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ABSTRACT: The analysis of field data often shows unwanted trends, quasi periodical
v ariations at the daily and/or yearly frequency and other fluctuations and noises which are not
related to the phenomenon being monitored. For field instruments based on long hydraulic
circuit (e.g. hydraulic settlement gages) or rods and wire gauges (e.g. extensometers), the
temperature may hav e significant effects on the uncertainty of the measuring sy stem. In this
paper, we show how to reduce temperature drifts and the highly non Gaussian uncertainty by
means of an appropriated computerized post-processing of the field data based on robust
statistical methods. To do this routinely, we propose an easy -to-use software which helps the
user in the data analy sis and in the choice of the appropriate modelling technique.



1 Introduction

Geotechnical and structural monitoring of complex structures or critical geological situations
hav e become normal practice.

Monitoring means a continuous measurement of significant phy sical parameters that describe
the behaviour of rock and soil masses or of a structure and/or of their interaction. These
phenomena cannot be predicted in details by means of a deterministic approach due to the
complexity of the constitutive laws of the materials considered and to the high number of
unknowns and the uncertainty about the nature and evolution of the boundary and
environmental conditions which can affect the measured parameters as well as modification of
mechanical and electrical characteristics of the instruments during a long term period of
observ ation.

Another significant factor is that instruments are normally installed in open field and cover a
wide area increasing the complexity of the systems enhancing the effects of environmental
and boundary conditions.

A key point in the monitoring activity it has to be pointed out that quite often the history or, in
other words, the variation of the values of a specific parameter is more significant than the
knowledge of the absolute value itself. A single value very seldom shows the true behaviour
of a structure or a soil mass because the structure or the soil, not being homogeneous and
having complex interaction among different parts, cannot be represented by the values
collected in a single point, because data collected in a single point cannot be representative of
the real behaviour of the whole monitored phenomenon.

Among all the others conditions, the temperature can have significant effects on the
measuring systems. These effects can be easily compensated when affecting the sensing
element only. However for many instrumentation systems the sensing element is not the
main source of unexpected values. Instruments using, for example, long hydraulic circuits or
rods and wire - as for hydraulic settlement gages or extensometers - can show significant
variations due to temperature cycles, both over a daily and seasonal period. Moreover, the
response of the measuring system to temperature variations has a certain inertia and delay
which could be explained by stochastic dy namic models.

A different approach is then needed since the solution cannot actually be found at the
instrument or system level. It is necessary to operate at the data processing lev el dev eloping
a tool able to combine the variation of a parameter with the co-variation of other parameters.
The aim of such a tool is to help to reduce noise, enhancing the true physical phenomenon
understanding, eliminating trends and unwanted spurious co-variations and, vice versa,
highlighting important dy namics of the sy stem under observ ation.

A statistical approach has been selected because, in principle, all the observed physical
phenomena and the correlated constitutive laws are, as mentioned, not deterministic
phenomena and because in engineering practice most of the parameters are calculated on a
statistical basis - such as modula, strength limits, elasto-plastic coefficients, etc.. — and
therefore the use of a statistical approach also for monitoring data is recommended.

In section 2, a statistical monitoring model is introduced allowing to discuss the different
sources of uncertainty and biases in the general framework of non Gaussian stochastic
processes.



To do this, we first note that the object of the monitoring activity is the dynamics of a
physical system, for example a building or a landslide or the wall of an excav ation. Here, we
do not consider detailed mathematical modelling of such a physical system as, for example,
using FEM approach; rather, we consider an approach of modelling the measuring sy stem
which put together observed data and phy sical and engineering knowledge.

Generally speaking, if a detailed model of the physical system is available, then both
approaches may be integrated using, for example, Data Assimilation techniques; see e.g.
Sneddon (2000) or Thompson et Al. (2000).

In section 3, considering field applications based on hydraulic measuring systems and load
measuring systems, we illustrate adjustment techniques for observed thermal effects as well
as smoothing techniques for uncertainty reduction. It is also clear from these examples that a
significant number of data, both of the observed parameter and of the covariant, is needed.
This leads us to use instrumentation sy stems based on an automatic data acquisition sy stem,
and a consistent historical data base.

In section 4, we introduce the software package FieldStat which has been dev eloped to made
easy the statistical analysis also for the untrained user and, in section 5, some conclusions
are drawn.

