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ABSTRACT: The analy sis of  f ield data of ten shows unwanted trends, quasi periodical 
v ariations at the daily  and/or y early  f requency  and other f luctuations and noises which are not 
related to the phenomenon being monitored. For f ield instruments based on long hy draulic 
circuit (e.g. hy draulic settlement gages) or rods and wire gauges (e.g. extensometers), the 
temperature may  hav e signif icant ef f ects on the uncertainty  of  the measuring sy stem. In this 
paper, we show how to reduce temperature drif ts and the highly  non Gaussian uncertainty  by  
means of  an appropriated computerized post-processing of  the f ield data based on robust 
statistical methods. To do this routinely , we propose an easy -to-use sof tware which helps the 
user in the data analy sis and in the choice of  the appropriate modelling technique. 
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1 Introduction 

Geotechnical and structural monitoring of  complex structures or critical geological situations 
hav e become normal practice. 
Monitoring means a continuous measurement of  signif icant phy sical parameters that describe 
the behav iour of  rock and soil masses or of  a structure and/or of  their interaction. These 
phenomena cannot be predicted in details by  means of  a deterministic approach due to the 
complexity  of  the constitutiv e laws of  the materials considered and to the high number of  
unknowns and the uncertainty  about the nature and ev olution of  the boundary  and 
env ironmental conditions which can af f ect the measured parameters as well as modif ication of  
mechanical and electrical characteristics of  the instruments during a long term period of  
observ ation. 
Another signif icant f actor is that instruments are normally  installed in open f ield and cov er a 
wide area increasing the complexity  of  the sy stems enhancing the ef f ects of  env ironmental 
and boundary  conditions. 
A key  point in the monitoring activ ity  it has to be pointed out that quite of ten the history  or, in 
other words, the v ariation of  the v alues of  a specif ic parameter is more signif icant than the 
knowledge of  the absolute v alue itself . A single v alue v ery  seldom shows the true behav iour 
of  a structure or a soil mass because the structure or the soil, not being homogeneous and 
hav ing complex interaction among dif f erent parts, cannot be represented by  the v alues 
collected in a single point, because data collected in a single point cannot be representativ e of  
the real behav iour of  the whole monitored phenomenon. 
Among all the others conditions, the temperature can hav e signif icant ef f ects on the 
measuring sy stems. These ef f ects can be easily  compensated when af f ecting the sensing 
element only . Howev er f or many  instrumentation sy stems the sensing element is not the 
main source of  unexpected v alues. Instruments using, f or example, long hy draulic circuits or 
rods and wire - as f or hy draulic settlement gages or extensometers - can show signif icant 
v ariations due to temperature cy cles, both ov er a daily  and seasonal period. Moreov er, the 
response of  the measuring sy stem to temperature v ariations has a certain inertia and delay  
which could be explained by  stochastic dy namic models. 
A dif f erent approach is then needed since the solution cannot actually  be f ound at the 
instrument or sy stem lev el. It is necessary  to operate at the data processing lev el dev eloping 
a tool able to combine the v ariation of  a parameter with the co-v ariation of  other parameters. 
The aim of  such a tool is to help to reduce noise, enhancing the true phy sical phenomenon 
understanding, eliminating trends and unwanted spurious co-v ariations and, v ice v ersa, 
highlighting important dy namics of  the sy stem under observ ation. 
A statistical approach has been selected because, in principle, all the observ ed phy sical 
phenomena and the correlated constitutiv e laws are, as mentioned, not deterministic 
phenomena and because in engineering practice most of  the parameters are calculated on a 
statistical basis - such as modula, strength limits, elasto-plastic coef f icients, etc.. – and 
theref ore the use of  a statistical approach also f or monitoring data is recommended.  
In section 2, a statistical monitoring model is introduced allowing to discuss the dif f erent 
sources of  uncertainty  and biases in the general f ramework of  non Gaussian stochastic 
processes. 
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To do this, we f irst note that the object of  the monitoring activ ity  is the dy namics of  a 
phy sical sy stem, f or example a building or a landslide or the wall of  an excav ation. Here, we 
do not consider detailed mathematical modelling of  such a phy sical sy stem as, f or example, 
using FEM approach; rather, we consider an approach of  modelling the measuring sy stem 
which put together observ ed data and phy sical and engineering knowledge.  
Generally  speaking, if  a detailed model of  the phy sical sy stem is av ailable, then both 
approaches may  be integrated using, f or example, Data Assimilation techniques; see e.g. 
Sneddon (2000) or Thompson et Al. (2000). 
In section 3, considering f ield applications based on hy draulic measuring sy stems and load 
measuring sy stems, we illustrate adjustment techniques f or observ ed thermal ef f ects as well 
as smoothing techniques f or uncertainty  reduction. It is also clear f rom these examples that a 
signif icant number of  data, both of  the observ ed parameter and of  the cov ariant, is needed. 
This leads us to use instrumentation sy stems based on an automatic data acquisition sy stem, 
and a consistent historical data base. 
In section 4, we introduce the sof tware package FieldStat which has been dev eloped to made 
easy  the statistical analy sis also f or the untrained user and, in section 5, some conclusions 
are drawn. 

