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Micro versus Macro Cointegration in Heterogeneous Panels

Abstract

We consider the issue of cross-sectional aggregation in nonstationary and

heterogeneous panels where each unit cointegrates. We derive asymptotic

properties of the aggregate estimate, and necessary and su¢ cient conditions

for cointegration to hold in the aggregate relationship. We then analyze

the case when cointegration does not carry through the aggregation process,

and we investigate whether the violation of the formal conditions for perfect

aggregation can still lead to an aggregate equation that is observationally

equivalent to a cointegrated relationship. We derive a measure of the degree

of noncointegration of the aggregate relationship and we explore its asymp-

totic properties. We propose a valid bootstrap approximation of the test. A

Monte Carlo exercise evaluates size and power properties of the bootstrap

test.

J.E.L. Classi�cation Numbers: C12, C13, C23
Keywords: Heterogeneous Panels, Aggregation, Cointegration, Spurious
Regression, Bootstrap.
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1 INTRODUCTION

THE ASSUMPTION OF THE EXISTENCE of a representative agent in

macroeconomics has generated a huge body of literature on aggregation (see

e.g. Granger 1990; Stoker, 1993; Pesaran, 2003). The main research question

is of how well the aggregate relationship approximates the properties of the

individual components. This question cannot be examined when only aggre-

gate data are available. However, when data are available at disaggregate

level, it is quite well known that the features of micro models may not be

preserved at the macro level. A crucial role is played by the degree of het-

erogeneity amongst micro units. In a series of papers, Lippi and Forni (see

e.g. Lippi, 1988; Forni and Lippi 1997, 1998, 1999) show theoretically and

empirically that irrespective of the approach one chooses for macroeconomic

analysis, when heterogeneity across agents is allowed, the dynamic properties

of aggregated equations di¤er from those of micro equations, thereby lead-

ing to substantially di¤erent interpretations. Basic properties of the micro

models describing the panel units do not carry through aggregation, thus in-

creasing �the di¢ culties involved in formulating a macro model�(Forni and

Lippi, 1998). Examples are the introduction of dynamics after aggregating

static microequations and of Granger causality among aggregated variables

when it is absent in the disaggregated level. This is a double-edged sword:

on the one hand, in Forni and Lippi�s (1998) words, �existing models which

are at odds with aggregate data under the representative agent assumption

could be reconciled with empirical evidence�, on the other hand the exact

opposite can happen and macroeconomic relationship that are supposed to

be valid would not be veri�ed by the data.

A classical example of a property that is shared by the micro equations,

and that is almost always wiped out after aggregation, is cointegration. Pe-

saran and Smith (1995) show that aggregation of heterogeneous cointegrating

equations does not imply cointegration in the aggregate relationship unless

some speci�c conditions are satis�ed. On the other hand, Phillips and Moon
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(1999) found that with n!1 (and T large) a long-run average relationship

between two nonstationary panel vectors exists even when the single units

do not cointegrate. Granger (1993) considers a model where each equation

is a cointegration relationship with one explanatory variable, and �nds that

a necessary and su¢ cient condition for cointegration to be maintained after

aggregation is that the number of stochastic common trends that generate

the nonstationary variables is equal to one. The presence of a greater number

of common trends therefore leads to a spurious regression after aggregation.

Gonzalo (1993) bases his analysis on a more complex multivariate model and

derives a su¢ cient condition for cointegration to hold after aggregation.

The conditions laid out by Granger (1993) and Gonzalo (1993) are very

restrictive, and Forni and Lippi (1998) argue that they correspond to a zero

Lebesgue measure set in the model parameter space. Therefore, formally

speaking, cointegration in the aggregate relationship should be almost surely

never found, implying that macroeconomic models never cointegrate. Of

course, this conclusion clashes with macroeconomic theory and reality. The

existence of cointegration at macro level is a well established result. There-

fore, though formally aggregate cointegration may not hold, the macro rela-

tionship could be observationally equivalent to, and hence properly described

by, a long run relationship. There are important empirical implications of

the ability to determine whether a macro model is observationally equivalent

to a cointegration relationship. An illuminating example has recently been

provided by Hsiao, Shen and Fujiki (2005). When using micro prefecture

level data at a annual frequency, authors �nd cointegrated money demand

functions in Japan. Cointegration is not longer valid when aggregated data

at a quarterly frequency are used.

Lazarova, Trapani and Urga (2006), in a simple framework with only one

regressor in each micro equation, derive formal conditions for cointegration

to hold in the aggregate relationship and propose a measure of the depar-

ture from the case of aggregate cointegration. In this paper, we consider
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a heterogeneous panel where each micro equation contains several explana-

tory variables, p, and several common stochastic trends, k (� 1). To tackle
the issue of measuring the departure from cointegration, we �rst develop

an estimation framework for both the case when the k common trends are

observable and the more realistic case when they are not known. Second,

we develop a test statistic for the null hypothesis of cointegration in the ag-

gregate relationship. We then explore the asymptotic properties of our test

and provide the rate of convergence and the asymptotic distribution under

the null and alternative hypotheses. Third, to compute critical values, we

propose a consistent bootstrap procedure. Finally, we undertake a series of

Monte Carlo simulations to provide evidence of size and power properties of

the testing framework.

The paper is organized as follows. The theoretical framework is presented

in Section 2, where we set up a model for heterogeneous panels, present the

aggregate cointegration relationship and analyze the probabilistic structure

of the ordinary least squares (OLS) estimates of the aggregate model. Section

3 presents the conditions for the cointegration to carry through the aggre-

gation process. We characterize the system�s behavior when the conditions

derived in the previous section are not satis�ed and we develop an asymptotic

theory for assessing the deviation from the case of aggregate cointegration.

In Section 4 we propose a bootstrap approximation of the test. A Monte

Carlo simulation, reported in Section 5, evaluates size and power properties

of the bootstrap test. Section 6 concludes.

A word on notation: integrals of Brownian motionsW (r) such as
R 1
0
W (r) dr

are denoted as
R
W ,

p! denotes convergence in probability, and d! denotes

convergence in distribution.
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2 ASYMPTOTICS FORTHEAGGREGATE
RELATIONSHIP

Let us consider a system of n cointegrated micro relationships each with p

explanatory variables:

yit =

pX
h=1

�hixhit + uit; (1)

where t = 1; : : : ; T , and i = 1; :::; n. The covariates xhit are I(1) processes

that share k common stochastic trends:

xhit = �
0
hizt + vhit, (2)

with

zjt = zjt�1 + �jt;

where h = 1; :::; p; j = 1; :::; k, and �hi is a k � 1 vector.
The model can also be rewritten in matrix form:

yit = x0it�i + uit, (3)

xit = �izt + vit, (4)

zt = zt�1 + �t, (5)

where xit = [x1it; :::; xpit]
0, �i =

�
�1i; :::; �pi

�0
and �i = [�1i; :::; �pi]

0. The

matrices dimensions are respectively p � 1 and p � k. The trend vector is
assumed to initiate at z0 = 0.

Let ut = [u1t; :::; unt]0, vt = [v
0
1t; :::; v

0
nt], "t = [u

0
t; v

0
t; �

0
t]
0. We assume that

the sequence of innovations satis�es the following assumption:

Assumption 1

(i) a functional central limit theorem holds for the partial sums of "t, St =Pt
j=1 "j;
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(ii) �t is independent of ut and vt and the trends zt have a unit long-run

variance, limT!1 V ar(T
� 1
2

PT
t=1 �t) = Ik.

Assumption 1 summarizes the requirements on the behaviour of the er-

ror term "t. Assumption 1(i) allows "t to belong to a very general class of

processes. In particular, time dependence is allowed for the process "t as long

as it decays at an appropriate rate. The orthonormality requirement in As-

sumption 1(ii) makes the trends zit neutral in the model so that the behavior

of the system is fully described by the coe¢ cients �hi and �hi. Therefore, the

long run variance of the xits, limT!1 T
�1E (xitx

0
it), is given by �i�

0
i. Note

that Assumption 1 ensures that for r = [0; 1], T�1=2
P[Tr]

t=1 �t
d! Wz(r), where

Wz(�) is the k -dimensional standard Brownian motion. Further, Assump-
tion 1 does not make any requirements on the existence and extent of cross

sectional dependence; we therefore allow for arbitrary contemporaneous cor-

relation across units. Also, we do not need any restriction on the correlation

between ut and vt, and therefore we do not need to impose weak exogeneity

in the cointegration equation (3).

Assumption 2

(i) the number of regressors in the cointegration equation (3), p, is not

larger than the number of common trends k, i.e. p � k. Also, rank (�i) =
p, for i = 1; :::; n:

(ii) for � =
Pn

i=1 �i, rank (�) = min fp; kg = p.

