
T−1

TX
t=1

FtF̄
0
t

!
= Op (1) .

Thus the limiting distribution of Λ
PT

t=1

¡
Ft − F̄t

¢
F̄ 0t is determined by c and d,

and we have

c = n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

Ã
T−1

TX
t=1

etF̄
0
t

!
=

n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

Ã
T−1

TX
t=1

etFt

!

+n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

"
T−1

TX
t=1

et
¡
F̄t − Ft

¢0#

⇒ n−1QΛ0
∙Z

dWeB
0
ε + n−1ΩeΛQ

¸
,

and

d = n−1

Ã
T−1

TX
s=1

F̃se
0
s

!
Λ0

Ã
T−1

TX
t=1

FtF̄
0
t

!
⇒ n−1

∙Z
BεdW

0
e + n−1QΛ0Ωe

¸
ΛQ.

Combining the limiting distributions of all terms
PT

t=1 F̄tF̄
0
t ,
PT

t=1 etF
0
t ,
PT

t=1 et
¡
F̄t − Ft

¢0
and Λ

PT
t=1

¡
Ft − F̄t

¢
F̄ 0t in equation (65), we obtain equation (43).

Proof of Proposition 2. Consider the estimation error

F̂t − Ft = n−1Λ̂0zt − Ft

= n−1Λ̂0ΛFt + n−1Λ̂0et − Ft

= n−1Λ̂0Λ̂Ft + n−1Λ̂0
³
Λ− Λ̂

´
Ft + n−1Λ̂0et − Ft.
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Since we know that, by construction, Λ̂0Λ̂ = nIk, we have

n−1Λ̂0zt − Ft = n−1Λ̂0
³
Λ− Λ̂

´
Ft + n−1Λ̂0et = I + II.

As far as I is concerned, it holds that, omitting n−1 for the sake of brevity

max
1≤t≤T

°°°Λ̂0 ³Λ− Λ̂´Ft°°° ≤ °°°Λ̂0 ³Λ− Λ̂´°°° max
1≤t≤T

kFtk ;

since °°°Λ̂0 ³Λ− Λ̂´°°° = Op

¡
T−1

¢
and

max
1≤t≤T

kFtk = Op

³
T 1/2

´
,

we get

max
1≤t≤T

°°°Λ̂0 ³Λ− Λ̂´Ft°°° = Op

³
T−1/2

´
.

Therefore I = Op

¡
T−1/2

¢
uniformly in t. As per II, we have

Λ̂0et = Λ0et +
³
Λ̂− Λ

´0
et ≤ max

1≤t≤T
kΛ0etk+ max

1≤t≤T

°°°°³Λ̂− Λ´0 et°°°°
≤ kΛk max

1≤t≤T
ketk+

°°°³Λ̂− Λ´°°° max
1≤t≤T

ketk = Op (1) +Op

¡
T−1

¢
Op (1) .

Hence, II = Op (1). Thus we have

max
1≤t≤T

°°°F̂t − Ft

°°° = Op (1) ,

which proves equation (44).

Equation (45) can be derived following a similar argument.

Proof of Theorem 7. Recall equation (29)

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
.

As far as the denominator of β̂ − β is concerned, we have

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2

TX
t=1

WtW
0
t + op (1) .
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We prove this with respect to
PT

t=1 F̂tF̂
0
t ; extension to

PT
t=1 ŴtŴ

0
t is straight-

forward though notationally more involved. First, consider the following de-

composition:

TX
t=1

F̂tF̂
0
t =

TX
t=1

FtF
0
t +

TX
t=1

F̂t

³
Ft − F̂t

´0
+

TX
t=1

³
Ft − F̂t

´
F̂ 0t +

TX
t=1

³
Ft − F̂t

´³
Ft − F̂t

´0
+I + II + III + IV.

We have

I =
TX
t=1

FtF
0
t = Op

¡
T 2
¢
.

As far as II and III are concerned, it holds that

III =
TX
t=1

h
n−1Λ̂0ΛFt + n−1Λ̂0et − Ft

i
z0tΛ̂n

−1

=
TX
t=1

h
n−1Λ̂0Λ̂Ft − n−1Λ̂0

³
Λ̂− Λ

´
Ft + n−1Λ̂0et − Ft

i
z0tΛ̂n

−1

= −n−2Λ̂0
³
Λ̂− Λ

´" TX
t=1

Ftz
0
t

#
Λ̂+ n−2Λ̂0

"
TX
t=1

etz
0
t

#
Λ̂,

with

n−2Λ̂0
³
Λ̂− Λ

´" TX
t=1

Ftz
0
t

#
Λ̂ = Op

¡
T−1

¢
Op

¡
T 2
¢
= Op (T ) ,

and

n−2Λ̂0

"
TX
t=1

etz
0
t

#
Λ̂ = Op (T ) ;

therefore II = Op (T ). As far as IV is concerned

IV = n−2Λ̂0
TX
t=1

h³
Λ− Λ̂

´
Ft + et

i h³
Λ− Λ̂

´
Ft + et

i0
Λ̂

= n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

FtF
0
t

³
Λ− Λ̂

´0
Λ̂

+n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

Fte
0
tΛ̂+ n−2Λ̂0

TX
t=1

etF
0
t

³
Λ− Λ̂

´0
Λ̂

+n−2Λ̂0

Ã
TX
t=1

ete
0
t

!
Λ̂,
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with

n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

FtF
0
t

³
Λ− Λ̂

´0
Λ̂ = Op (1) ,

n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

Fte
0
tΛ̂ = Op (1) ,

and

n−2Λ̂0

Ã
TX
t=1

ete
0
t

!
Λ̂ = Op (T ) ;