2 Modelling uncertainty 

In order to discuss some techniques f or assessing and reducing the env ironmental biases and 
uncertainty  of  a measuring sy stem, we introduce a general statistical model allowing us to 
describe the sensitiv ity  to thermal ef f ects and the uncertainty  under v arious operating 
conditions.  
The need f or a statistical approach arises, as mentioned bef ore, because uncertainties and 
unknowns are naturally  described by  random v ariables and random processes. Moreov er, 
since constants and relationships between relev ant quantities are empirically  estimated 
through observ ed data, a statistical approach allows us to assess also the uncertainty  arising 
f rom estimation. Since the av ailable phy sical knowledge and ev idence are both used in our 
approach, we consider this as a grey -box modelling approach instead of  purely  black-box; see 
e.g. Ljung (1999). 
In particular, the dy namics of  gauge readings ty  at time t, is related to temperature and/or 

other env ironmental readings, denoted by  tu , by  the equation: 

( ) ttttt ugy ζπµ +++= .     (1) 

In equation (1)  the f our components hav e the f ollowing interpretation: 
− tµ  is the “signal” or the “state” of  the phy sical sy stem and is supposed to be a “smooth” 

f unction; 
− the f unction ( )g  is the temperature drif t f unction and may  hav e a known shape, e.g. 

linear and contemporaneous, as in subsection 2.2, or may  include lagged v alues, as in 
subsection 2.3; 

− the quantity  tπ  describes the ef f ect of  unmeasured env ironmental and/or anthropic 

v ariations which hav e quasi-periodical cy cles, e.g. daily  or y early ; 
− the error tζ  is described by  an unobserv ed stationary  stochastic process; applications  

below suggest not to restrict to the Gaussian case. 
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In the ideal case, all env ironmental f actors are observ ed and enclosed in the v ector tu  and 

the f unction ( )g  is completely  known, then 0=tπ  and the error tζ , being a standard 

measurement error, is a purely  random error, i.e. Gaussian and white noise.  
In our case, since the measuring sy stem is complex and we hav e only  partial observ ation of  
env ironmental f actors, we use a simplif ied explanation of  env ironmental ef f ects giv en by  

( )ug . Moreov er, the measuring sy stem may  hav e certain inertia, delay s and  non sy mmetric 
dy namics which are described, in general terms, by  the stochastic properties of  tζ .   

A question which arise is whether the unobserv ed stochastic process tπ  is related only  to the 

measuring sy stem or also to the phy sical sy stem itself . In principle, both may  f luctuate with 
temperature. For example some small dilatations are possible on the wall of  a building being 
monitored. In our monitoring setup we consider that these f luctuations are not of  concern with 
respect of  stability  and saf ety  which are the main motiv ations of  monitoring.  Hence the 
quantity  of  interest is tµ  or its v ariation tt ∂∂ /µ .  

2.1 Uncertainty decomposition 

Equation (1) allows f or a detailed analy sis of  the accuracy  of  a measuring sy stem. As a 
matter of  f act, denoting, as usual, the standard dev iation with σ  and assuming that the f our 
components of  the right hand side of  equation (1) are uncorrelated, we hav e the f ollowing 

decomposition  of  the v ariance 2
yσ  or  total f ield uncertainty  of  the measuring sy stem: 

22222
ζπµ σσσσσ +++= )(ugy .    (2) 