(iii) k � n (p+ 1).

Assumption 2 refers to the model representation. The lower bound on

k in Assumption 2(i) ensures that model (3)-(5) can embed both common

and/or unit speci�c stochastic trends. A result that follows directly from this

assumption is that the xits in equation (4) do not cointegrate among them-

selves for all i. This is a standard assumption from cointegration analysis
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and it is necessary to rule out the degenerate cointegration case - see Phillips

(1986) for discussion. Conversely, the upper bound n(p + 1) in Assumption

2(iii), which is necessary for the factors identi�cation and estimation, pre-

vents the number of unit speci�c factors from being too large, even though

it states that their number can grow linearly with the number of units.

Assumption 2(ii) requires that also the sum of the �is must have full rank.

This condition will prove useful in the analysis of the aggregate cointegration

relationship properties.

2.1 The Aggregate Cointegration Relationship

Aggregation of equation (2) across units leads to the equation

xht =
kX
j=1

ahjzjt + vht,

where h = 1; :::; p; t = 1; :::; T ; xht =
Pn

i=1 xhit, ahj =
Pn

i=1 �hi;j with �hi;j
being the j-th element in vector �hi and vht =

Pn
i=1 vhit. We assume there

is at least one j for which ahj 6= 0, so that xht is I(1).
For the dependent variable, cross sectional aggregation of equation (1)

gives equation

yt =
kX
j=1

bjzjt + �st,

where t = 1; :::; T; yt =
Pn

i=1 yit, bj =
Pp

h=1

Pn
j=1 �hi�hi;j and �st =

Pp
h=1

Pn
i=1 �hivhit+Pn

i=1 uit. We assume there is at least one j for which bj 6= 0, so that yt con-
tains a unit root.

Let now �xt = [�x1t; �x2t; :::; �xpt]
0 and b =

Pn
i=1 �

0
i�i. The aggregate forms of

(3) and (4) can be written in vector form as

xt = �zt + �vt (6)

yt = b0zt + �st (7)

where t = 1; :::; T:
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2.2 Asymptotics for b�
With respect to the aggregate relationship, let us consider the least-squares

estimator b� of the slope coe¢ cient in the linear regression of yt on xt
b� =  TX

t=1

xtx
0
t

!�1 TX
t=1

xtyt

!
:

We are going to evaluate the case of T large and n �nite, and the case of

T and n large.

2.2.1 The Case of T Large and n Finite.

In this case, when yt and xt are cointegrated, the estimator b� is superconsis-
tent and converges in probability to a vector which is the true value of the

aggregation coe¢ cient, say �. On the other hand, if the aggregate series are

not cointegrated, the regression yt = b�0xt+ bet is spurious and b� converges in
distribution to a non-degenerate vector random variable.

The following proposition characterizes the limiting distribution of the

estimator b� for large T and �nite n.
Proposition 1 Let Assumptions 1 and 2(i) hold. Then, in the OLS regres-
sion of yt on xt, b� converges to a non degenerate random variable S;

b� d! S =

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zb

�
. (8)

Proof. From equations (6) and (7) and standard asymptotic results, it

follows that

b� = "� TX
t=1

ztz
0
t�
0 + op (1)

#�1 "
�

TX
t=1

ztz
0
tb+ op (1)

#
:

In addition, Assumption 1 ensures that T�2
PT

t=1 ztz
0
t
d!
R
WzW

0
z.
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For further details, see also Park and Phillips (1988). Note Proposition

1 is valid for any degree of correlation (weak exogeneity and endogeneity)

between xit and uit, and therefore between �xt and et.

As pointed out above in comments on Assumption 1, the presence of

contemporaneous correlation among the panel units is not ruled out in our

model. The use of OLS is a valid choice under any arbitrary level of cross

sectional dependence. This is due to the fact that n is �nite and therefore

cross sectional dependence is neutralized by aggregation.

Notice that both Assumptions 2(i) and 2(ii) is needed for the p � p
term �

R
WzW

0
z�

0 to be a nondegenerate Brownian motion - see a related

discussion by Phillips (1986). Since p � k and � is a full rank matrix, it

holds that the matrix �
R
WzW

0
z�

0 is almost surely positive de�nite and the

inverse
�
�
R
WzW

0
z�

0��1 exists almost surely.
Proposition 1 is valid for large T and �nite n. In the next section we

present the case of when both T and n are large.

2.2.2 The Case of T and n Large.

Granger (1990) discusses the consequences of n being large and Granger

(1993) provides an interesting characterization of n being large or small.

The following proposition holds when T and n are large.

Proposition 2 Let the regression coe¢ cients �i and �i be i:i:d: random vari-
ables across i with means �� and �� and uncorrelated with each other. Then,

as (n; T )!1; b� p! ��: (9)

Proof. See Appendix.

Proposition 2 is valid for any degree of contemporaneous correlation. The

OLS estimate picks the average relationship between �y and each of the �xhs,

regardless of the existence of a cointegration relationship. A similar result is

in Phillips and Moon (1999).
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Note that under the more restrictive assumption of no cross-sectional de-

pendence among units it can be shown that the OLS estimator b�, de�ned
in this case as b� = hPT

t=1 (
P

i xit) (
P

i x
0
it)
i�1 hPT

t=1 (
P

i xit) (
P

i yit)
i
, is as-

ymptotically equivalent to the pooled-OLS estimator in Phillips and Moon

(1999).

3 AGGREGATECOINTEGRATION: VALID-
ITY AND TESTING

Given that, for large n, b� is consistent regardless of the existence of a cointe-
gration relationship, we henceforth restrict our analysis to the case of large

T and �nite n only. We develop an estimation theory for both aggregate and

disaggregate models. We �rst discuss the formal requirements under which

cointegration holds in the aggregate relationship yt = b�0xt + bet, laying out a
necessary and su¢ cient condition in order for cointegration to be maintained

after aggregation. Second, we explore the consequences of a failure of this

condition to hold though cointegration can still be present in the data.

3.1 Cointegration in the Aggregate Relationship

The results in this section are based on superconsistency of the OLS estimates

when cointegration is present. In this case, b� p! �. In order to have aggregate

cointegration, S in equation (8) must degenerate to a vector of constants

rather than a vector of random variables. Given that b 6= 0 by assumption,
this means that

�0� = b: (10)

In this case,

S =

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zb

�
=

=

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
z�

0
�
� = �; (11)
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and cointegration holds. Another consequence of superconsistency is that

the linear system (10) has a unique solution

� = (��0)
�1
�b: (12)

Note that b must be a linear combination of the rows of � for equation

(10) to admit non trivial solutions, and this holds if and only if rank (�0) =

rank (�0 j b) = p.
Thus, the following results hold:

Theorem 1 Cointegration in the aggregate relationship yt = b�0xt+bet always
holds if and only if rank (�0 j b) = p:

Corollary 1 If the number of regressors in the cointegration equations (1)
equals the number of stochastic trends (i.e. if p = k), then the aggregate

relationship yt = b�0xt + bet is cointegrated.
When the number of common stochastic trends is limited, i.e. when the

amount of cointegration in the single units is large enough, then aggrega-

tion does not have a completely destructive e¤ect on cointegration in the

aggregate relationship. It should be noted that when the number of common

trends k is large with respect to the number of covariates p, rank (�0 j b)
is more likely to be equal to p + 1, and hence aggregated cointegration is

unlikely to hold.

Theorem 1 always holds when � is a k � k matrix. Assumption 2(ii)
ensures that rank (�) = k and therefore rank (�0 j b) = k as well. Corollary
1 is an alternative formulation of Theorem 1 in Gonzalo (1993) when the

common trends in the disaggregate system are the same across all is.

3.2 Measuring Departure from Cointegration

When the formal conditions for aggregate cointegration are violated, we can

still have �some degree of cointegration�in the aggregate relationship if the
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requirements in Theorem 1 are only �mildly violated�, as pointed out by

Granger (1993). In what follows, we derive a statistical measure of departure

from cointegration when Theorem 1 does not hold, and therefore, strictly

speaking, equation yt = b�0xt + bet represents a spurious relationship. The
testing framework we derive is based on

H0 : presence of aggregate cointegration,

HA : spurious aggregate regression.

