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Abstract

In this paper we will discuss some features of the bi-Hamiltonian method for
solving the Hamilton-Jacobi (H-J) equations by Separation of Variables, and make
contact with the theory of Algebraic Complete Integrability and, specifically, with
the Veselov–Novikov notion of algebro-geometric (AG) Poisson brackets. The bi-
Hamiltonian method for separating the Hamilton-Jacobi equations is based on
the notion of pencil of Poisson brackets and on the Gel’fand-Zakharevich (GZ)
approach to integrable systems. We will herewith show how, quite naturally, GZ
systems may give rise to AG Poisson brackets, together with specific recipes to
solve the H-J equations. We will then show how this setting works by framing
results by Veselov and Pensköı about the algebraic integrability of the Volterra
lattice within the bi-Hamiltonian setting for Separation of Variables

1



1 Introduction

The Hamilton-Jacobi equations, and the problem of their separability, are one of the
many fields in mathematics in which the influence and heritage of Carl Gustav Jacob
Jacobi is still alive. Such a problem, which can be considered one of the fundamen-
tal problems of Theoretical Mechanics, is rooted in the foundational works of Jacobi,
Stäckel, Levi-Civita and others. It has recently received a strong renewed interest
thanks to its applications to the theory of integrable PDEs of KdV type (namely, the
theory of finite-gap integration) and to the theory of quantum integrable systems (see,
e.g., [6, 20]).

The constructive definition of separability originally due to Jacobi is the following.
Let us consider an integrable Hamiltonian H on a 2n-dimensional phase space, that

is, let us suppose that, along with H = H1 we have further n− 1 mutually commuting
integrals of the motion H2, . . . Hn, with dH1 ∧ . . . ∧ dHn 6= 0.

Definition 1.1 An integrable system (H1, . . . , Hn) is separable in the canonical coor-
dinates (p,q) if there exist n independent relations

Φi(qi, pi;H1, . . . , Hn) = 0, i = 1, . . . n , (1.1)

connecting single pairs (qi, pi) of coordinates with the n Hamiltonians Hj.

The link of this definition with the theory of those integrable systems that admit a Lax
representation with spectral parameter

L̇(λ) = [L(λ), P (λ)],

such as those associated with classical limits of quantum spin systems and/or those
coming from suitable reductions/restrictions of KdV-like evolutionary PDEs, is self
evident. Indeed, the Lax representation of a system provides us with a natural candidate
for the separation relations: the characteristic polynomial of L(λ), also known as the
spectral curve associated with L(λ). However, the possibility of successfully applying
the Lax method relies on three non-algorithmic steps to be solved:

• To find the Lax representation of a dynamical system;

• To prove that the spectral invariants of L(λ) are mutually in involution (i.e., to
prove that the Lax representation is compatible with a classical r-matrix struc-
ture);

• To give canonical coordinates as the coordinates of n points lying on the spectral
curve, i.e., to actually implement what is sometimes called Sklyanin’s magic recipe.

The setting devised by Veselov and Novikov [22] to characterize algebraic integrability
requires that the phase space M of a Hamiltonian system fulfill some properties. They
can be, quite roughly, summarized as follows:
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a) M has the fibered structure

M SkΓ−→B, (1.2)

where the base B is a n-dimensional manifold whose points determine an algebraic
curve Γ(b), and the fiber is the k–th symmetric product of that curve. In more

details, one requires that Γ(b) be given as an m–sheeted covering Γ(b)
m−→C of the

complex λ-plane, and that points of M can be parameterized via the curve Γ(b),
and a set of k points on it, that is, the coordinates λ1,. . . ,λk of the projection on
the λ-plane of a set of points on it, as well as discrete parameters εi that specify
on which sheet of the covering the points live.

b) An Abelian differential Q(Γ) on Γ (or possibly on a covering of Γ), smoothly de-
pending on the points b ∈ B, is defined. It is furthermore required that, if Q(Γ)
is given by

Q(Γ) = Q(b;λ)dλ (1.3)

according to the representation of Γ as a covering of the λ-plane, the closed two-
form

ωQ =
k∑

i=1

dQ(b;λi) ∧ dλi (1.4)

give rise to a Poisson bracket, conveniently called algebro-geometric Poisson bracket,
with λi and µi = Q(b;λi) playing the role of Darboux coordinates on the sym-
plectic leaves of this bracket.

In such a case, it was proven in [22] that functions that depend only on the curve Γ
– i.e., on the points of B – are in involution with respect to the Poisson bracket defined
by (1.4), and these geometric data explicitly define action-angle variables for these
Hamiltonian flows. In that fundamental paper it has also been shown that a number
of integrable systems, of classical (i.e., mechanical) type as well as obtained by suitable
reductions of soliton equations, can be framed within such a scheme. In particular, the
paper [23] shows how the Volterra lattice fits in it. Finally, it is worth mentioning that
Sklyanin’s method [20] of the poles of the Baker-Akhiezer function, originally introduced
in the study of Hamiltonian systems as a byproduct of “Quantum Integrability”, can be
seen as a particularly efficient scheme of implementing the Veselov–Novikov axiomatic
picture.