The f irst v ariance is zero if  the phy sical sy stem is stationary  and the second is of ten the 
largest component which can be eliminated by  appropriate temperature monitoring and the 
techniques of  sections 2.2 and 2.3. The third one is related to the unobserv ed env ironmental 
ef f ects and can be eliminated by  the smoothing techniques of  section 2.4. The last term is the 
residual uncertainty  of  the measuring sy stem and is the common objectiv e of  the rest of  this 
paper. Its reduction is not considered in details here but, in principle, it can be reduced in a 
dy namical sense by  iterativ ely  considering the present uncertainty  conditionally  on the past 
observ ations. 
The assumptions of  uncorrelation in equation (1), which are used in equation (2), deserv e some 
comments. First of  all they  require correct model specif ication and estimation and this may  be 

checked using standard statistical tools. Moreov er the “signal” tµ , af ter remov ing 

env ironmental and anthropic components, is stationary  and, by  def inition is uncorrelated with 
the other quantities.  
The major source of  correlation may  arise between the temperature ef f ect ( )g  and the 

unmeasured v ariation tπ  which may  be both periodical especially  when they  are only  partially  

observ ed. Whenev er we do not deepen this topic here we note that orthogonalization is 
possible. 
With this model setup in mind, we will brief ly  discuss three important particular cases in the 
next three subsections which are related  to the applications of  the section 3 below.  
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2.2 Static adjustment 

In this section, we discuss the modelling of  the observ ed temperature ef f ect on the gauge 
readings ty  when the sy stem under monitoring is supposed stationary , i.e. constt =µ  with the 

notation of  equation (1). 
The simplest idea is to suppose the abov e ef f ect linear and immediate, i.e.: 

ttt euy ++= βα            (3) 

whit the error  ttte ζπ +=  as in equation (1). 

Due to the abov e mentioned non Gaussianity , estimation of  coef f icients α and β is perf ormed 
using robust techniques based on iterativ ely  weighted least-squares coupled with a Cochran-
Orcutt ty pe correction f or autocorrelation (see e.g. Holland and Welsh, 1977, Huber, 1981, and 
Fassò and Perri, 2001). 

2.3 Dynamical adjustment 

Due to partial observ ation, inertia and delay s the model (3) is of ten simplistic. A more 
complete model allows f or a transf er f unction (see e.g. Lijung, 1999, Box, Jenkins and 
Reinsel, 1994). In this case we consider a so called Box-Jenkins (BJ) model giv en by  

tttt eububy ++++= − ...110α                 (4) 

where 
...... ++=++ −− 1111 tttt dece εε  

and, extending the standard BJ model we allow f or Gaussian heteroskedastic innov ations, i.e. 

we suppose that the tε  are Gaussian with zero mean and conditional v ariance th  giv en by  a 

f unction of  prev ious innov ations 

...++= −
2

110 tt vvh ε  

In other words, the uncertainty  of  innov ation tε  depends on the squared size of  the prev ious 

innov ations. 

2.4 Smoothing 

In this subsection, we discuss methods f or reducing the measurements uncertainty  and 
v ariations 

af ter eliminating possible observ ed env ironmental ef f ects by  adjusted readings ( )tt ugy −  as in 

the prev ious subsection 2.1. In terms of  the model of  equation (1), we are then interested in 
f iltering the stochastic components tt ζπ +  and, to do this, we use local poly nomial smoothing 

(see e.g. Fan and Gijbels, 1996). 

The basic idea of  this approach is based on a local approximation of  the smooth f unction tµ , 

so that at ev ery  time point 0t , we can approximate tµ , f or t close to 0t , using a f irst order 

series expansion giv ing the f ollowing linear f unction of  time:  

( ) ( ) ( )( )000 tttbtat −+=µ .     (5) 
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The coef f icient f unction ( )ta  and ( )tb  represent the local lev el and local f irst deriv ativ e 

respectiv ely . If  tµ  is the quantity  of  interest it is then giv en by  )(tat =µ  where ( )ta  and ( )tb  

are estimated f or ev ery  point t  in an appropriate grid by  repeatedly  minimizing a square sum 
weighted by  the rate between a kernel f unction, which prov ides smoothing, and a skedastic 
f unction similar to subsection 2.1, which prov ides robustness against heav ily  tailed errors (see 
Fassò and Locatelli, 2002). These estimates will be acronimized by  LLS f or Local (robustif ied) 
Least Squares. 
If  on the other hand, the deriv ativ e tt ∂∂ /µ  is of  interest then its optimal estimation is giv en 

by  )(/ tbtt =∂∂µ  where ( )tb  is as abov e but in equation (5) a second order expansion is used. 