A natural way to address the issue of testing is to consider the statistical

properties of the limiting distribution of b�, S. From equation (11), we know

that

S =

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zb

�
:

Denote P = Ik��0 (��0)�1 � andM = �0 (��0)�1 �, and writing b =Mb+Pb,

equation (11) becomes

S =

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zMb

�
+

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zPb

�
(13)

or

S = � +

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zPb

�
; (14)

using (12). To analyse the second term of the right hand side of (14), de�ne

W �(r) = �Wz(r) and W P (r) = b0PWz(r). By construction, we have

E
�
W �W P 0� = �E [Wz(r)W

0
z(r)]Pb = �(rIk)Pb = 0:

Thus, W �(r) and W P (r) are independent. Hence the expected value of the

random variable S is

E (S) = �;

and the variance of S is equal to

V ar (S) = V ar

(�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zPb

�)
:
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Therefore, we have aggregate cointegration if the second term on the

right hand side of (14),
�
�
R
WzW

0
z�

0��1 �� R WzW
0
zPb
�
; degenerates to a

zero constant, i.e.�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zPb

�
= 0 a:s.

This holds if and only if Pb = 0, which implies that V ar (S) = 0 if we have

aggregate cointegration, while V ar (S) > 0 if the aggregated relationship is

not cointegrated.

Thus, for testing purposes, we can de�ne the following indicator:

D =
b0Pb

b0b
: (15)

Under the null hypothesis of cointegration in the aggregate relationship

D = 0, whilst D > 0 under the alternative hypothesis that aggregation

eliminates cointegration. Note that, given that M and P are idempotent,

(15) can be rewritten as

D = sin2 (b;Mb) : (16)

From (16), the indicator D depends on the angle between the two vectors b

andMb. The smaller the angle between the two vectors, the smaller the dis-

tance from the case of aggregate cointegration. The aggregate cointegration

occurs when the two vectors b and Mb are parallel. This condition is met

when b, which gives the response of �yt to the stochastic trends zt, can be fully

represented in terms of the basis associated to the column space of �, which

represents the response of �xt to the common stochastic trends. Algebraically,

this means that we have cointegration when b is a linear combination of the

columns of �.

The de�nition of D illustrates possible sources of the violation of the nec-

essary and su¢ cient condition for cointegration in the aggregate relationship.

When rank (�0 j b) > p, cointegration is not preserved under aggregation.

Nonetheless, if these trends are relatively unimportant then V ar (S) is small

and the degree of departure from aggregate cointegration is not large.
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3.3 Testing for Cointegration

The hypotheses of interest are as follows

H0 : D = 0
H1 : D > 0

; (17)

where the null hypothesis H0 is the presence of cointegration in the aggregate

relationship. To test the null hypothesis in (17), b and � need to be estimated.

3.3.1 Estimation of b and �

The estimation of b and � depends crucially on whether the zts are observable

or unobservable. When zts are observable, OLS estimators of b and � can be

obtained by OLS and are given by

b̂ =

 
TX
t=1

ztz
0
t

!�1 TX
t=1

zt�yt

!
(18)

�̂ =

 
TX
t=1

ztz
0
t

!�1 TX
t=1

zt�x
0
t

!
: (19)

Since equations (6) and (7) are cointegrating relationship, OLS estimators in

(18)-(19) are superconsistent, i.e. letting � = [bj�0]0 we have

�̂�� = Op
�
T�1

�
:

In the more likely case that the common trends zt are not observable,

another approach should be considered. Let us express model (3)-(4) as

yit = �0i�izt + �ivit + uit

xit = �izt + vit:

Writing Wit =

�
yit
xit

�
, �i =

�
�0i�i
�i

�
, and eWit =

�
�ivit + uit

vit
;

�
we have

Wit = �izt + e
W
it ;
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and by stacking Wit, it holds

Wt =

2664
W1t

W2t

:
Wnt

3775 =
2664
�1
�2
:
�n

3775 zt +
2664
eW1t
eW2t
:
eWnt

3775 = �zt + eWt : (20)

Consistent estimator of � can be obtained by principal component. More

speci�cally, consider the n(p+1)�n(p+1) matrix
PT

t=1WtW
0
t . The principal

component estimator of �, say �̂PC , is given by
p
n times the k eigenvec-

tors corresponding to the largest eigenvalues of
PT

t=1WtW
0
t subject to the

normalization

�̂PC0
TX
t=1

WtWt�̂
PC = nT 2Ik:

The procedure we propose is based on Bai (2004) but extended to our case

of n �nite and T larger. It is also known that the solution to the above

minimization problem is not unique, i.e., �i and zt are not directly identi�able

but they are identi�able up to a transformation de�ned by a rotation matrix

H. For our setup, knowing �iH is as good as knowing �i. For the purpose

of notational simplicity, we shall assume H being an identity matrix in this

paper. The following proposition ensures consistency of the estimates �̂PC .

Proposition 3 If Assumption 1 is valid, as T !1,

�̂PC � � = Op
�
T�1

�
: (21)

Proof. See Lemma 3 in Bai (2004).

The principal component estimator of � is given by

�̂PC =

�
b̂0PC

�̂PC

�
=

nX
i=1

�̂PCi : (22)

and from Proposition 3

�̂PC �� = Op
�
T�1

�
:
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Therefore, even when the zts are unobservable, we have a T -consistent esti-

mate for �.

Henceforth, we will also use the following matrix notation. De�ning the

[n (k + 1)] � (k + 1) matrix z by stacking n (k + 1)-dimensional identity

matrices, i.e. as

z = [Ik+1; :::; Ik+1]0 ; (23)

�̂PC can also be de�ned as �̂PC = z0�̂PC . Letting the (k + 1)-dimensional
vector ib = [1; 0; :::; 0]0 and the k � (k + 1) matrix i� = [0jIk] we also have
b̂PC = �̂PC0zib and �̂PC = i�z0�̂PC .

3.3.2 Testing

Let bD = b̂0P̂ b̂

b̂0b̂

where P̂ = Ik � �̂0
�
�̂�̂0
��1

�̂ and b̂, �̂ are estimators of b, �. The following

theorem characterizes the rate of convergence of bD under the null hypothesis
of cointegration.

Theorem 2 Let b̂, �̂ be superconsistent estimators of b, �. Under the null

hypothesis of cointegration, we have D = 0 andbD = Op �T�2� : (24)

Proof. See Appendix.

Theorem 2 asserts that rate of convergence of bD is of order T 2 irrespec-

tive of whether the zts are observable or not and of the type of estimation

technique employed to derive b̂ and �̂, as long as they are superconsistent

estimators of b and �. This result is reinforced by the following corollary.

Corollary 2 For any � > 0 such that b̂�b = Op
�
T��

�
and �̂�� = Op

�
T��

�
,

under the null hypothesis of cointegration, we have D = 0 andbD = Op �T�2�� :
17



Proof. See Appendix.
From Theorem 2 and Corollary 2 it is clear that the rate of convergence

of bD is the square power of the rate of convergence of b̂ and �̂. This faster

convergence arises from sin2 (b;Mb) being an even function in a neighborhood

of zero.

When the zts are observable, the limiting distribution of bD is given in the
following theorem.

Theorem 3 Let b̂, �̂ be the OLS estimators of b, � in (18)-(19). Under the
null of aggregate cointegration

T 2 bD d! 1

kbk2
Q0
�
Ik �

bb0

kbk2
�
Q; (25)

where

Q = (M � Ik)Qb +
h
�0 (��0)

�1
Q� � �0�Q0��� �0Q��0� +Q0� (��0)

�1
�
i
b;

and Qb =
�R
WzW

0
z

��1 R
WzdW�s, Q� =

�R
WzW

0
z

��1 �R
WzdW

0
�v

�
, with W�v

and W�s Brownian motion processes associated with the partial sums of the

processes �vt and �st in (6) and (7) respectively.

Proof. See Appendix.

The following theorem gives the limiting distribution of bD when zts are

not observable.

Theorem 4 Let b̂, �̂ be the OLS estimators of b, � in (18)-(19) and �̂PC

the principal component estimator of � in (22). Under the null of aggregate

cointegration

T 2 bD d! 1

kbk2
Qpc0

�
Ik �

bb0

kbk2
�
Qpc; (26)

where

Qpc = (M � Ik)Qpcb +
h
�0 (��0)

�1
Qpc� � �0�Q

pc0
� �� �0Q

pc
� �

0� +Qpc0� (��0)
�1
�
i
b;

18



Qpcb = �0ib, Q
pc
� = i��, and � is the limiting distribution of �̂PC given in

Proposition 4 below.

Proof. See Appendix.

The following proposition provides the limiting distribution of the prin-

cipal component estimator of �.

Proposition 4 Let We be the Wiener process associated to the partial sums

of eWt in equation (20) and de�ne 
e = E
�
eWt e

W 0
t

�
and B =

R
WzW

0
z. Then

T
�
�̂PC ��

�
d! z0

�
In(p+1) � n�1�B�0

��Z
dWeW

0
z

�
B�1

�n�1z0�0
�Z

dWeW
0
z

�
�0

+n�1z0
�
In(p+1) � 2n�1�B�0

�

e�: (27)

Proof. See Appendix.

