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Abstract 

In this paper our objective is to propose a flexible model able to integrate different 

environmental data subject to heterogeneity. In particular we consider PM10 data coming 

from monitoring networks for air quality assessment; in this case the heterogeneity can arise 

because of the different instruments used in the monitoring station and the sampling 

strategies that change in time and space. To do this we propose a Geostatistical Dynamical 

model based on the state – space approach introduced by Fassò and Nicolis in [1] which is 

an extension of the DDC model presented in [2]. We assume that the observed data are 

random fields composed by a linear function of the “true” levels and error components, 

where the “true” concentrations of PM10 are unobservable processes and represent the state 

equation of the model. Considering the PM10 data of the Piemonte region during the year 

2003, we show some preliminary results.  

Keywords: spatio-temporal modelling; Kalman filter; calibration; Geostatistical Dynamical 

Calibration model (GDC), heterogeneous monitoring networks. 
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1. Introduction 

In recent years, as a result of studies that have verified the negative effects on human health, 

atmospheric pollution has been of great concern for many countries of the world. For example 

in Europe this focus is a consequence of the Treaty Establishing the European Community, 

Title XIX, and specifically of Council Directives 96/62/EC, on ambient air quality, and 

99/30/EC, on limit values of air pollutants, including particulate matters with a diameter 

under 10 micron (PM10). These Directives are being gradually adopted by member states, for 

example in Italy the Decreto Ministeriale number 60 (2th april 2002) states both the air quality 

standards on the daily and yearly scale and the measurement quality standards for instruments 

measuring PM10. The reference method for the sampling and the measurement of PM10 is 

based on the collection on a filter of the PM10 fraction of ambient particulate matter and the 

determination of its mass; this is the gravimetric principle. 

Despite the fact that the carrying out of these laws is going on, the data for the recent years 

are characterized by various inhomogeneities. With regard to North of Italy, Piemonte, 

Lombardia and Emilia Romagna are the three regions that cover the “Pianura Padana” area 

and for each of them policies and techniques have been quite different.  

First of all the monitor types accuracy and precision may change over time and space. For this 

reason it is necessary to apply suitable transformations to make the data equivalent to those 

gathered by the reference system. For example, some networks have been based on automatic 

monitors based on tapered element oscillating microbalance (TEOM). 

Moreover we may have different time series lengths due to missing values and/or different 

sampling frequencies and/or different station lifetimes. In fact it could happen that a station 

changes its sampling strategy (e.g. from every two hours to hourly) or that some monitoring 

instruments collect data slower than others (e.g. only with daily frequency) while other 

monitors collect data more often (e.g. with hourly frequency). For example, the former is the 

case of the Lombardia region where many stations change their sampling frequency (for 

instance, “Milano Juvara” station collected PM10 data every two hours until 25/11/2004 and 

then every hours), the last is the case of the Piemonte region where we can find gravimetric 

monitors with daily data and TEOM monitors with hourly data. 

For all these reasons we have heterogeneous PM10 measurements and the aim of this paper is 

to reconstruct an homogenous space-time series of comparable data allowing both 
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retrospective and trend analysis, as well as performing meaningful quality standard 

attainments. 

In our model we consider the spatial correlation between data gathered by different monitors: 

this is a geostatistical approach. Geostatistics is the branch of statistics that studies data 

spatially dispersed and was originally used in the mining industry, regarding spatial sampling 

of rock formations and the problem of the total quantity on an ore or mineral in a field, given 

concentrations of the ore or mineral at a finite set of sampling point. Today geostatistics is 

used for environmental application (geology, athmospheric science, hydrology, climatology, 

etc.) and for any discipline that work with data collected from different spatial locations and 

need to develop models that indicate when there is dependence between measurements (for an 

extensive discussion of geostatistic see [3]). 

In particular, our model is a geostatistical extension of the Dynamical Displaced Calibration 

model of Fassò and Nicolis presented in [2]. In order to reduce the dimensionality of the 

model, we decompose the “true” unobservable process in p principal fields following the 

approach of Mardia et al. [4] and Wikle and Cressie [5,8]. 