Of  course other methods can be used f or smoothing. The simplest approach is based on 
mov ing av erages with a windows say  of  one day . It will be apparent f rom the next section 
that, due to non-Gaussianity , this approach is not reliable. We can also use mov ing medians 
and this will be shown to be an appropriate techniques alternativ e to LLS. Other techniques 
may  be f or example based on Kalman f iltering but, once again, non Gaussian data prev ent 
f rom standard implementation and robust f iltering has to be used. 

3 Case studies 

3.1 Ara Pacis 

The Ara Pacis is a historical monument in Rome dating back to the f irst century  B.C.,  which 
has been monitored f or measuring settlements of  f oundations and slabs during the recov ery  
activ ities being carried out in the area. 
The monitoring sy stem consisted in a hy draulic settlement sy stem with one ref erence v essel 
and a number of  measuring points where v ertical mov ements were measured in terms of  
height of  a liquid head by  means of  pressure transducers. The hy draulic circuits were af f ected 
by  temperature changes which caused f luctuation of  the actual v alues, shadowing the real 
behav iour of  the structure and the ov erall trend of  the measurements. 
By  an of f -line analy sis of  raw data on a statistical basis, using FieldStat sof tware, it was 
possible to eliminate the thermal ef f ect obtaining usef ul v alues. 
To see this, Figure 1a represents the raw data which are lev el measurements (mm) taken ev ery  
six hours f rom 26-Sep-2003 to 04-Feb-2004. The marked downward trend amounting to about 9 
mm in 4 months is mainly  due to the approximately  linear relation with the measured 
temperature shown by  Figure 1b. 
Using the robust method of  section 2.2, we get the f ollowing estimated thermal ef f ect 

uug ).(.).(.)( 00640926007406211 +−=  

where, in brackets, the estimated standard dev iations are reported. 
In Figure 1c, the adjusted v alues )( tt ugy −  show that the thermal ef f ect has been 

successf ully  remov ed and  

tttt ugy ζπµ ++=− 0)(  

is now a stationary  stochastic process with 0µ  which can be assumed constant ov er time and 

standard dev iation 1840.=−gyσ  which giv es a relev ant reduction of  the total uncertainty  of  

y  amounting to 832.=yσ . Then the percentage of  explained v ariance f rom the temperature 
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is %972 =R  and the total f ield uncertainty  in terms of  σ is reduced to 6.5%. 
The autocorrelation f unction of  the erratic component  tt ζπ +  depicted in Figure 1d suggests 

a signif icant dev iation f rom the simple white noise stochastic process and motiv ates the 
assumptions of  equation (1). 

3.2 Excavation monitoring 

This case study  is related to a measuring sy stem f or monitoring settlements of  existing 
structures during the excav ation f or the f oundations of  an adjacent new multistorey  building. 
The instrumentation which was used was a hy draulic settlement sy stem consisting of  a 
number of  v essels interconnected by  means of  one hy draulic line (tube). The v essels were 
installed on walls of  the building with dif f erent exposition to solar radiation. As a consequence, 
the hy draulic circuit was af f ected by  temperature gradients and the measuring gauge inside 
the v essels were working at dif f erent temperatures. 
 

 
 

 

 
 

Figure 1. (a) Lev el measurements. (b) Temperature v ersus Lev el measurements. (c) Adjusted 
lev els. (d) Autocorrelation f unction of  the adjusted lev els. 
 

(a)                                    (b) 

(c)             (d) 
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The raw data showed signif icant oscillation probably  due to temperature change and other 
anthropic ef f ects both daily  and during the y ear. Moreov er long term drif t due to some leakage 
in the hy draulic circuit occurred. These ef f ects made it almost impossible to set any  
reasonable threshold v alues f or the alarm activ ation due to the on going activ ity .  
The Figure 2b represents the raw data taken ev ery  30 minutes f rom 21-Jun-2002 to 06-Nov -
2002. The relation with measured temperature reported in Figure 2c does not show a clear 
v ariation in the mean lev el but suggests heteroskedasticity , i.e. v ary ing uncertainty . Hence 
the linear model of  section 2.2 used in the prev ious case study  does not work here. As a 
matter of  f act an uncertainty  decomposition f or heteroskedastic models is considered in 
Fassò et Al. (2003). We postpone f urther discussion of  this issue to the next subsection and, 
here, we consider the smoothing approach of  section 2.3, i.e. we try  to reduce the high 
f requency  uncertainty  without using the measured temperature. 
Figure 2a, depicting 13 day s data, shows the marked but non constant daily  periodicity . 
Together with Figure 2b it also shows that both the Mov ing Median and the LLS smoothing 
eliminate these f luctuations and reduce the total f ield uncertainty  to 15-17% (Table 1).  