To evaluate the capability of our statistic to reject local alternatives, we

consider the following sequence of local alternatives

H l
1 : b = �

0� + �T ;

where the k-dimensional vector �T is orthogonal to � and is chosen to be

limT!1 T�T = � 6= 0. The orthogonality condition �0T� = 0 means that

the response of �yt to the stochastic trends zt also contains a component �
0
T zt

which cannot be explained in terms of the �xts, and therefore the possibility

that �yt and �xt cointegrate is ruled out. Therefore, under the sequence of local

alternatives H l
1, D > 0. The following theorem shows that the statistic bD

has non-trivial power versus such a sequence of local alternatives.
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Theorem 5 Let b̂ and �̂ be superconsistent estimators of b and � respec-
tively. Under the alternative hypothesis H l

1, we have

T 2 bD d! 1

kb0k2
�
k�k2 +Q�0

�
Ik �

b0b
0
0

kb0k2
�
Q� � 2�0Q�

�
; (28)

where b0 = �0�, Q� is equal to either Q or Qpc depending on whether the zts

are observable or unobservable. The de�nitions of Q and Qpc are in Theorems

3 and 4. In either case, E [Q�] = 0.

Proof. See Appendix.

Theorem 5 shows that the test has nontrivial power against local alter-

natives of order O (T�1). This result too holds irrespective of whether the

zts are observable or not as long as b̂ and �̂ are superconsistent estimators of

b and �.

Finally, to evaluate the consistency of our test, we will study the asymp-

totic behaviour of T 2 bD under the alternative hypothesis H1 : D > 0. The

following theorem shows that the test based on bD is consistent against global
alternatives.

Theorem 6 Let b̂, �̂ be superconsistent estimators of b, �. Then under the
alternative hypothesis H1 : D > 0 it holds that, as T !1

bD = D +Op �T�1� ; (29)

and therefore, under H1, the statistic T 2 bD p!1.

Proof. See Appendix.

Theorem 6 shows that T 2 bD diverges under the global alternative H1.

Consequently, the probability of rejecting the null hypothesis when the al-

ternative H1 holds is asymptotically equal to one. This means that the test

based on T 2 bD is consistent.
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An ancillary result is that under H1, when D is no longer equal to zero,

the remainder term in the asymptotic expansion of bD around D is no longer

Op (T
�2), but Op (T�1). An explanation of this result is that while the func-

tion sin2 (�) is an even function in a neighborhood of zero, this is not the case
around other values of its argument, and hence the presence of the term of

order Op (T�1) in the expansion of bD around D 6= 0.

4 BOOTSTRAPAPPROXIMATIONOFCRIT-
ICAL VALUES

In this section, we propose a bootstrap procedure to obtain critical values.

Since our model does not rule out the possibility of serial correlation in

the error terms, we employ a procedure which is similar to the sieve boot-

strap approach employed by Chang, Park and Song (2006) for cointegrating

regressions.

For the purposes of bootstrapping, we rewrite model (6)-(7) as follows�
�yt
�xt

�
= �Wt = �zt + �et: (30)

We propose the following bootstrap algorithm:

Step 1. (1.1) Estimate � in equation (30) consistently, via OLS if zts are ob-

servable, or via principal component if zts are unobservable. We

obtain �̂ = �̂OLS and �̂ = �̂PC respectively. Project the es-

timator of b; b̂ =
�
b̂OLS or b̂PC

�
onto the column space of the

estimated �, �̂ = �̂OLS or �̂ = �̂PC respectively, obtaining

~b = �̂0
�
�̂�̂0
��1

�̂b̂:

Let
~� =

h
~bj�̂0
i0

(31)
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and
~� =

h
~bj�̂0
i0
: (32)

(1.2) Compute the residuals êt = �Wt��̂OLSzt or ~et = �Wt��̂PC ẑt, where
ẑt is the principal component estimator of zt. De�ne ŵt = [ê0t;�z

0
t]
0

and ~wt = [~e0t;�ẑ
0
t]
0.

(1.3) Compute the statistics bD as

bD = b̂0P̂ b̂

b̂0b̂
:

Step 2. (2.1) Sieve estimation. For the case observable zts, compute the sieve
estimates of the VAR

ŵt =

qX
l=1

	lŵt�l + �qt (33)

where, following Chang, Park and Song (2006), the choice of q

can be done via an information criterion such as AIC or BIC. Let

	̂l and �̂qt denote the OLS estimates and residuals from equation

(33), respectively.

(2.2) Resampling. Draw (with replacement) T values from the centered

residuals (
�̂qt �

1

T

TX
t=1

�̂qt

)T
t=1

to obtain
�
��qt
	T
t=1
.

(2.3) Construct recursively ŵ�t as

ŵ�t =

qX
j=1

	̂lŵ
�
t�l + �

�
qt;

using initialization
�
ŵ�0; :::; ŵ

�
1�q
�
= (ŵ0; :::; ŵ1�q).
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When zts are unobservable, steps (2.1)-(2.3) can be applied to ~wt to obtain�
~��qt
	T
t=1

and ~w�t .

Step 3. (3.1) Integrate the last k elements of ŵ�t or ~w
�
t to obtain z

�
t as

z�t = z0 +

tX
j=1

ŵ
�(z)
j ;

or

~z�t = z0 +

tX
j=1

~w
�(z)
j

where ŵ�(z)t and ~w
�(z)
t refer to the last k elements of ŵ�t and ~w�t

respectively.

(3.2) Generate �W �
t as

�W �
t =

~�OLSz�t + ê
�
t ; (34)

or
�W �
t =

~�PC ~z�t + ~e
�
t : (35)

(3.3) Estimate � from either equation (34) or (35) using OLS. Denote

the estimator as ��.

(3.4) Compute the bootstrap counterpart of the test statistics, say bD�,

using ��.

The resampling scheme we propose is based on sieve estimation and fol-

lows the same lines as in the approach of Chang, Park and Song (2006). Note

that projecting the estimates of b onto the column space of � means that re-

sampling is performed under the null hypothesis. As it is illustrated below,

this ensures the validity of the bootstrap under the null and the alternative

hypothesis.

Denote now the null limiting distribution of T 2 bD as Z0 and the bootstrap
probability conditional on the sample as P �. The form of Z0 is given by
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Theorems 3 and 4 for zts observable and unobservable, respectively. To prove

that the bootstrap procedure is valid, two conditions need to be satis�ed.

First, we need to show that both under the null hypothesis H0 and under the

local alternatives H l
1, the conditional distribution of T

2 bD� given
�
�Wt

	T
t=1
,

consistently estimates the limiting distribution of T 2 bD, that is
P �
h
T 2 bD� � v

i
p! P fZ0 � vg ;

for each v which is a continuity point of the distribution function of T 2 bD.
More compactly, this statement will be referred to as T 2 bD� dB! Z0. Second,

under the alternative hypothesis H1 the bootstrap statistic T 2 bD� must be

bounded in probability, or even possibly converge to Z0.

Consider the following Assumption which we need to prove the bootstrap

validity.

Assumption 3

(i) Let [�e0t;�z
0
t]
0 = �(L) �t where � (L) =

P1
k=0�lL

l. The sequence �t is

i:i:d: with E (�t) = 0, E (�t�
0
t) > 0, �nite fourth moment and such that

j� (z)j 6= 0 for all jzj � 1 and
P1

l=0 jkj
b j�lj <1 for some b � 1;

(ii) In equation (33), let q !1 and q = o
�
T 1=2

�
as T !1.

Assumption 3(i) ensures that both central limit theorem and invariance

principle hold, and it is essentially the same as in Chang, Park and Song

(2006). Assumption 3(ii) is required to ensure the consistency of the esti-

mates 	̂l.

The following theorem asserts the validity of the bootstrap procedure.

Theorem 7 Under Assumptions 1-3, we have that, under the null hypothesis
H0, the alternative hypothesis H1 and the local alternatives H l

1

T 2 bD� dB! Z0; (36)
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where Z0 is the null limit distribution which is Z0 = kbk�2Q0
�
Ik � kbk�2 (bb0)

�
Q

for observable zts and Z0 = kbk�2Qpc0
�
Ik � kbk�2 (bb0)

�
Qpc for unobservable

zts.

Proof. See Appendix.

Theorem 7 extends the sieve bootstrap algorithm proposed by Chang,

Park and Song (2006) to the case of principal component estimates. The

validity of our bootstrap procedure is ensured by equation (36), which shows

that under the null and the local alternatives the bootstrap consistently ap-

proximates the asymptotic distribution of T 2 bD and under the alternative

the bootstrap statistic T 2 bD� has the same distribution as the null. This is a

consequence of the resampling algorithm being implemented under the null

hypothesis.