 

2. Model setup and fitting 

 

2.1 The general Geostatistical Dynamical model  

In this section we present a flexible model which is able to handle data coming from different 

networks and with the heterogeneity problems explained in the introduction. Since now we 

stress the importance of such a model for the creation of a single framework of homogenous 

data regarding, for a big administrative area, for example “Valle Padana”  

Assume that data ( ))s),...,y(t,y(t,s(t)
tp1y =  are obtained from an observable and spatially 

continuous process )y(t,s j , where { },...,n,t 21∈ , a discrete index of time (for example hours), 

and the generic { },...,ns j 1∈  is a pointer into the spatial domain 2
1  Rz),,...,z(zD jn ∈= . Note 

that the dimension tp  is time varying due to the sampling frequency heterogeneity and the 

missing values problem. 

Easily with the notation y(t,s) we will indicate the measurement at time t in location Dzs ∈ . 

Obviously y(t,s)  is subject to uncertainty and can be biased by some type of error (for 

example, measurement error); for this reason it can be read as the practical determination of 
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an underlying process. Regarding the PM10 data, we investigate the real level of air pollution 

(underlying process) but we observe y(t,s) , that is the PM10 concentration level (in mg/m3) in 

station s at time t (observed data subject to uncertainty). 

The “true” phenomenon to be monitored is given by a time varying linear function of an 

unobserved process denoted by µ(t). This underlying global process is K-dimensional and 

Markovian, so we have  

)()1()( ttHt ηµµ +−=  

The process µ(t) determines the network measurements in the sense that  

G(s)x(t,s)i)µ(tB(t,s)A(t,s)(t))E(y(t,s)/
i

+−+= ∑
=

24

1
µ  

where the vector *
τAA =  is the additive bias depending on some parameters τ and the matrix 

)B(t,s  contains the following elements:  

- a K-dimensional set of EOF or principal components PCA1 (see [4] and [5]);  

- a component for missing data handling; 

- a component for change in sampling frequency. 

Hence we have 

F(t)Φ(t)M(t)BB(t,s) *
τ=  

where )M(t is a matrix for missing data handling, *
τB  concerns parameters τ, F(t)  is composed 

of frequency-time averaging weights and Φ(s)  is the PCA loading matrix corresponding to 

location s . 

We then have the following pt-dimensional measurement equation (in matrix form): 

∑
=

++−+=
24

1

x)(y
i

tt ε(t)(t)tGi)µ(tBA(t)  

where )()(),( sQtMstG =  is a matrix multiplied by )(tM  as above, and (t)x are generic 

covariates. These kinds of variables are helpful to explain the “true” phenomenon and they 

regard, for example, meteorological, chemical or physical aspects directly connected to the air 

pollution process. These variables can be measured in the same location sz of y(t,s)  (site 

specific covariates) or be related to a higher level spatial dimension (area specific covariates), 

such as administrative regions. 

                                                 
1 Section 2.2 is dedicated to Principal Component Analysis (PCA). 
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The measurement error components ),( stε  is given by the generic equation  

(t,s)ε(t,s)µε(t,s) 00 +=  

where  

- the first left-side term, (t,s)µ0 , is the spatially descriptive component or the so-called 

small-scale residual component which describes the spatial correlation not explained 

by the PCA component µ(t). This has been often supposed independent over time and 

spatially correlated with spatial covariance matrix given by 
0µΣ , which is usually 

related to a stationary and isotropic spatial process (see [3]). In particular the J-Bessel 

is a good semivariogram model for interpreting the data spatial correlation because of 

its flexible parameterization which considers also periodic terms. The J-Bessel model 

is given by 












Ωℑ

Ω
+Γ

−= )/(
)/(
)1(21)( r

r

d
s h

h
h

d

d

d

θ
θ

θθγ θ
θ

θ

 

for each h (distance between two locations) with 0,, ≥dsr θθθ  and 
dθΩ subject to 

rBBB
B

s

θ
γθγ

=
<′=> 0)(,)(,0

min , where Γ is the Gamma function, νℑ is the J-Bessel function of 

the first type parameter ν (see [7]). 

- The second term (t,s)ε0 is a Gaussian spatially and time independent pure 

measurement error, uncorrelated on (t,s)µ0 , with standard deviation equal to εσ . 