 
 
 

 
 
 

Figure 2. (a) Lev el measurements f or 13 day s with Mov ing Av erages (MA), Mov ing Medians 
(MMed) and Local Linear Smoothing (LLS). (b) Lev el measurements taken ev ery  30 minutes 
f rom 21-Jun-02 to -Nov -2002. (c) Histogram of  the lev el measurements and the Normal 

(a)                                    (b) 

(c)                        (d) 
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distribution. (d) Temperature v ersus Lev el measurements scatterplot. 
 
Note that, due to the heav y  tail dy namics, the mov ing av erage with the same one day  
windows hav e a weaker compensation ef f ect. As can be expected the LLS smoother is a 
slightly  more sensitiv e to asy mmetric peaks than the mov ing median, giv ing the dotted LLS 
lines slightly  lower then the dot-dashed ones in Figures 2a and b; they  behav e essentially  the 
same f or sy mmetric dy namics. 
 

Table 1: Variances e % of  Standard Dev iations of  Excav ation monitoring 

Variance Std %
Raw Data 0.1670 100.0%
Moving Average 0.0267 39.9%
Moving Median 0.0039 15.3%
LLS 0.0047 16.8%

Uncertainty Decomposition

 

3.3 Load monitoring 

A 20 m deep excav ation in a sliding area presents a number of  steel struts as temporary  
support f or the concrete walls; the f orce acting on them had to be measured in order to 
ev aluate both the ef f ects of  the excav ation and of  the landslide mov ements on the reinf orced 
concrete walls. 
For measuring the f orces in the struts, electric load cells were installed between the struts and 
the retaining walls. See Figure 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3. Outline and photography  of  measuring sy stem f or load monitoring 

 
As expected, the f orce in the struts is highly  inf luenced by  the temperature which makes the 
struts to change their length and, theref ore, as def ormation is not allowed by  the contrast on 
the retaining walls, the stresses into them change as a f unction of  the temperature. The aim of  
the data analy sis was to separate the two ef f ects: apparent load due to temperature changes 

15,00 

F 

Load Cell 

18
,0

0 

∆∆∆∆T 

Landslide 
Load 
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and real load due to landslide mov ements and consequent walls def ormations. 

In this case we hav e an example of  v ariation of  the phy sical state tµ  which is quite dif f erent 

f rom the apparent v ariation in ty  shown by  Figure 4, where one y ear of  hourly  data f or both 

load and temperature is div ided by  two v ertical lines, the f irst on September 7 and the second 
on Nov ember 27. 
From the measured load it is not clear what happened and spurious changes in load could be 
concluded. As a matter of  f act, the relationship between load and temperature is better 
understood f rom Figure 5, which shows clearly  that, whenev er global linear correlation is close 
to zero, the relation is approximately  linear bef ore September 7 and the transient of  Fall 2002 
corresponds to a transient in the bidimensional data as already  noted f or other 
instrumentations by  Ceccuci et Al. (2003). 
 

 
Figure 4: Load (kN) and Temperature (°C). Vertical lines on September 7 and Nov ember 27. 

 

Figure 5: Load (kN) v ersus Temperature (°C). Black squares: bef ore 9/7, grey  stars between 
9/7 and 11/27, light grey  circles af ter 11/27. 

Assuming that the sy stem shif t tµ  is supposed negligible until September 7, we used these 

data to get the f ollowing estimated dy namical relation between load and temperature 
 