It is worth noting that whilst the estimation technique employed to esti-

mate �̂ necessarily di¤ers (i.e. we use OLS when the zts are observable and

principal component when zts are not observable), the bootstrap estimator

�� is computed via OLS irrespective of the method employed to derive �̂.

5 MONTE CARLO RESULTS

In this section, we present an assessment, via a small Monte Carlo exercise,

of the power and size of the bootstrap testing procedure we propose.

The data generating process for the Monte Carlo exercise is described by

equations (6) and (7) . We generate the k stochastic trends zt as random

walks according to Assumption 1. Let ��t = [�v0t; �st]
0, we consider the following

processes for ��t: a white noise process, an AR(1) model with autoregressive

root equal to 0:75, an MA(1) process with root equal to 0:75. These choices

allow to check for robustness and e¢ ciency of our procedure under alternative

error dynamics. We also consider alternative size of T = f20; 35; 50; 100; 200g
and of the number of trends k = f2; 3; 4; 5g. The number of Monte Carlo
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and bootstrap replications is 5000 and 1000, respectively. The results are

reported in Table 1.

[Insert Table 1 somewhere here]

The main �nding is that the bootstrap test shows good size and power

and its performance is a¤ected by the number of trends considered.

In particular, there is a strong impact of the number of factors k on the

size of the test. When the error term ��t has no dynamics, which is the

baseline case, the size decreases as k increases. This happens uniformly in T ,

and the size tends, asymptotically, to its nominal value. The test exhibits a

good performance when the error term is white noise even for small samples.

When AR(1) and MA(1) processes are present, the impact of k still leads to

size decrease as the number of stochastic trends increase. Note though that

now the test is oversized for small samples, especially when AR dynamics is

present. This e¤ect tends to be wiped out asymptotically, when irrespective

of the error dynamics and for the large k (4; 5) cases, there is a slight undersize

tendency of the test.

The power too is a¤ected by k. Though small sample performance seems

to be very good, especially in the white noise case, irrespective of k, how-

ever, for all cases, as k increases, the power slightly decreases. Nonetheless,

asymptotically the power approaches one irrespective of the error dynamics

and of the number of stochastic trends.

6 CONCLUSION

In nonstationary heterogeneous panels where each unit cointegrates, the ag-

gregate relationship in general does not cointegrate unless a large number of

conditions is satis�ed. However, the aggregate equation may be observation-

ally equivalent to a cointegrating relationship even when the conditions for

perfect aggregation are violated. How well the aggregate relationship approx-

imates the properties of individual components cannot be tested when only
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aggregate data are available. When data are available at disaggregate level,

as in the case of panels, one can test whether features of micro relationships

are preserved after aggregation.

This paper addresses the issue of micro versus macro cointegration by

considering nonstationary heterogenous panels with a �xed number of units

and a large number of time observations. Our results can be viewed as

complementary to the analysis in Phillips and Moon (1999) of the case when

(n; T )!1. No restrictions are placed regarding the existence of the degree
of contemporaneous correlation between units and between regressors and

error terms in the cointegration regressions.

We derive the test statistic D = sin2 (b;Mb) for the null hypothesis of

cointegration, building upon the formal conditions for cointegration valid

at micro level to hold after aggregation. The test is powerful against local

alternatives and consistent. We propose a valid bootstrap approximation and

Monte Carlo evidence suggests that the test exhibits good size and power

properties.

The test under the null is of asymptotic orderOp (T�2). This property has

important implications for empirical applications of the test procedure. For

instance, data may be available at monthly/quarterly frequency but micro-

level data is available at lower frequency (e.g. census data). In that case, the

T 2 convergence might be an important asset given the short length of each

micro series.

Our asymptotics has been derived for panels with �xed n. Thus, it is

also empirically relevant to see how our method performs in simulations in

comparison with the Phillips and Moon (1999) asymptotics.

A comprehensive set of empirical applications and an extensive simulation

exercise are beyond the scope of the present paper but are subject of separate

studies.
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APPENDIX

Proof of Proposition 2. By assumption, the regression coe¢ cients �i and

�i are i:i:d: random variables across i with mean �� and �� respectively, and

uncorrelated with each other. Hence, the weak law of large number ensures

that n�1
Pn

i=1 �i
p! ��, n�1

Pn
i=1 �i

p! �� and n�1
Pn

i=1 �i�i
p! ����. The

distribution limit of b�n;T for large T
b�n;T d! S =

�
�

Z
WzW

0
z�

0
��1 �

�

Z
WzW

0
zb

�
;

can also be written as

S =

�X
�i

Z
WzW

0
z

X
�0i

��1 �X
�i

Z
WzW

0
z

X
�0i�i

�
;

where the sums are for i from 1 to n. Then the weak law of large number on

�i and �i ensure that, as n!1�X
�i

Z
WzW

0
z

X
�0i

��1 �X
�i

Z
WzW

0
z

X
�0i�i

�

!p

�
��

Z
WzW

0
z
��0
��1 �

��

Z
WzW

0
z
��0��

�
= ��:

Note that equation (9) has been derived using a sequential limit argument.

Extension to the joint limit case can be obtained following Phillips and Moon

(1999).

Proof of Theorem 2. Let b̂ and �̂ be superconsistent estimators of b

and � and de�ne

"b = b̂� b;

"� = �̂� �;
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by de�nition, "b = Op (T�1) and "� = Op (T�1). For the sake of the notation,

let also Mb = a and "a = â� a. We have

"a = â� a = M̂ b̂�Mb
= (M + "M) (b+ "b)�Mb
= "Mb+M"b + "M"b = Op

�
T�1

�
:

This is because we have

M̂ = �̂0
�
�̂�̂0
��1

�̂;

and

�̂�̂0 = (� + "�) (� + "�)
0 =

= ��0 + �"0� + "��
0 + "�"

0
�:

Using Taylor�s approximation,

[��0 + �"0� + "��
0 + "�"

0
�]
�1
= (��0)

�1 � (�"0� + "��0 + "�"0�) ;

so that

�̂0
�
�̂�̂0
��1

�̂ = [� + "�]
0
h
(��0)

�1 � (�"0� + "��0 + "�"0�)
i
[� + "�]

= �0 (��0)
�1
� + �0 (��0)

�1
"� � �0�"0��� �0"��0�

+"0� (��
0)
�1
� +Op

�
T�2

�
:

Let "M = �0 (��0)�1 "� + "
0
� (��

0)�1 �� �0�"0��� �0"��0� = Op (T�1).
We have

sin2
�
â; b̂
�
� sin2 (a; b) =

h
cos
�
â; b̂
�
+ cos (a; b)

i h
cos (a; b)� cos

�
â; b̂
�i
:

Slutsky�s theorem implies that cos
�
â; b̂
�
= cos (a; b) + op (1), and under the
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null we have cos (a; b) = 1, so that

sin2
�
â; b̂
�
� sin2 (a; b) = [2 + op (1)]

h
cos (a; b)� cos

�
â; b̂
�i

= [2 + op (1)]

24 a0b

kak kbk �
â0b̂

kâk
b̂

35
= [2 + op (1)]

kâk
b̂ (a0b)� kak kbk�â0b̂�
kak kbk kâk

b̂ :(37)

It holds that

â0b̂ = (a+ "a)
0 (b+ "b)

= a0b+ a0"b + b
0"a + "

0
a"b:

Let now "kak = kâk � kak and "kbk =
b̂� kbk. We have

"kak = kak
s
1 +

2a0"a + "0a"a

kak2
� kak :

Using Taylor�s expansion, we gets
1 +

2a0"a + "0a"a

kak2
= 1 +

1

2

2a0"a + "
0
a"a

kak2
� 1
8

�
2a0"a + "

0
a"a

kak2
�2
;

so that

"kak =
a0"a
kak +

"0a"a
2 kak �

(a0"a)
2

2 kak3
+Op

�
T�3

�
: (38)

Likewise,

"kbk =
b0"b
kbk +

"0b"b
2 kbk �

(b0"b)
2

2 kbk3
+Op

�
T�3

�
: (39)

Under the null, a = b and a0b = kak kbk = kak2. Therefore we may write

kâk
b̂ (a0b)� kak kbk�â0b̂�

= kak2
h
kâk

b̂� �â0b̂�i ;
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and

kâk
b̂� �â0b̂� ;

=
�
kak+ "kak

� �
kak+ "kbk

�
� a0b� a0"b � a0"a � "0a"b

= kak "kak + kak "kbk + "kak"kbk � a0"b � a0"a � "0a"b

= a0"a +
"0a"a
2
� (a

0"a)
2

2 kak2
+ a0"b +

"0b"b
2
� (a

0"b)
2

2 kak2
+
(a0"a) (b

0"b)

kak2
� a0"b � a0"a � "0a"b

=
1

2
("a � "b)0

�
Ik �

aa0

kak2
�
("a � "b) :