2 Modelling uncertainty

In order to discuss some techniques for assessing and reducing the environmental biases and
uncertainty of a measuring system, we introduce a general statistical model allowing us to
describe the sensitivity to thermal effects and the uncertainty under various operating
conditions.

The need for a statistical approach arises, as mentioned before, because uncertainties and
unknowns are naturally described by random variables and random processes. Moreov er,
since constants and relationships between relevant quantities are empirically estimated
through observed data, a statistical approach allows us to assess also the uncertainty arising
from estimation. Since the available physical knowledge and evidence are both used in our
approach, we consider this as a grey-box modelling approach instead of purely black-box; see
e.g. Ljung (1999).

In particular, the dynamics of gauge readings y; at time t, is related to temperature and/or
other environmental readings, denoted by u,, by the equation:

yt::ut+g(ut)+m+(t' )
In equation (1) the four components hav e the following interpretation:

M, is the “signal” or the “state” of the physical system and is supposed to be a “smooth”
function;

- the function g() is the temperature drift function and may have a known shape, e.g.
linear and contemporaneous, as in subsection 2.2, or may include lagged values, as in
subsection 2.3;

— the quantity 7 describes the effect of unmeasured environmental and/or anthropic
v ariations which hav e quasi-periodical cycles, e.g. daily or yearly;

- the error ¢, is described by an unobserved stationary stochastic process; applications
below suggest not to restrict to the Gaussian case.



In the ideal case, all environmental factors are observed and enclosed in the vector u, and
the function g() is completely known, then 7 =0 and the error {,, being a standard
measurement error, is a purely random error, i.e. Gaussian and white noise.

In our case, since the measuring system is complex and we have only partial observ ation of
environmental factors, we use a simplified explanation of environmental effects given by
g(u). Moreov er, the measuring system may have certain inertia, delays and non sy mmetric
dy namics which are described, in general terms, by the stochastic properties of ¢, .

A question which arise is whether the unobserved stochastic process 7z is related only to the

measuring sy stem or also to the physical system itself. In principle, both may fluctuate with
temperature. For example some small dilatations are possible on the wall of a building being
monitored. In our monitoring setup we consider that these fluctuations are not of concern with
respect of stability and safety which are the main motivations of monitoring. Hence the
guantity of interest is ; or its variation du; /ot .

2.1 Uncertainty decompaosition

Equation (1) allows for a detailed analysis of the accuracy of a measuring system. As a
matter of fact, denoting, as usual, the standard deviation with 0 and assuming that the four
components of the right hand side of equation (1) are uncorrelated, we have the following

decomposition of the variance 05 or total field uncertainty of the measuring sy stem:

2 _ .2 2 2 2
Oy =0, +04u)* 07 +0%. 2

The first variance is zero if the physical system is stationary and the second is often the
largest component which can be eliminated by appropriate temperature monitoring and the
techniques of sections 2.2 and 2.3. The third one is related to the unobserved environmental
effects and can be eliminated by the smoothing techniques of section 2.4. The last term is the
residual uncertainty of the measuring system and is the common objective of the rest of this
paper. Its reduction is not considered in details here but, in principle, it can be reduced in a
dynamical sense by iteratively considering the present uncertainty conditionally on the past
observ ations.

The assumptions of uncorrelation in equation (1), which are used in equation (2), deserve some
comments. First of all they require correct model specification and estimation and this may be
checked using standard statistical tools. Moreover the “signal” 4, after removing
environmental and anthropic components, is stationary and, by definition is uncorrelated with
the other quantities.

The major source of correlation may arise between the temperature effect g() and the
unmeasured variation 7z which may be both periodical especially when they are only partially
observed. Whenever we do not deepen this topic here we note that orthogonalization is
possible.

With this model setup in mind, we will briefly discuss three important particular cases in the
next three subsections which are related to the applications of the section 3 below.



2.2 Static adjustment
In this section, we discuss the modelling of the observed temperature effect on the gauge
readings y, when the system under monitoring is supposed stationary, i.e. g, =const with the
notation of equation (1).
The simplest idea is to suppose the above effect linear and immediate, i.e.:

Vi =a+pu te ()

whit the error € =77, +Zt as in equation (1).