therefore, IV = Op (T ). Thus we get

T−2
TX
t=1

F̂tF̂
0
t = T−2

TX
t=1

FtF
0
t +Op

¡
T−1

¢
.

Note that even if the estimated shocks are not consistent, T−2
PT

t=1 F̂tF̂
0
t is a

consistent estimator for T−2
PT

t=1 FtF
0
t . This holds for any consistent estimator

Λ̂ such that Λ̂−Λ = Op

¡
T−δ

¢
; in such case, consistency would be ensured at a

rate min {1, δ}.
With respect to the numerator of equation (29), this is equal to

nX
i=1

TX
t=1

Ŵtuit +
nX
i=1

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = I + II.

We have:

I =
nX
i=1

TX
t=1

Wtuit +
nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit

=
TX
t=1

Wt

Ã
nX
i=1

uit

!
+ n−1Λ̂0

³
Λ− Λ̂

´ TX
t=1

Wt

Ã
nX
i=1

uit

!
+ n−1Λ̂0

TX
t=1

et

Ã
nX
i=1

uit

!
,

with
TX
t=1

Wt

Ã
nX
i=1

uit

!
= Op (T ) ,

n−1Λ̂0
³
Λ− Λ̂

´ TX
t=1

Wt

Ã
nX
i=1

uit

!
= Op

¡
T−1

¢
Op (T ) = Op (1) ,

and

n−1Λ̂0
TX
t=1

et

Ã
nX
i=1

uit

!
= Op

³
T 1/2

´
,
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which follows from Assumption 6. As far as II is concerned, we have

II = n−1Λ̂0
nX
i=1

TX
t=1

zt

³
Wt − n−1Λ̂0z̄t

´0
β

= n−1Λ̂0
TX
t=1

zt

∙
Wt − n−1Λ̂0Λ̂Wt + n−1Λ̂0

³
Λ̂− Λ

´
Wt − n−1Λ̂0et − n−1

³
Λ̂− Λ

´0
zt

¸0
β

= −n−2Λ̂0
TX
t=1

z̄te
0
tΛβ + n−2Λ̂0

TX
t=1

z̄tW
0
t

³
Λ̂− Λ

´0
Λ̂− n−2Λ̂0

TX
t=1

z̄tz̄
0
t

³
Λ̂− Λ

´
β

= Op (T ) +Op

¡
T−1

¢
Op

¡
T 2
¢
+Op

¡
T−1

¢
Op

¡
T 2
¢
= Op (T ) .

Hence, the numerator of equation (29) is Op (T ). Combining this result with

the asymptotic magnitude of the denominator of equation (29), we get"
nX
i=1

TX
t=1

WtW
0
t + op (1)

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
= Op

¡
T−2

¢
Op (T ) = Op

¡
T−1

¢
.

This proves equation (46).

As far as the limiting distribution of the numerator of equation (29) is con-

cerned, we first study the term
Pn

i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β. We have:

nX
i=1

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = −n−2Λ̂0

TX
t=1

z̄te
0
tΛβ − n−2Λ̂0

TX
t=1

z̄tz̄
0
t

³
Λ̂− Λ

´
β

+n−2Λ̂0
TX
t=1

z̄tW
0
t

³
Λ̂− Λ

´0
Λ̂

= I + II + III.

Since z̄t = ΛWt + ēt, we have

I = −n−2Λ̂0
TX
t=1

(ΛWt + ēt) e
0
tΛβ

= −n−2Λ̂0
TX
t=1

ΛWte
0
tΛβ − n−2Λ̂0

TX
t=1

ēte
0
tΛβ

⇒ −n−1
Z

B̄εdB̄
0
eΛβ − n−2Λ0ΣeΛβ. (66)
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As far as II is concerned, recalling that T
³
Λ̂− Λ

´
⇒ D1

Λ, we have

II = −n−2Λ̂0
TX
t=1

(ΛWt + ēt) (ΛWt + ēt)
0
³
Λ̂− Λ

´
β

= −n−2Λ̂0
TX
t=1

ΛWtW
0
tΛ

0
³
Λ̂− Λ

´
β − n−2Λ̂0

TX
t=1

ΛWtē
0
t

³
Λ̂− Λ

´
β

−n−2Λ̂0
TX
t=1

ētW
0
tΛ

0
³
Λ̂− Λ

´
β − n−2Λ̂0

TX
t=1

ētē
0
t

³
Λ̂− Λ

´
β

⇒ −n−1
Z

B̄εB̄
0
εΛ

0D1
Λβ. (67)

Likewise

III = n−2Λ̂0
TX
t=1

z̄tW
0
t

³
Λ̂− Λ

´0
Λ̂

⇒ n−1
Z

B̄εB̄
0
εD

10
ΛΛβ (68)

Thus, combining equations (66), (67) and (68) we have

nX
i=1

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β ⇒ −n−1

Z
B̄εdB̄

0
eΛβ−n−2Λ0ΣeΛβ+n−1

Z
B̄εB̄

0
ε

£
D10
ΛΛ− Λ0D1

Λ

¤
β.