More recently, a bi-Hamiltonian approach to Separation of Variables (SoV), has
been exposed in the literature (see, e.g., [3, 9, 8, 18, 11, 2]). Such a scheme can be seen
as a kind of bridge between the classical and the modern points of view, putting an
emphasis on the geometrical structures of the Hamiltonian theory. In this framework
it is possible to formulate intrinsic conditions on the integrable system (H1, . . . , Hn) to
a priori ensure separability in a set of canonical coordinates. It requires the existence,
on the phase space (M,ω), of a second Hamiltonian structure, compatible with the one
defined by ω. Namely, the bi-Hamiltonian structure on M allows, as it has been shown
in a number of examples,

1. To encompass the definition of a special set of coordinates, to be called Darboux–
Nijenhuis (DN) coordinates, within a well defined geometrical object.
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2. To formulate intrinsic (i.e., tensorial) conditions for the separability of a Hamilto-
nian integrable system, in the DN coordinates associated with the bi-Hamiltonian
structure.

3. To give recipes to characterize, find and handle sets of DN coordinates.

In particular, in [11] a detailed discussion of the bi-Hamiltonian scheme for SoV in
the case of Gel’fand-Zakharevich type [13] systems was presented. It was also pointed
out how the separation relations of such systems were, under genericity assumptions,
of degenerate type, that is, the functional form of the separation relations (1.1) is the
same for all pairs of separation coordinates (λi, µi), which essentially means that these
coordinates are the coordinates of different points on the same algebraic curve.

In this paper we want to elaborate further on this issue, and, in particular, establish
a connection between the bi-Hamiltonian scheme and the VN setting. This will be done
in the first part of the paper, and, namely, in Proposition 3.3, which shows that (under
suitable assumptions) DN coordinates associated with Gel’fand-Zakharevich systems
can be seen as algebro-geometric canonical coordinates in the VN sense. In the sec-
ond part of the paper we will apply our scheme in revisiting the algebro-geometrical
integrability [19, 23] of the well-known Volterra lattice.

More in details, the paper is organized as follows. In Section 2 we will briefly review
the bi-Hamiltonian set–up for SoV. In Section 3, we will recall some results exposed
in [11], and discuss the relations of the bi-Hamiltonian approach with the VN scheme.
In Section 4 we will collect a few results concerning the algebro-geometric scheme of
integrating the Volterra lattice. Finally, in Section 5 we will show how the bi-Hamil-
tonian picture of Section 3 can be successfully applied to the lattice, with no significant
differences between the cases with odd (resp., even) number of sites.

2 Bi-Hamiltonian geometry and Separation of Vari-

ables

The basic geometrical notion underlying the bi-Hamiltonian scheme for separation vari-
ables is that of “semisimple ωN manifold”. An ωN manifold is a symplectic manifold
(M,ω) endowed with a second (possibly degenerate) Poisson tensor P1 which is com-
patible with the Poisson tensor P0 associated with the symplectic form ω. This means
that Pλ = P1 − λP0 is a Poisson tensor for all λ ∈ R. In this case Pλ is called the
Poisson pencil and (M,P0, P1) is a bi-Hamiltonian manifold. It can be shown (see, e.g.,
[15]) that the (1,1) tensor field N = P1 ◦ P0

−1 has the property

[NX,NY ] = N
(
[NX, Y ] + [X,NY ]−N([X, Y ])

)
, (2.1)

for all vector fields X, Y on M , that is, its Nijenhuis torsion vanishes. The tensor field
N is called Nijenhuis tensor or recursion operator of the ωN manifold. It turns out that
the characteristic polynomial of N is the square of a polynomial ∆(λ); the ωN manifold
M is called semisimple provided that the roots of ∆(λ) be (generically) simple.
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A special class of coordinates, to be called Nijenhuis coordinates, are provided by
the spectral analysis of the adjoint recursion operator N∗ = P−1

0 ◦ P1. Indeed, one has
the following results (see, e.g., [14, 16, 15]):

1. The eigenspace Λi corresponding to any root λi is an integrable two-dimensional
codistribution, that is, one can find n pairs of functions fi, gi (to be called Nijen-
huis coordinates) satisfying

N∗dfi = λidfi, N∗dgi = λidgi; (2.2)

2. The eigenspaces Λi and Λj are orthogonal with respect to the Poisson brackets
induced both by P0 and P1. This crucial property can be very simply proven.
Indeed, let f and g be such that their differentials belong respectively to Λi and
to Λj, with i 6= j. Then one has, on the one hand:

{f, g}1 = 〈df, P1dg〉 = 〈N∗df, P0dg〉 = λi{f, g}0.

Switching the role of f and g one sees that {f, g}1 = λj{f, g}0, whence the
assertion.

3. Since (as it is easy to prove) the Poisson bracket {fi, gi}0 with respect to P0

(and also the one with respect to P1) of functions that satisfy (2.2) still satisfies
N∗d{fi, gi}0 = λi{fi, gi}0, it is possible to parameterize Λi with a set of coordi-
nates xi, yi, called Darboux-Nijenhuis coordinates, that are Nijenhuis coordinates
and are canonical for ω (whence the addition of “Darboux” in their denomina-
tion).