Due to the above mentioned non Gaussianity, estimation of coefficients a and B is performed
using robust techniques based on iteratively weighted least-squares coupled with a Cochran-
Orcutt ty pe correction for autocorrelation (see e.g. Holland and Welsh, 1977, Huber, 1981, and
Fasso and Perri, 2001).

2.3 Dynamical adjustment

Due to partial observation, inertia and delays the model (3) is often simplistic. A more
complete model allows for a transfer function (see e.g. Lijung, 1999, Box, Jenkins and
Reinsel, 1994). In this case we consider a so called Box-Jenkins (BJ) model given by

Yt =a+bouy g +...+ey 4)
where

& +Cieq +...= & + &+
and, extending the standard BJ model we allow for Gaussian heteroskedastic innov ations, i.e.
we suppose that the £, are Gaussian with zero mean and conditional v ariance ht given by a
function of previous innov ations

hy =vg +v1£t2_1 +...

In other words, the uncertainty of innovation &, depends on the squared size of the previous

innov ations.

2.4 Smoothing

In this subsection, we discuss methods for reducing the measurements uncertainty and
v ariations
after eliminating possible observed environmental effects by adjusted readings vy, —g(ut) as in

the previous subsection 2.1. In terms of the model of equation (1), we are then interested in
filtering the stochastic components 7, + {; and, to do this, we use local poly nomial smoothing

(see e.g. Fan and Gijbels, 1996).
The basic idea of this approach is based on a local approximation of the smooth function g,

so that at every time point '[0, we can approximate g, for t close to ty, using a first order
series expansion giving the following linear function of time:

() = alto) + blto Nt~ to). (5)



The coefficient function a(t) and b(t) represent the local level and local first derivative
respectively. If g, is the quantity of interest it is then given by g4 = a(t) where a(t) and b(t)
are estimated for every point t in an appropriate grid by repeatedly minimizing a square sum
weighted by the rate between a kernel function, which provides smoothing, and a skedastic
function similar to subsection 2.1, which provides robustness against heavily tailed errors (see
Fasso and Locatelli, 2002). These estimates will be acronimized by LLS for Local (robustified)
Least Squares.

If on the other hand, the derivative 0dy;/dt is of interest then its optimal estimation is given

by odu /ot = b(t) where b(t) is as above but in equation (5) a second order expansion is used.

Of course other methods can be used for smoothing. The simplest approach is based on
moving averages with a windows say of one day. It will be apparent from the next section
that, due to non-Gaussianity, this approach is not reliable. We can also use moving medians
and this will be shown to be an appropriate techniques alternative to LLS. Other techniques
may be for example based on Kalman filtering but, once again, non Gaussian data prevent
from standard implementation and robust filtering has to be used.

3 Case studies

3.1 Ara Pacis

The Ara Pacis is a historical monument in Rome dating back to the first century B.C., which
has been monitored for measuring settlements of foundations and slabs during the recovery
activities being carried out in the area.

The monitoring sy stem consisted in a hydraulic settlement sy stem with one reference vessel
and a number of measuring points where vertical movements were measured in terms of
height of a liquid head by means of pressure transducers. The hydraulic circuits were affected
by temperature changes which caused fluctuation of the actual values, shadowing the real
behaviour of the structure and the overall trend of the measurements.

By an off-line analysis of raw data on a statistical basis, using FieldStat software, it was
possible to eliminate the thermal effect obtaining useful v alues.

To see this, Figure 1a represents the raw data which are level measurements (mm) taken every
six hours from 26-Sep-2003 to 04-Feb-2004. The marked downward trend amounting to about 9
mm in 4 months is mainly due to the approximately linear relation with the measured
temperature shown by Figure 1b.

Using the robust method of section 2.2, we get the following estimated thermal effect

g(u) = -11.62(0.074) + 0.9260.0064u

where, in brackets, the estimated standard dev iations are reported.
In Figure 1c, the adjusted values y:;-g(u;) show that the thermal effect has been
successfully removed and

ye —0(uy) = 12+ + 4
is now a stationary stochastic process with uo which can be assumed constant over time and
standard deviation ogy_q =0.184 which gives a relevant reduction of the total uncertainty of

y amounting to o, =283. Then the percentage of explained variance from the temperature



is R? =97% and the total field uncertainty in terms of o is reduced to 6.5%.

The autocorrelation function of the erratic component 7 +{; depicted in Figure 1d suggests
a significant deviation from the simple white noise stochastic process and motivates the
assumptions of equation (1).