The unobserved components )µ(t is defined by a (K+1)-dimensional first order stationary 

Markovian process 

(t))µ(tH(t) µµ ηµ +−= 1  

where the innovations η are defined by an independent process with mean zero. 

A special case for the matrix ),( stA  is discussed in section 2.4. 

 

2.2 The Principal Component Analysis (PCA) 

Principal Component Analysis is a multivariate statistical tool. The central idea of PCA is to 

reduce the dimensionality of a data set in which there are a lot of correlated variables, while 

retaining as much as possible the variation present in the data set. This reduction is achieved 
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by creating a new data set of principal components which are uncorrelated and which are 

ordered so that the first few components retain most of the variability of the original variables. 

Computation of the principal components reduces to the solution of an eigenvalue-

eigenvector problem for a positive-semidefinite symmetric matrix. 

Using y(t,s) at each location s (s=1,2,…n) and time point t (t=1,2,…,T) we can define the k-th 

principal component (or field) as ),()( styt kk φµ ′= , k=1,2,…,K, K ≤ n, where 

))(),...,(( 1 ′= nkkk ss φφφ is a vector of the loading matrix Φ . So 1φ is the vector that allows 

[ ])(var 1 tµ  to be maximized subject to the constraint 111 =′φφ ; 2φ  is the vector that maximizes 

[ ])(var 2 tµ  subject to the constraint 122 =′φφ  and [ ] 0)(),(cov 21 =tt µµ ; in general, 

kφ maximizes [ ])(var tkµ  subject to the orthogonal ( 1=′
kk φφ ) and the uncorrelation 

constraint ( [ ] kjtt kj ≠=  ,0)(),(cov µµ ). 

This is equivalent to solving the eigensystem  

ΦΛ=ΦyC  

where [ ])(),( tytyECy = , ),...,( 1 ′=Φ nφφ with ))(),...,(( 1 nkkk ss φφφ = , nk ,...,2,1 = , 

),...,( 1 ndiag λλ=Λ  and [ ] nitii ,...,2,1 ,)(var == µλ . The solution is obtained by a symmetric 

decomposition of the covariance matrix Φ′ΦΛ=yC . 

Once the PCA decomposition is computed the problem of choosing an appropriate K ≤n 

arises. It’s a common practice to choose the first K components such that the cumulative 

percentage of variance explained is high enough.  

 

2.3 The Piemonte region: a case study 

The PM10 monitoring network of the Piemonte region is composed by different measurement 

monitors: Low Volume Gravimeter (LV or LVG), High Volume Gravimeter (HV), TEOM, 

BETA, and NEFELOMETRO monitors 2 . Figure 1 shows the spatial locations of the 

monitoring stations together with the type of monitor.  

                                                 
2 The data considered in this work have been gathered by the Piemonte AriaWeb informative system that is a 
branch of the “Sistema Regionale di Rilevamento della qualità dell’Aria (SRQA)”. 
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Fig. 1 – PM10 monitoring network of the Piemonte region 

 

In our analysis we consider only LVG and TEOM monitors and the PM10 daily concentrations 

for the period from 1st January 2003 to 31st December 2003. Since some monitoring stations 

were affected by a large number of missing values, we selected those stations with more than 

90% of the validated data.  
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The following Table 1 contains the selected stations (17 LVG and 2 TEOM) with some 

descriptive statistics concerning the PM10 concentrations: percentage of validated data 

calculated on the annual expected number of data (%VD), mean, standard deviation (SD), 

min, max and median. 

Three of the selected stations are located in Turin city, another three monitors are located in 

the surrounding hilly area (Borgaro, Pinerolo and Buttigliera Alta) while the remaining 

stations are spread all around the Piemonte region in an area with most monitors on the plain 

of the Po River and some in the neighbouring Alpine valley which are subject to local 

climatic factors. 