As far as the term
PT

t=1 Ŵt (
Pn

i=1 uit) is concerned, we have

TX
t=1

Ŵt

Ã
nX
i=1

uit

!
= n−1Λ̂0

TX
t=1

z̄t

Ã
nX
i=1

uit

!

= n−1Λ̂0
TX
t=1

ΛWt

Ã
nX
i=1

uit

!
+ n−1Λ̂0

TX
t=1

ēt

Ã
nX
i=1

uit

!
,

which asymptotically leads to

1

T
n−1Λ̂0Λ

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒
Z

B̄εdBu

⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

.

This completes the proof of (47).

Finally, we consider the case when equation (1) is a spurious relationship.

Since uit ∼ I (1), we have that

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = Op (T ) ,
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and

TX
t=1

Ŵtuit =
TX
t=1

Wtuit + n−1Λ̂0
³
Λ− Λ̂

´ TX
t=1

Wtuit + n−1Λ̂0
TX
t=1

etuit

= Op

¡
T 2
¢
+Op (T ) +Op (T ) ,

so that
PT

t=1 Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸
= Op

¡
T 2
¢
, which proves (48).

In this case the limiting distribution of the numerator is given by the leading

term
PT

t=1Wt (
Pn

i=1 uit), so that the same result as in equation (55) holds,

namely

1

nT 2

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒
p
h̄∆
µZ

B̄εBu

¶
.

This proves equation (49).

Proof of Theorem 8. Consider equation (30)

β̂
FD − β =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

As far as the denominator is concerned, we have

TX
t=1

∆F̂t∆F̂
0
t = n−2Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂ = Op (T ) .

As far as the numerator of β̂
FD − β is concerned, we have

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
= n−2Λ̂0

TX
t=1

∆zt

∙
∆F 0t

³
Λ̂− Λ

´0
−∆e0t

¸
Λ̂

= n−2Λ̂0

"
TX
t=1

∆zt∆F
0
t

#³
Λ̂− Λ

´0
Λ̂− n−2Λ̂0

"
TX
t=1

∆zt∆e
0
t

#
Λ̂

= Op (T )Op

¡
T−1

¢
+Op (T ) = Op (T ) .

Also we have

TX
t=1

∆F̂t∆uit =
TX
t=1

∆Ft∆uit +
TX
t=1

³
∆F̂t −∆Ft

´
∆uit

= Op

³√
T
´
+Op

³√
T
´
= Op

³√
T
´
.

This proves (50).
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The limiting distribution of β̂
FD − β can be obtained as follows. Con-

sider first the denominator of β̂
FD − β. Given that T−1

PT
t=1∆F̂t∆F̂

0
t =

n−2T−1Λ̂
PT

t=1∆zt∆z
0
tΛ̂
0, and recalling that

p lim
1

T

TX
t=1

∆zt∆z
0
t = Σ∆z,

we have

n−2T−1Λ̂0
TX
t=1

∆zt∆z
0
tΛ̂

p→ n−2Λ0Σ∆zΛ.

As far as the numerator of β̂
FD − β is concerned, the term that dominates isPT

t=1∆F̂t

³
∆Ft −∆F̂t

´0
β and we have:

1

T

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

1

T
n−1Λ̂0

TX
t=1

∆zt

³
∆F 0t − n−1∆z0tΛ̂

0
´
β

=
1

T
n−1Λ̂0

TX
t=1

∆zt∆F
0
tβ −

1

T
n−2Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β

=
1

T
n−1Λ̂0

TX
t=1

Λ∆Ft∆F
0
tβ +

1

T
n−1Λ̂0

TX
t=1

∆et∆F
0
tβ −

1

T
n−2Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β,

where n−1T−1Λ̂0
PT

t=1∆et∆F
0
tβ is of order Op

¡
T−1/2

¢
. Since

n−1
1

T
Λ̂0

TX
t=1

Λ∆Ft∆F
0
tβ

p→ n−1Σ∆Fβ,

and

n−2
1

T
Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β

p→ n−2Λ0Σ∆zΛβ,

we have

1

T

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β

p→ n−1Σ∆Fβ − n−2Λ0Σ∆zΛβ.

Recalling that the denominator converges to n−2Λ0Σ∆zΛ in probability, we fi-

nally obtain equation (51).
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