Finally, from equation (37) it holds that, since under the null a = b

sin2
�
â; b̂
�
� sin2 (a; b) = [2 + op (1)]

kâk
b̂ (a0b)� kak kbk�â0b̂�
kak kbk kâk

b̂
=

1

kbk2
("a � "b)0

�
Ik �

bb0

kbk2
�
("a � "b) +Op

�
T�3

�
= Op

�
T�2

�
: (40)

Proof of Corollary 2. When b̂� b = Op
�
T��

�
and �̂�� = Op

�
T��

�
,

it also holds that "a = Op
�
T��

�
and "b = Op

�
T��

�
, and hence

"kak =
a0"a
kak +

"0a"a
2 kak �

(a0"a)
2

2 kak3
+Op

�
T�3�

�
;

"kbk =
b0"b
kbk +

"0b"b
2 kbk �

(b0"b)
2

2 kbk3
+Op

�
T�3�

�
:

Then equation (40) becomes

sin2
�
â; b̂
�
� sin2 (a; b) =

1

kbk2
("a � "b)0

�
Ik �

bb0

kbk2
�
("a � "b) +Op

�
T�3�

�
= Op

�
T�2�

�
:
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Proof of Theorem 3. From equation (40) we know that under H0
asymptotically the following results holds

T 2 bD = 1

kbk2
("a � "b)0

�
Ik �

bb0

kbk2
�
("a � "b) + op (1) :

Under H0 we know that aa0 = bb0, and from equations (18)-(19) we know

that

"b = b̂� b =
 

TX
t=1

ztz
0
t

!�1 TX
t=1

zt�st

!
;

"� = �̂� � =
 

TX
t=1

ztz
0
t

!�1 TX
t=1

zt�v
0
t

!
:

Further, we know that "a = "Mb + M"b, with M̂ = M+ "M and "M =

�0 (��0)�1 "� + "
0
� (��

0)�1 �� ��0"0��� �0"���0.
From Assumption 1 we know that

T"b
d!
�Z

WzW
0
z

��1 Z
WzdW�s;

T "�
d!
�Z

WzW
0
z

��1 Z
WzdW

0
�v:

Proof of Theorem 4. After equation (40) we have.

T 2 bD = 1

kbk2
("a � "b)0

�
Ik �

bb0

kbk2
�
("a � "b) + op (1) ;

and under H0 we have aa0 = bb0. Also, it holds that "a = "Mb +M"b, with

M̂ = M+ "M and "M = �0 (��0)�1 "� + "
0
� (��

0)�1 � � �0�"0�� � �0"��0�.
From equation (22) we have

"b = b̂
PC � b =

�
�̂PC � �

�0
zib;
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"� = �̂
PC � � = i0�z0

�
�̂PC � �

�
;

so that

T"b
d! �0zib;

T "�
d! i�z0�:

Proof of Proposition 4. The limiting distribution of �̂PC can be

computed recalling that �̂PC = z0�̂PC and evaluating the limiting distri-
bution of �̂PC . Let ẑt be the principal component estimator for zt based

upon �̂PC . Then we know (see e.g. the proof of Lemma 3 in Bai, 2004) that

T
�
�̂PC � �

�
can be decomposed as

T
�
�̂PC � �

�
=

=
1

T

"
TX
t=1

eWt z
0
t +

TX
t=1

eWt (ẑt � zt)
0 + �

TX
t=1

(zt � ẑt) ẑ0t

#
"
1

T 2

TX
t=1

ẑtẑ
0
t

#�1
: (41)

In the denominator of (41), we can rewrite

TX
t=1

ẑtẑ
0
t =

TX
t=1

ztz
0
t +

TX
t=1

(ẑt � zt) ẑ0t +
TX
t=1

ẑt (ẑt � zt)0 +
TX
t=1

(ẑt � zt) (ẑt � zt)0

= I + II + III + IV:

We know that

I = Op
�
T 2
�
;

from Lemma B.4(ii) in Bai (2004)

II = III = Op (T )

and from Lemma B.1 in Bai (2004)

IV = Op (T ) ;
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Therefore the denominator of (41) is

T�2
TX
t=1

ẑtẑ
0
t = T

�2
TX
t=1

ztz
0
t +Op

�
T�1

�
and thus

T�2
TX
t=1

ẑtẑ
0
t
d!
Z
WzW

0
z = B:

As far as the numerator (41) is concerned, let

1

T

"
TX
t=1

eWt z
0
t +

TX
t=1

eWt (ẑt � zt)
0 + �

TX
t=1

(zt � ẑt) ẑ0t

#
= A+B + C:

We have that A d!
R
dWeW

0
z. To study the the limiting distribution of B

and C, consider the following decomposition as proposed in Bai (2004, p.

164) for the de�nition of ~zt:

ẑt � zt = T�2
TX
s=1

~zsn (s; t) + T
�2

TX
s=1

~zs�st + T
�2

TX
s=1

~zs�st + T
�2

TX
s=1

~zs�st;

where

n (s; t) = E
�
eW 0
t e

W
s =n

�
�st = eW 0

t e
W
s =n� n (s; t)

�st = z0s�
0eWt =n

�st = z0t�
0eWs =n:

Then we have

B = T�3
TX
s=1

TX
t=1

eWt ~z
0
sn (s; t) + T

�3
TX
s=1

TX
t=1

eWt ~z
0
s�st + T

�3
TX
s=1

TX
t=1

eWt ~z
0
s�st +

T�3
TX
s=1

TX
t=1

eWt ~z
0
s�st;

= n�1T�3
TX
s=1

TX
t=1

eWt e
W 0
t e

W
s ~z

0
s + T

�3
TX
s=1

TX
t=1

eWt ~z
0
s�st + T

�3
TX
s=1

TX
t=1

eWt ~z
0
s�st;

= I + II + III
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Then

I = n�1T�1

 
T�1

TX
t=1

eWt e
W 0
t

! 
T�1

TX
s=1

eWs ~z
0
s

!
= Op

�
T�1

�
;

II = n�1T�3
TX
s=1

TX
t=1

eWt ~z
0
sz
0
s�

0eWt

= n�1T�3
TX
s=1

TX
t=1

eWt e
W 0
t �zs~z

0
s

= n�1

 
T�1

TX
t=1

eWt e
W 0
t

!
�

 
T�2

TX
s=1

zs~z
0
s

!
= Op (1) ;

and

III = n�1T�3
TX
s=1

TX
t=1

eWt ~z
0
sz
0
t�
0eWs

= n�1T�3
TX
s=1

TX
t=1

eWt z
0
t�
0eWs ~z

0
s

= n�1T�1

 
T�1

TX
t=1

eWt z
0
t

!
�0

 
T�1

TX
s=1

eWs ~z
0
s

!
= Op

�
T�1

�
:

Therefore the only term that matters is II and thus

n�1

 
T�1

TX
t=1

eWt e
W 0
t

!
�

 
T�2

TX
s=1

zs~z
0
s

!
d! n�1
e�B;

where the distribution limit T�2
PT

s=1 zs~z
0
s
d! B follows from the same argu-

ment as in the proof of the denominator.
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Finally, as far as the term C of the numerator is concerned we have

C = �T�3
TX
s=1

TX
t=1

~zsẑ
0
tn (s; t)� T�3

TX
s=1

TX
t=1

~zsẑ
0
t�st � T�3

TX
s=1

TX
t=1

~zsẑ
0
t�st

�T�3
TX
s=1

TX
t=1

~zsẑ
0
t�st

= I + II + III + IV:

From Lemma B.4 in Bai (2004) we have that

I = Op
�
T�1

�
II = Op

�
T�1

�
:

As far as terms III and IV are concerned, we have that

III = n�1T�3
TX
s=1

TX
t=1

~zsẑ
0
tz
0
s�

0eWt

= n�1T�3
TX
s=1

TX
t=1

zs~z
0
s�

0eWt ẑ
0
t

= n�1

 
T�2

TX
s=1

zs~z
0
s

!
�0

 
T�1

TX
t=1

eWt ẑ
0
t

!
= Op (1) ;

and

IV = n�1T�3
TX
s=1

TX
t=1

~zsẑ
0
tz
0
t�
0eWs

= n�1T�3
TX
s=1

TX
t=1

~zse
W 0
s �ztẑ

0
t

= n�1

 
T�1

TX
s=1

~zse
W 0
s

!
�0

 
T�1

TX
t=1

ztẑ
0
t

!
= Op (1) :
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Thus, the limiting distribution of C is determined by III and IV , and

we have

III = n�1

 
T�2

TX
s=1

zs~z
0
s

!
�0

 
T�1

TX
t=1

eWt z
0
t

!
+

n�1

 
T�2

TX
s=1

zs~z
0
s

!
�0

"
T�1

TX
t=1

eWt (ẑt � zt)
0

#
d! n�1B�0

�Z
dWeW

0
z + n

�1
e�B

�
;

and

IV
d! n�1

�Z
WzdW

0
e + n

�1B�0
e

�
�B:

