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Abstract: This article is concerned with a dynamic factor model for spatio-
temporal environmental variables. The model is proposed in a state-space formula-
tion which, through the Kalman recursions, allows a unified approach to prediction
and estimation. Full probabilistic inference for the model parameters is facilitated
by adapting standard Markov chain Monte Carlo (MCMC) algorithms for dynamic
linear models to our model formulation.
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1 Introduction

In recent years, spatio-temporal models have received widespread popularity and
have been largely developed through applications in environmental sciences. In
fact, the European Environmental Agency and the US Environmental Protection
Agency have both devoted significant efforts to developing air quality models for
the assessment of air pollution issues and evaluation of feasible solutions. We note
nevertheless that there is no single approach which can be considered uniformly as
being the most appropriate for a specific problem.

In this paper, we propose a latent regression model which is useful for spatial and
temporal predictions of pollutants of interest. The model is developed in a state-
space representation which represents a powerful way to provide full probabilistic
inference for the model parameters, interpolation and forecast of the variable of in-
terest. To account for spatial interpolation, the spatial dependence is incorporated
in the measurement matrix and we describe its construction by discussing a stochas-
tic specification. The possibility of specifying two measurement equations leads to a
significant advantage in terms of spatial interpolation and this makes an important
difference with respect to other spatio-temporal models proposed in literature. A
further important property of the proposed model is that it leads to capture the
temporal variation of the multivariate space-time fields.



2 The General Model

Consider the multivariate spatio-temporal processes X(s,t) = [Xi(s,t),..., X, (s, 1))
and Y(s,t) = [Yi(s,1),...,Y,,(s,1)], where s € S, with S a some spatial domain
and t € {1,2,...} a discrete index of times. For geostatistical data, S is a given
subset of R¢ and s is assumed to vary continuously throughout S . For lattice data,
S is assumed to be a given finite or countable collection of points. Lattices may be
either regular, as on a grid, or irregular, such as zip codes, census divisions.

It is explicitly assumed that X is a predictor of Y. Hence, Y denotes the specific
multivariate process of interest to be predicted in time and/or space. Here, the
relationship between the multivariate processes is modelled through the structural
spatial dynamic factor (SSDF) model.

Let us define the multivariate spatial processes as Y (t) = [Y (s1,t), ..., Y(sn, 1), a
n, x1 vector (7, = n,N) at N locations for n, variables, and X(¢) = [X(sy,t)’,..., X(sn,t)],
a n, x 1 vector (n, =n,N) at N locations for n, variables.

The measurement equations of the SSDF model are

X(t) = mg(t) + Hof(t) + ua(t) (1)
Y(t) = my(t) +Hyg(t) + uy(l) (2)

where m,(t) and m,(¢) are 7, X 1 and n, x 1 mean components modelling the
smooth large-scale temporal variability, H, (n, xm) and H, (72, x[) are measurement
matrices giving information on the spatial structure of the random fields, and u,(¢) ~
N(0,%,,) and u,(t) ~ N(0,X,,). Throughout the paper it is assumed that m < 7,
and | < ng.

The temporal dynamic of the processes is modelled through the following state
equations:

gt) = Y Big(t—i)+ > Cif(t i) +€0) (3

£(t) = > Ruf(t—k) +n(t) (4)

where C; (m x m), D; (m x 1), and Ry (I x [) are coeflicient matrices modelling
the temporal evolution of the latent vectors g(t) = [g1(t),...,gm(t)] and f(t) =
[f1(2), ..., fi(t)], respectively. Finally, £(¢) and n(t) are independent Gaussian error
terms for which we assume, £(t) ~ N(0,X;) and n(t) ~ N(0,3,).

SSDF analysis may be used to identify possible clusters of locations whose temporal
behaviour is primarily described by a potentially small set of common dynamic
latent factors.



3 The Structural Spatial Dynamic Factor Model

It is customary for dynamic factor models to refer to the unobserved (state) processes
as the common factors and to refer to the coefficients that link the factors with the
observed series as the factor loadings. Because of their spatial nature, the factor
loadings are equivalently defined as spatial patterns (Lopes et al., 2008; Ippoliti
et al, 2010). The latent factors, f(¢) and g(t), are able to capture the temporal
variation of the multivariate space-time fields, and the spatial dependence can be
modeled by the columns of the matrices H, and H, through multivariate Gaussian
Random Field for geostatistical data, or through multivariate Markov random field
(MRF) for lattice data.

4 The State Space Formulation

Given the SSDF model the temporal dynamic is modelled through state equations
(3) and (4). The specification of equation (4) is necessary to predict in time the latent
process f(t) and thus to obtain k—step ahead forecasts of g(¢) through equation (3).
The joint generation process of g(t) and f(¢) is a VAR(p) process of the type

d(t) = & d(t—1)+...+P,d(t —p) + €(?) (5)
where
(t) C, D, &(t)
d(t) = [ %(t) } , P, = { 0 R, ] , €(t) = [ n(t) ] and p > maz(s,q).

The presence of the measurement and the state variables naturally leads to the
state-space representation of the SSDF model.

5 Nonstationary case

In the case in which the two spatio-temporal processes X (s;t) and Y (s;t) are not
stationary in time, we assume that factors are generated by cointegrated vector au-
toregressive processes. In this case the factors are represented by the error correction
specification of the vector autoregressive process of equation (5):

p—1

Ad(t) = Ad(t—1)+ ) ®;Ad(t — i) + €(t) (6)

=1

where A = 1+ &, &, = — > —iy1 @i, and A is the difference operator (i.e.
Ad(t) =d(t) —d(t —1)).

Let ®(z) denote the characteristic polynomial associated with the process (6). We
assume that latent exogenous variables are cointegrated with cointegrating rank
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(Cho, 2010) and also rank(A) =7, r =m+1—c > ry with m+1 > c and c are the
unit roots of Det(®(z)). ) )

Because of the exogeneity of X, the matrices A and ®; are upper block triangular
matrices: A = [ %I ‘filj } and <i>l- = [ (I;)M ‘;3)122; }

Then, equation (6) can be rewritten in the following two equations:

Ag(t) = AB/d(t— 1)+ AyBif(t — 1) + pZK,-Ad(t i)+ € (7)
Af(t) = ABYf(t—1)+ pz_: o AL(t — 5) + n(t) (8)

i=1

where A is m x 14, B is (m +1) x 74, Ay and By are | X 1y, Ayy is m X 1y,
Ki = [@11 @121‘] and Td <m+ l.

6 Inference

Full probabilistic inference for the model parameters is carried out by elicitating
the independent prior distributions. Posterior inference for the proposed class of
spatial dynamic factor models is facilitated by MCMC algorithms. The common
factors are jointly sampled by means of the well known forward filtering backward
sampling (FFBS) algorithm (Carter and Kohn 1994) which exploits the state space
representation of the general model. All other full conditional distributions are
"standard” multivariate normal distributions or gamma distributions. An exception
is for the spatial parameters and the covariance matrices which are sampled using
a Metropolis-Hastings step.
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