4-t3-t

2-t1-t

u (0.0003) 0.0020 - u (0.0003) 0.0003 +

(0.0003)u 0.0037 +u (0.0003) 0.0230 (0.015) -0.1575)( +=tug
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where, in brackets, the estimated standard dev iations are reported. Let )( ttt ugye −= , then 

    e (0.025) 0.2681 - e (0.082) 0.4432 - e (0.092) 0.2558 - e

 (0.054) 0.258 + (0.09791) 1.019 +

12-t2-t1-tt

2-t1-tt

=
εεε  

where the innov ations tε  hav e conditional v ariance th  giv en by  

2
12

2
1 −− ++×= tt εε  (0.08) 0.327  (0.07) 0.297 102.3h -5

t  

Using this model and exponential smoothing, we get the smoothed adjusted v alues  

))()((~~
tttt ugyyy −−+= − λλ 11  

which are depicted in Figure 6, where we used the f orgetting f actor 95.0=λ .  The horizontal 
lines reported there are the quantiles of  ty~  at lev el the 0.005 and the 0.995 respectiv ely , 

computed using the f irst two months of  stationary  data. These and similar quantities can be 
used to def ine the bands of  “stationary  uncertainty ” and, using this approach we can apply  
“change detection algorithms” (e.g. Fassò, 1997 and 1999 and ref erences therein) to 
geotechnical monitoring in order to get warning and/or alarming signals with a specif ied rate of  
f alse warning and/or alarms. 

 
Figure 6: Smoothed-adjusted loads. 

Figure 6 clearly  shows that the f irst period, bef ore September 7, assumed stationary  f or 
estimation purposes, actually , is characterized by  a slow increase in the corrected load. Af ter 
this point, the load increase becomes exponentially  steep until Nov ember 27 and, af ter that, 
the state comes to a new stationary  state. 
In Table 2, we hav e the v ariance components f rom equation (2) based on the abov e estimated 
BJ model. From the second column, assuming approximate stationarity  bef ore 9/7, we can 
see that adjusting the loads by  temperature giv es a reduction in terms of  v ariance of  R2=92% 
and, correspondingly  the total f ield uncertainty  in terms of  standard dev iation is reduced to 
28.3%. If  one had used the simpler model (3) with the same data, then he would get the less 
marked reductions of  R2=81.4% and to 43.2% respectiv ely . 

Table 2.  Variances f or load model 
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Source < Sept. 7 All  data

y 0.0127 0.038

g(u) 0.0102 0.038
y-g(u) 0.0010 0.077

e 2.3E-05  

4 Software 

The FieldStat sof tware package has been dev eloped f or the standard Windows env ironment 
using MatLab as mathematical and statistical computation engine. It has been prov ided by  an 
user-f riendly  graphical interf ace and it can be easily  used by  most operators. It only  requires 
a minimum knowledge of  statistics since it is application oriented, meaning that the decisions 
the operator has to take are related to engineering and practical aspects more than theoretical 
ones. On the other hand, the adv anced user may  conf igure models and algorithms in an 
assisted env ironment. FieldStat is actually  working as an of f -line processing package; the 
dev elopment program includes the possibility  to hav e FieldStat as subroutine of  general 
purpose Data Acquisition packages both f or of f -line and on-line analy sis. 

5 Conclusions 

Data f rom geomechanical monitoring need to be v alidated. Validation means to eliminate f rom 
a series of  data all those ef f ects due to instrumental uncertainties, instability , f luctuations, 
drif t and, moreov er, to boundary  and env ironmental conditions which can shadow the 
behav iour of  the monitored  phenomena increasing the ov erall uncertainty  of  the 
measurements. 
In order to cope with these ef f ects, a computerized tool has been dev eloped using a statistical 
model based on a phy sical and engineering approach. This tool enables to eliminate the ef f ect 
of  the co-v ariates (i.e. temperature) under three basic conditions: 

- the av ailability  of  a statistically  signif icant number of  observ ations or measurements, as 
well as a consistent historic data base; 

- a data acquisition f requency  signif icant with respect to the period of  the cov ariates; 

- the av ailability  of  signif icant v alues of  the cov ariates in terms of  f requency  and location . 
The results which hav e been obtained in the f irst stage are encouraging; attention has been put 
on the analy sis of  the thermal ef f ects on f ield measurements in order to separate these 
ef f ects f rom the phy sical ones that are the most important f or the engineers who hav e to 
ev aluate the behav iour of  a material or a structure. 
The ov erall f ield uncertainty , in terms of  σ, has decreased to 6.5%, 16% and 28% f or the three 
cases considered; theref ore, f or the mentioned cases, it has been possible to improv e the 
understanding of  the true behav iour of  the phenomena helping engineers to take decisions. 
The sof tware package enables to analy se the behav iour of  the phenomena and also to 
ev aluate the perf ormances of  the monitoring sy stems with the aim of  optimising their 
conf iguration and specif ication. 
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