Combining the results above, the distribution (41) is

T
�
�̂PC � �

�
d!
�Z

dWeW
0
z + n

�1
e�B � n�1B�0
�Z

dWeW
0
z + n

�1
e�B

�
�n�1

�Z
WzdW

0
e + n

�1B�0
e

�
�B

�
B�1

=

�Z
dWeW

0
z

�
B�1 + n�1
e�� n�1B�0

Z
dWeW

0
zB

�1

�n�2B�0
e�� n�1
Z
WzdW

0
e�� n�2B�0
e�:

Proof of Theorem 5. Let b0 = ��. Under H l
1,

kbk = kb0k+RT = kak+RT ;

where

RT =
1

2

�0T �T
kak = Op

�
T�2

�
;

which follows from applying Taylor�s expansion to kbk and that �0T� = 0.
Moreover

"kbk = "kb0k +
�0T "b
kb0k

�RT b0"b;
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which follows from

"kb0k =
b0"b
kbk +

"0b"b
2 kbk �

(b0"b)
2

2 kbk3
+Op

�
T�3

�
;

and application of Taylor�s expansion to kbk�1.
Also, from �0T� = 0 it follows a

0b = a0b0 = kak2. We know from equation

(37) that

sin2
�
â; b̂
�
= sin2 (a; b) + [2 + op (1)]

kâk
b̂ (a0b)� kak kbk�â0b̂�
kâk

b̂ kak kbk ;

with kâk
b̂ kak kbk = kak2 + op (1).

As far as sin2 (a; b) is concerned, we have

sin2 (a; b) = 1� a0b

kak kbk

= 1� kak2

kak (kak+RT )

=
RT

kak (kak+RT )
= O

�
T�2

�
: (42)

Consider the numerator kâk
b̂ (a0b)� kak kbk�â0b̂�, we have�

kak+ "kak
� �
kbk+ "kbk

�
(a0b)� kak kbk [a0b+ a0"b + b0"a + "0a"b]

=
�
kak+ "kak

� �
kak+RT + "kb0k + kb0k�1 �0T "b �RT b0"b

�
kak2 �

kak [kak+RT ] [a0b+ a0"b + b00"a + �0T "a + "0a"b]

=
kak2

2
("a � "b)0

�
Ik �

aa0

kak2
�
("a � "b)�

kak2 �0T ("a � "b) +Op
�
T�3

�
: (43)

Combining equations (42) and (43), we �nally have

sin2
�
â; b̂
�
=

RT
kak (kak+RT )

+
1

kak2
("a � "b)0

�
Ik �

aa0

kak2
�
("a � "b)

� 2

kak2
�0T ("a � "b) +Op

�
T�3

�
:
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Thus, the limiting distribution of bD = sin2(â; b̂) is
T 2 bD d! k�k2

kak2
+

1

kak2
Q�0
�
Ik �

aa0

kak2
�
Q� � 2

kak2
�0Q�:

Proof of Theorem 6. We prove the Theorem, merely for the sake

of the notation and with no loss of generality, by considering alternative

hypotheses H1 of the form

H1 : b = �
0� + �;

where the k-dimensional vector � is, as in the local alternative case, orthog-

onal to �, i.e. �0� = 0. Let b0 = �0� and k = k�k = kak. From condition

�0� = 0, under H1, a = b0 and

kbk = kb0k
p
1 + k2 = kak

p
1 + k2:

Therefore, it holds that

D = sin2 (a; b)

= 1�
�

a0b

kak kbk

�2
=

k2

1 + k2
> 0: (44)

We know that

bD = sin2
�
â; b̂
�

= sin2 (a; b) +
h
cos
�
â; b̂
�
+ cos (a; b)

i h
cos (a; b)� cos

�
â; b̂
�i

=
k2

1 + k2
+ [2 cos (a; b) + op (1)]

kâk
b̂ (a0b)� kak kbk�â0b̂�
kâk

b̂ kak kbk :

From equation (44) it follows that

cos (a; b) =
1p
1 + k2

: (45)
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As far as the term
kâk

b̂ (a0b)� kak kbk�â0b̂�
kâk

b̂ kak kbk
is concerned, we have, with respect to the denominator and after Slutsky�s

theorem

kâk
b̂ kak kbk = kak2 kbk2 + op (1)

= kak4
�
1 + k2

�
+ op (1) : (46)

As far as the numerator is concerned, we have�
kak+ "kak

� �
kbk+ "kbk

�
(a0b)� kak kbk [a0b+ a0"b + b0"a + "0a"b]

=
�
kb0k+ "kak

� h
kb0k

p
1 + k2 + "kbk

i
kb0k2 �

kb0k2
p
1 + k2

�
kb0k2 + b00"b + b00"a + �0"a + "0a"b

�
= kb0k2

h
kb0k

p
1 + k2"kak + kb0k "kbk �

p
1 + k2b00 (b

0
0"b + b

0
0"a + �

0"a) +Op
�
T�2

�i
:

Recalling the de�nitions of "kak and "kbk given in equations (38) and (39)

respectively, we have

kb0k2
��

1p
1 + k2

�
p
1 + k2

�
b00"b +

�0"bp
1 + k2

�
p
1 + k2�0"a

�
+Op

�
T�2

�
= Op

�
T�1

�
:

Combining this with equations (44), (45) and (46), we obtain

bD = k2

1 + k2
+

2

kb0k2
�
�0
�

"b
1 + k2

� "a
�
� k2

1 + k2
b00"b

�
+Op

�
T�2

�
;

where
2

kb0k2
�
�0
�

"b
1 + k2

� "a
�
� k2

1 + k2
b00"b

�
= Op

�
T�1

�
:

Proof of Theorem 7. To prove the theorem, consider the following

preliminary result which states the distributional equivalence between the
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quantities T
�
�̂OLS ��

�
and T

�
�̂PC ��

�
with their bootstrap counter-

part T
�
�� � ~�OLS

�
and T

�
�� � ~�PC

�
respectively.

Lemma A.1 Consider the estimators �̂OLS and �̂PC of � and their

linear transformations ~�OLS and ~�PC de�ned in equations (31) and (32)

respectively. Let �� be the bootstrap estimator for ~�OLS and ~�PC, and de�ne

the limiting distribution of T
�
�̂OLS ��

�
and T

�
�̂PC ��

�
as ZOLS� and

ZPC� respectively. Then it holds that

T
�
�� � ~�OLS

�
d! ZOLS� ;

and

T
�
�� � ~�OLS

�
d! ZPC� :

Proof. We distinguish the case of zts observable from that in which the

zts are unobservable.

The case of zts observable. The proof is based on the three following

steps: (1) we derive a strong approximation for the limiting distribution of

the partial sums of the process �qt; (2) we derive the strong approximation

for the bootstrap counterpart ��qt; (3) we extend these results to the limiting

distribution of processes ŵt and ŵ�t .

(1) De�ne S� (r) = T�1=2
PbTrc

t=1 �qt. Assumption 3(i) ensures that an in-

variance principle holds such that S� (r)
d! W (r), whereW (r) is a Brownian

motion. Following Sakhanenko�s (1980) and Park (2002), for some l > 2 and

for any � > 0, the following strong approximation holds

P

�
sup
0�r�1

jS� (r)�W (r)j � �
�
� T 1�l=2Kl

n
E j�tj

l
o
;

where Kl is an absolute constant depending only on l.

(2) De�ne S�� (r) = T
�1=2PbTrc

t=1 �
�
qt. Similarly:

P

�
sup
0�r�1

��S�� (r)�W (r)
�� � �� � T 1�l=2Kl

n
E
����qt��lo :
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Thus, from our resampling scheme

E
����qt��l = 1

T

TX
t=1

������̂qt � 1

T

TX
t=1

�̂qt

�����
l

:

Assumption 3(i) and the law of large numbers ensure that E
����qt��l <1.

Hence, as T !1

P

�
sup
0�r�1

��S�� (r)�W (r)
�� � �� = 0

This proves the strong approximation is valid for the bootstrap ��qt.

(3) Following Chang, Park and Song (2006), the bootstrap invariance

principle for ��qt carries over to w
�
t provided that the 	̂k are consistent esti-

mators for 	k. Assumption 3(ii) ensures that 	̂k is a consistent estimator

for 	k. See also Chang and Park (2002, 2003).