 
Station label % VD Mean SD Min Max Median 

Low Volume Gravimetric (LVG) 

AL - Nuova Orti (AL) 93,7 55,1 27,8 13 167 48 

Alba (CN) 93,4 42,3 26,9 7 159 35 

Borgaro (TO) 92,6 42,0 23,9 4 115 35,5 

Borgosesia (VC) 99,7 36,6 21,3 4 113 30,5 

Bra (CN) 94,5 57,3 28,4 10 144 51 

Buttigliera Alta (TO) 92,6 44,4 26,8 6 135 37 

Buttigliera d'Asti (AT) 95,1 43,5 25,5 6 133 39 

Carmagnola 94,0 59,8 32,5 8 149 51 

Casale Monferrato - Via De Negri (AL) 92,3 45,2 27,7 2 165 36 

CN - Piazza II Reggimento Alpini (CN) 98,9 37,6 23,0 2 135 32 

Novi Ligure (AL) 89,6 50,7 30,5 5 185 43 

Pinerolo (TO) 90,7 39,4 23,5 6 135 34 

TO - Piazza Rivoli (TO) 90,1 49,0 27,0 5 140 42 

TO - Via Consolata (TO)3 98,1 63,6 33,9 12 165 54 

TO - Via Gaidano (TO) 95,6 42,0 30,8 1 162 32 

Tortona (AL) 97,0 48,8 25,9 5 144 45 

VC - Corso Gastaldi (VC) 94,0 57,6 31,5 13 312 47 

TEOM 

Ponzone (AL) 93,9 26,4 12,4 4 78 24 

TO - Via Consolata (TO) 96,1 56,3 19,8 20 125 53 
 

Tab. 1 – Descriptive statistics concerning the PM10 concentration in the selected  

stations (year 2003) 

                                                 
3 The LVG data of TO – Via Consolata station will be used only for the validation of the GDC model.  
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The monthly mean of PM10 concentrations can be read also in Fig. 2 which shows the 

monthly averages for each station; the bold line in the graph refers to the mean level 

concentration (considering all the stations together). It can be seen that the plotted series 

depends on a seasonal component related to the months of the year: for example, in winter the 

PM10 concentration level are higher than in other period. The reasons of this trend could be 

explained by other physical, chemical or meteorological variables (for example, temperature, 

pressure, etc.) depending to the atmospheric pollution process.  
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Fig. 2 – Monthly averages time series 

 

2.4. Fitting the model to the Piemonte data 

In this section we present the GDC model considering that in our case study we have two 

types of monitor (LVG and TEOM), giving respectively two kinds of measurement, (t,s)yG  

and )s(t,yT ′ . As we consider daily data the averaging component F(t)  may be suppressed. 

In particular we use the PM10 concentrations from LVG monitors to perform a dynamical 

calibration of the spatially displaced TEOM data, which are known to underestimate the 

“true” PM10 concentration level. 
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Assuming that both data have a component error, the model can be expressed by the 

following equations both depending on the unobserved process ),( stµ : 

(t,s)εΦ(s)µ(t,s)(t,s)y GG +=  

)s(t,ε)st,)µsβΦ(α(t)α)s(t,y TT ′+′′++=′ (0  

 

The first equation is simply an observation equation while the second may be interpreted as a 

time-varying linear calibration equation where:  

- Φ(s)  and )sΦ( ′  are the loadings from the PCA decomposition for LVG and TEOM 

stations; 

- 0α is the fixed additive bias; 

- )(tα is the time varying component of the additive bias; 

- β is the multiplicative bias. 

 

The measurement error components Gε and Tε  are given by the generic equation  

(t,s)ε(t,s)µε(t,s) 00 +=  

where (t,s)µ0 is the small-scale component with covariance matrix 
0µΣ  and (t,s)ε0  is a 

Gaussian pure measurement error, uncorrelated on (t,s)µ0 , with standard deviations equal to 

Gεσ and 
Tεσ , respectively. 

As in section 2.1 the unobserved components µ(t,s) and (t)α are defined by a (K+1)-

dimensional first order stationary Markovian process 

(t))(th(t)

(t))µ(tH(t)

αα

µµ

ηαα

ηµ

+−=

+−=

1

1
 

where the innovations η are defined by an independent process with mean zero and block 

diagonal covariance matrix 








Σ
=Σ 20

0

α

µ
η σ

. 