3.2 Excavation monitoring

This case study is related to a measuring system for monitoring settlements of existing
structures during the excavation for the foundations of an adjacent new multistorey building.
The instrumentation which was used was a hydraulic settlement system consisting of a
number of vessels interconnected by means of one hydraulic line (tube). The vessels were
installed on walls of the building with different exposition to solar radiation. As a consequence,
the hydraulic circuit was affected by temperature gradients and the measuring gauge inside
the vessels were working at different temperatures.
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Figure 1. (a) Level measurements. (b) Temperature versus Level measurements. (c) Adjusted
levels. (d) Autocorrelation function of the adjusted levels.



The raw data showed significant oscillation probably due to temperature change and other
anthropic effects both daily and during the y ear. Moreov er long term drift due to some leakage
in the hydraulic circuit occurred. These effects made it almost impossible to set any
reasonable threshold values for the alarm activation due to the on going activity.

The Figure 2b represents the raw data taken every 30 minutes from 21-Jun-2002 to 06-Nov -
2002. The relation with measured temperature reported in Figure 2c does not show a clear
variation in the mean level but suggests heteroskedasticity, i.e. varying uncertainty. Hence
the linear model of section 2.2 used in the previous case study does not work here. As a
matter of fact an uncertainty decomposition for heteroskedastic models is considered in
Fasso et Al. (2003). We postpone further discussion of this issue to the next subsection and,
here, we consider the smoothing approach of section 2.3, i.e. we try to reduce the high
frequency uncertainty without using the measured temperature.

Figure 2a, depicting 13 days data, shows the marked but non constant daily periodicity.
Together with Figure 2b it also shows that both the Moving Median and the LLS smoothing
eliminate these fluctuations and reduce the total field uncertainty to 15-17% (Table 1).
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Figure 2. (a) Level measurements for 13 days with Moving Averages (MA), Moving Medians
(MMed) and Local Linear Smoothing (LLS). (b) Level measurements taken every 30 minutes
from 21-Jun-02 to -Nov-2002. (c) Histogram of the level measurements and the Normal



distribution. (d) Temperature versus Level measurements scatterplot.

Note that, due to the heavy tail dynamics, the moving average with the same one day
windows have a weaker compensation effect. As can be expected the LLS smoother is a
slightly more sensitive to asy mmetric peaks than the moving median, giving the dotted LLS
lines slightly lower then the dot-dashed ones in Figures 2a and b; they behave essentially the
same for symmetric dy namics.

Table 1: Variances e % of Standard Deviations of Excavation monitoring

Uncertainty Decomposition
Variance Std %

Raw Data 0.1670 100.0%
Moving Average 0.0267 39.9%
Moving Median 0.0039 15.3%
LLS 0.0047 16.8%

3.3 Load monitoring

A 20 m deep excavation in a sliding area presents a number of steel struts as temporary
support for the concrete walls; the force acting on them had to be measured in order to
evaluate both the effects of the excavation and of the landslide movements on the reinforced
concrete walls.

For measuring the forces in the struts, electric load cells were installed between the struts and
the retaining walls. See Figure 3.
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Figure 3. Outline and photography of measuring sy stem for load monitoring

As expected, the force in the struts is highly influenced by the temperature which makes the
struts to change their length and, therefore, as deformation is not allowed by the contrast on
the retaining walls, the stresses into them change as a function of the temperature. The aim of
the data analysis was to separate the two effects: apparent load due to temperature changes



and real load due to landslide movements and consequent walls deformations.

In this case we have an example of variation of the physical state g which is quite different
from the apparent variation in y; shown by Figure 4, where one year of hourly data for both
load and temperature is divided by two vertical lines, the first on September 7 and the second
on November 27.

From the measured load it is not clear what happened and spurious changes in load could be
concluded. As a matter of fact, the relationship between load and temperature is better
understood from Figure 5, which shows clearly that, whenev er global linear correlation is close
to zero, the relation is approximately linear before September 7 and the transient of Fall 2002
corresponds to a transient in the bidimensional data as already noted for other
instrumentations by Ceccuci et Al. (2003).
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Figure 4: Load (kN) and Temperature (°C). Vertical lines on September 7 and November 27.
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Figure 5: Load (kN) versus Temperature (°C). Black squares: before 9/7, grey stars between
9/7 and 11/27, light grey circles after 11/27.