It holds

T
�
�̂OLS ��

�
d!
�Z

dBWW
0
z

��Z
WzW

0
z

��1
;

where BW is the Brownian motion associated with the partial sums of �et.

Thus, it holds:

T
�
�� � ~�OLS

�
d!
�Z

dBWW
0
z

��Z
WzW

0
z

��1
:

The use of the continuous mapping theorem leads to equation (36), under

the null, for the case when zt is observed.

The case of zts unobservable. Though this part of the proof is similar to

the case where zt is observable, however in this case the error term wt also

contains the extra component �(zt � ẑt), which leads to di¤erent asymptot-
ics. It is natural in this case to derive the proof directly for ~wt.

From (35), we know that

�W �
t =

~�PC ~z�t + ~e
�
t :
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Since in this case the bootstrap estimator �� is given by

�� =

"
TX
t=1

�W �
t ~z

�0
t

#"
TX
t=1

~z�t ~z
�0
t

#�1
;

we have

�� � ~�PC =

"
TX
t=1

~e�t ~z
�0
t

#"
TX
t=1

~z�t ~z
�0
t

#�1
: (47)

(1) De�ne XT (r) = T
�1=2PbTrc

t=1 ~wt and X (r) the corresponding limiting

distribution as T ! 1, i.e. XT (r)
d! X (r). Markov inequality ensures

that, for any � > 0 and some l > 2

P

�
sup
0�r�1

jXT (r)�X (r)j > �
�
� ��lE

�
sup
0�r�1

jXT (r)�X (r)jl
�
:

From martingale theory, we have

E

�
sup
0�r�1

jXT (r)�X (r)jl
�
� clT

n
E
��T�1=2 ~wt��lo = T 1�1=2l nE j ~wtjlo ;

where cl is an absolute constant. Thus,

P

�
sup
0�r�1

jXT (r)�X (r)j > �
�
� ��lT 1�1=2l

n
E j ~wtjl

o
:

This result provides an assessment of the rate of convergence of XT to its

limiting distributionX and mimics the strong approximation result in Sakha-

nenko (1980) used by Park (2002).

(2) In the same fashion, de�ne X�
T (r) = T

�1=2PbTrc
t=1 ~w�t , we can write a

similar result as above

P

�
sup
0�r�1

jX�
T (r)�X (r)j > �

�
� ��lT 1�1=2lE j ~w�t j

l ;

and from our resampling scheme we have

E j ~w�t j
l =

1

T

TX
t=1

����� ~wt � 1

T

TX
t=1

~wt

�����
l

:
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Give that ~w�t = [~e
�0
t ;�ẑ

�0
t ]
0, in order to prove that E j ~w�t j

l is �nite we need

to show that both E j~e�t j
l and E j�ẑ�t j

l are �nite. Assumption 3(i) ensures

that ~e�t has �nite 4th moment, and therefore

E j~e�t j
l =

1

T

TX
t=1

������et � 1

T

TX
t=1

�et

�����
l

is �nite.

As far asE j�ẑ�t j
l is concerned, let us consider the quantity T�1

PT
t=1 j��ztj

l,

where ��zt = �ẑt � T�1
PT

t=1�ẑt, and let ��zt = �zt � T�1
PT

t=1�zt. Thus

we have that

E j�ẑ�t j
l =

1

T

TX
t=1

j��ztjl =

=
1

T

TX
t=1

j��zt + (��zt ���zt)jl

� 1

T

TX
t=1

j��ztjl +
1

T

TX
t=1

j��zt ���ztjl : (48)

We have that the �rst term in the disequality above, T�1
PT

t=1 j��ztj
l, is �nite

from Assumption 3(i). As far as the second term, T�1
PT

t=1 j��zt ���ztj
l is

concerned, we have

��zt ���zt = T�2
TX
s=1

�~z0s�e
W 0
s �e

W
t + T

�2
TX
s=1

�~z0s�e
W 0
s ��zt

+T�2
TX
s=1

�~z0s�z
0
s��e

W 0
t ;
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and

1

T

TX
t=1

�����T�1
TX
s=1

�~z0s�e
W 0
s �e

W
t

�����
l

=

T�1
TX
s=1

�~z0s�e
W 0
s


l

T�1
TX
t=1

�eWt l
= O

�
T�l=2

�
;

1

T

TX
t=1

�����T�1
TX
s=1

�~z0s�e
W 0
s ��zt

�����
l

=

T�1
TX
s=1

�~z0s�e
W 0
s


l

T�1
TX
t=1

k��ztkl

= O
�
T�l=2

�
;

1

T

TX
t=1

�����T�1
TX
s=1

�~z0s�z
0
s��e

W 0
t

�����
l

=

T�1
TX
s=1

�~z0s�z
0
s


l

T�1
TX
t=1

�eWt l
= O

�
T�l=2

�
: (49)

Therefore, we have that E j�ẑ�t j
l is �nite.

From (48) and (49), the vector E j ~w�t j
l is �nite.

As T !1,
P

�
sup
0�r�1

jX�
T (r)�X (r)j > �

�
= 0: (50)

This result jointly with continuous mapping theorem prove that numerator

in (47) is T�2
PT

t=1 ~z
�
t ~z
�0
t

d!
R
WzW

0
z.

As far as the numerator in (47) is concerned, we have

TX
t=1

~e�t ~z
�0
t =

TX
t=1

�e�t ~z
�0
t +

TX
t=1

�(z�t � ~z�t ) ~z�0t + o�p (1) (51)

Expression (50) ensures a strong approximation result holds for the partial

sums of ~z�t , z
�
t � ~z�t and �e�t .

Therefore, continuous mapping theorem and consistency of the 	̂ks en-

sured by Assumption 3(ii), lead to

T�1
TX
t=1

�(z�t � ~z�t ) ~z�0t
d! n�1z0B�0

�Z
dWeW

0
z + n

�1
e�B

�
+n�1z0

�Z
WzdW

0
e + n

�1B�0
e

�
�B; (52)

47



which is the same result as for T�1
PT

t=1�(zt � ẑt) ẑ0t.
Combining the results from equations (51) and (52), we obtain

T
�
�� � ~�PC

�
d!

z0
�Z

dWeW
0
z + n

�1
e�B � n�1B�0
�Z

dWeW
0
z + n

�1
e�B

�
�n�1

�Z
WzdW

0
e + n

�1B�0
e

�
�B

�
B�1;

which is the same as the distribution of T
�
�̂PC ��

�
provided in Theorem

4. Therefore, we have that T
�
�� � ~�PC

�
and T

�
�̂PC ��

�
are equal in

distribution. QED.

Lemma A.1 ensures the distributional equivalence between �̂OLS and �̂PC

with their bootstrap counterpart ��. Therefore, after the continuous map-

ping theorem, letting

"�b = b
� � ~b;

"�� = �
� � ~�;

we have

T"�b
d!
�Z

WzW
0
z

��1 Z
WzdW�s;

T "��
d!
�Z

WzW
0
z

��1 Z
WzdW

0
�v;

if the zts are observable and

T"�b
d! �0zib;

T "��
d! i�z0�:

if the zts are unobservable, where z and � are de�ned in equation (23) and
Theorem 4 respectively.
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We can now prove equation (36) by analysing the asymptotic behaviour

of bD�. We have

bD� = sin2 (a�; b�)

= sin2
�
~a;~b
�
+
h
cos (a�; b�) + cos

�
~a;~b
�i ka�k kb�k�~a0~b�� k~ak~b (a�0b�)

ka�k kb�k k~ak
~b :

Since a� and b� are superconsistent estimators, by Slutsky�s theorem we have

cos (a�; b�) = cos
�
~a;~b
�
+ op (1) ;

and by de�nition of ~b we have

sin
�
~a;~b
�
= 0;

cos
�
~a;~b
�
= 1:

Therefore bD� = [2 + op (1)]
~b2 ka�k kb�k � a�0b�~b4 + op (1) :

Since

ka�k kb�k � a�0b�

=
�
k~ak+ "�kak

� �
k~ak+ "�kbk

�
� ~a0~b� ~a0"�b � ~a0"�a � "�0a "�b

= k~ak "�kak + k~ak "�kbk + "�kak"�kbk � ~a0"�b � ~a0"�a � "�0a "�b

=
1

2
("�a � "�b)

0
�
Ik �

~a~a0

k~ak2
�
("�a � "�b) +Op

�
T�3

�
;

we have that

T 2 bD� =
1~b2 ("�a � "�b)0

264Ik � ~b~b0~b2
375 ("�a � "�b) + op (1) :

Lemma A.1 and the continuous mapping theorem ensure that equation (36)

holds. Note that since resampling was done under the null via the use of ~b,
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equation (36) is valid not only under the null but also under the alternative

hypothesis H1 (and under the local alternatives H l
1).
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