Here the vector of parameters to be estimated is given by 

( )222
0

, αµαµµεε ,σ,Σ,h,H,Σσα,β,σ
TG

=ω . 
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The estimation of the model parameters for the Piemonte PM10, based on the kalman filter 

algorithm, follows the following steps: 

- first we evaluate the principal components loadings, that is Φ(s)  and )sΦ( ′ , given 

LVG and corrected TEOM 4  observations both transformed with the logarithmic 

function; 

- next we estimate we estimate the ω parameters vector by the maximum likelihood 

function obtained by the kalman filter recursion conditionally on the matrix Φ(s)  and 

)sΦ( ′  given previously; 

- finally, the kalman filter algorithm provides the estimates of the state equations 

)(tα and )(tµ and the calibrated values ),(ˆ stµ  for each time and station. 

 

2.5 Model identification 

The first step, PCA analysis, applied to the Piemonte data, is summarized by Fig.3, where the 

cumulative percentage of explained variance shows that the first component accounts for 

about 70%. The subsequent components have substantially smaller and decreasing variances. 

We used the first K = 11 PCA components which give more than 95% of explained variance. 

Note that the first component may be interpreted as the common regional pollution level 

([10]). 

The second step, identification, is actually an iterated step. In order to find the simplest model 

with good fitting, we estimated a number of alternative models with various levels of 

complexity. Comparing the log-likelihoods, the calibrated versus observed LVG values for 

Consolata station and the residual properties, we found that the following important 

simplifications are in order. 

 

                                                 
4 We use the 1.3 correction factor proposed by the APEG Report (see [6]). 
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Fig. 3 - PCA variance decomposition 

 

- The small scale component in the error equation  

(t,s)ε(t,s)µε(t,s) 00 +=  
of § 2.1 may be ignored at least for our data. This conclusion is based on the fact that 

the spatial correlation matrix of the empirical errors ε(t,s)  has no elements 

significantly different from zero at 95% level. This is consistent with a pure 

measurement error interpretation of ε(t,s) . 

- we have homoskedastic measurement errors, i.e the observation equations for LVG 

and TEOM have the same error variance, 2
Gε

σ = 2
\ Tε

σ . This is consistent with the fact 

that both instruments are known to be accurate; 

- the PCA components are spatially uncorrelated and have independent and 

homogeneous dynamics over time. This means that  

10  <<= µµµ h),,...,hdiag(hH µ  

- The same orthogonality properties of PCA components entail that the innovations are 

orthogonal, i.e. 

),...,σdiag(σΣ
kηηµ

22
1

= . 

- Moreover we found that 22
2 kηη σσ == ... and 22

21 ηη σσ > . This is consistent with the PCA 

above, where the first component was found to have a relevantly larger variance. 



 13

- The dynamics of the time varying additive bias )(tα  was found to be absent. This 

because the estimates for hµ  and 2
ασ  where close to one and zero respectively. 

Moreover fitting was better without )(tα  in the model.  

Considering that we had no covariates for our model, this result is a little bit 

unexpected, since the relation between TEOM and LVG is often reported to depend on 

temperature and, according to this, some seasonal variation of  )(tα  may be expected. 

 

The following Table 2 contains the corresponding parameter estimates and standard errors. 

Note that the standard errors are quite small and the residuals of the model passed standard 

tests for approximate normality and white noise. 

 

 α0 hµ β )(ση
2
1

log )(ση
2

2
log  )(σ 2log ε  

Estimate 3.63 0.84 1.08 0.27 -3.59 -2.61 

Standard error 0.01 0.01 0.03 0.08 0.08 0.02 

Tab. 2 - Estimated parameters of the GDC model for the Piemonte region 

 

3. Conclusions  

In this work we introduced a general model able to handle data coming from different 

heterogeneous monitoring networks. Heterogeneity arises when different instruments with 

different precision and accuracy are used or when the sampling frequency changes through 

the reference area and/or the period of interest. 

We considered a simple example concerning daily data from Piemonte network with only two 

types of monitor. Using these we studied the spatio-temporal variability and found a 

simplified model.  

According to this the spatial variation is well explained by a finite dimensional representation 

while the residual spatial small scale component may be omitted. This is consistent with a 

pure error model interpretation. 

At least for these data it seems that the calibration equation, whenever based on a dynamical 

model, is time invariant. 
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