Assuming that the system shift p; is supposed negligible until September 7, we used these

data to get the following estimated dy namical relation between load and temperature
0(k ) =-0.1575(0.015)+0.0230(0.0003)u;; +0.0037(0.0003)y.,
+0.0003(0.0003);.3 - 0.0020(0.0003)uy. 4
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where, in brackets, the estimated standard deviations are reported. Let e, =y, —g(u,), then

& +1.019 (0.09791) £, , +0.258 (0.054) &,
= e, -0.2558 (0.092) e, - 0.4432 (0.082) e, -0.2681 (0.025) e,

where the innov ations &, have conditional variance h; given by
hy =2.3x10™ +0.297(0.07) £24 +0.327(0.08) &1,
Using this model and exponential smoothing, we get the smoothed adjusted v alues
Yo =AY+ Q=AY —g(uy)
which are depicted in Figure 6, where we used the forgetting factor A =0.95. The horizontal
lines reported there are the quantiles of y; at level the 0.005 and the 0.995 respectively,

computed using the first two months of stationary data. These and similar quantities can be
used to define the bands of “stationary uncertainty” and, using this approach we can apply
“change detection algorithms” (e.g. Fasso, 1997 and 1999 and references therein) to
geotechnical monitoring in order to get warning and/or alarming signals with a specified rate of

false warning and/or alarms.
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Figure 6: Smoothed-adjusted loads.

Figure 6 clearly shows that the first period, before September 7, assumed stationary for
estimation purposes, actually, is characterized by a slow increase in the corrected load. After
this point, the load increase becomes exponentially steep until November 27 and, after that,
the state comes to a new stationary state.

In Table 2, we hav e the variance components from equation (2) based on the abov e estimated
BJ model. From the second column, assuming approximate stationarity before 9/7, we can
see that adjusting the loads by temperature gives a reduction in terms of variance of R?=92%
and, correspondingly the total field uncertainty in terms of standard deviation is reduced to
28.3%. If one had used the simpler model (3) with the same data, then he would get the less
marked reductions of R?>=81.4% and to 43.2% respectively.

Table 2. Variances for load model
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Source < Sept 7 All data

y 0.0127 0.038

g(u) 0.0102 0.038

y-g(u) 0.0010 0.077
e 2.3E-05

4 Software

The FieldStat software package has been developed for the standard Windows environment
using MatLab as mathematical and statistical computation engine. It has been provided by an
user-friendly graphical interface and it can be easily used by most operators. It only requires
a minimum knowledge of statistics since it is application oriented, meaning that the decisions
the operator has to take are related to engineering and practical aspects more than theoretical
ones. On the other hand, the advanced user may configure models and algorithms in an
assisted environment. FieldStat is actually working as an off-line processing package; the
development program includes the possibility to have FieldStat as subroutine of general
purpose Data Acquisition packages both for off-line and on-line analy sis.

5 Conclusions

Data from geomechanical monitoring need to be validated. Validation means to eliminate from
a series of data all those effects due to instrumental uncertainties, instability, fluctuations,
drift and, moreover, to boundary and environmental conditions which can shadow the
behaviour of the monitored phenomena increasing the overall uncertainty of the
measurements.
In order to cope with these effects, a computerized tool has been dev eloped using a statistical
model based on a physical and engineering approach. This tool enables to eliminate the effect
of the co-variates (i.e. temperature) under three basic conditions:
- the availability of a statistically significant number of observations or measurements, as
well as a consistent historic data base;
- adata acquisition frequency significant with respect to the period of the cov ariates;
- the availability of significant values of the covariates in terms of frequency and location .
The results which hav e been obtained in the first stage are encouraging; attention has been put
on the analysis of the thermal effects on field measurements in order to separate these
effects from the physical ones that are the most important for the engineers who have to
ev aluate the behaviour of a material or a structure.
The overall field uncertainty, in terms of o, has decreased to 6.5%, 16% and 28% for the three
cases considered; therefore, for the mentioned cases, it has been possible to improve the
understanding of the true behaviour of the phenomena helping engineers to take decisions.
The software package enables to analyse the behaviour of the phenomena and also to
evaluate the performances of the monitoring systems with the aim of optimising their
configuration and specification.
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