4. It is important to notice that the Nijenhuis tensor N of an ωN manifold defines, at
each point m ∈M , a linear operator Nm : TmM → TmM . As such, its eigenvalues
(that are point-wise the roots of det(Nm − λ)) may depend on the point m. In
this case we will call these roots, nonconstant roots of ∆(λ). If λ̄ is a nonconstant
root of ∆(λ), then it satisfies the characteristic equation1 (2.2),

N∗dλ̄ = λ̄dλ̄

The following proposition has been proven in [11].

Proposition 2.1 Suppose that (M,ω, P1) is a semisimple ωN manifold of dimension
2n. Let x1, . . . , xn, y1, . . . xn be Darboux-Nijenhuis coordinates on M and let F1, . . . , Fn

be functionally independent Hamiltonians, that are in involution with respect to the
Poisson brackets induced by P0 and P1. Then the Hamilton-Jacobi equations associated
with any of the Hamiltonians Fi can be solved by additive separation of variables in the
Darboux-Nijenhuis coordinates (xi, yi)i=1,...,n.

1Actually, the constant eigenvalues trivially satisfy the same equation.
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The foliation given by the functions Fj will be called a bi-Lagrangian foliation. Such
foliations provide a geometrical description of separable systems, exactly like Lagrangian
foliations describe integrable systems.

To elaborate further on the geometric structure of ωN manifold, it is convenient
to suppose that the eigenvalues of the Nijenhuis tensor N be functionally indepen-
dent. A straightforward observation [14, 11] shows that one can compactly write the
characteristic equation N∗dλi = λidλi in terms of the minimal polynomial

∆N(λ) =

1
2
dim(M)∏
i=1

(λ− λi)

as the polynomial relation
N∗d∆N(λ) = λd∆N(λ). (2.3)

Actually, relations of this kind are very important for our purposes. Indeed, in [11] we
proved the following proposition:

Proposition 2.2 Let Φ(λ) be a smooth function defined on the ωN manifold M , de-
pending on an additional parameter λ. Suppose that there exists a one-form αΦ such
that

N∗dΦ(λ) = λdΦ(λ) + ∆N(λ)αΦ . (2.4)

where ∆N is the minimal polynomial of N . Then:
a) the n functions Φi obtained evaluating the “generating” function Φ(λ) for λ = λi, i =
1, . . . , n are Nijenhuis functions, that is, they satisfy N∗dΦi = λidΦi.
b) If Φ(λ) satisfies (2.4) and Yl = −P0dpl are the vector fields associated via P0 to the
coefficients of the minimal polynomial of the Nijenhuis tensor, then all functions

Φl(λ) = LieYl
(Φ(λ)))

satisfy (2.4) as well.
c) In particular, if Φ(λ) satisfies, along with (2.4), the relation

LieY1(Φ(λ)) = 1 mod ∆N(λ), (2.5)

then the functions (λi, µi := Φ(λi)) provide a set of Darboux-Nijenhuis coordinates on
M .

Definition 2.3 We will call a generating function Φ(λ) satisfying equation (2.4) a
Nijenhuis functions generator.

3 Gel’fand-Zakharevich systems

In many of the models considered in the so-called “Modern Theory of Integrable Sys-
tems”, that is, finite-dimensional Hamiltonian systems obtained as reductions of inte-
grable PDEs, and/or classical analogs of quantum spin systems, two instances occur:
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• The phase spaceM of the system is not the cotangent bundle to a smooth manifold
Q.

• M is endowed with a pair of compatible Poisson brackets, but none of them is
nondegenerate.

This is, for instance, the case of the Volterra lattice. This geometrical instance has
been formalized in a series of papers by Gel’fand and Zakharevich. In particular, under
some technical assumptions, one of which is that the corank of P0 equals that of P1,
it is possible to construct N = corank(P0) Lenard–Magri sequences that start with a
Casimir function of P0 and end with a Casimir function of P1. The Hamiltonians of
these sequences can be conveniently collected in polynomials H(a)(λ), a = 1, . . . , N , in
the variable λ, satisfying

(P1 − λP0)dH
(a)(λ) = 0, (3.1)

called polynomial Casimirs of the pencil. It is nowadays customary to denote such a ge-
ometrical instance of bi-Hamiltonian manifolds (M,P0, P1) with the name of Gel’fand–
Zakharevich (GZ) manifold.

The collection of the degrees of the polynomial Casimirs is a numeric invariant of the
bi-Hamiltonian manifold. Notice in particular that Casimirs of degree 0 are nothing but
common Casimir functions of the two Poisson tensors. We will, in the sequel, call these
common Casimirs trivial Casimirs, and refer to the others (namely, those originating a
non void Lenard–Magri sequence) as nontrivial ones.

In the case of bi-Hamiltonian systems associated with (coefficients of) polynomial
Casimirs, one can try to use the bi-Hamiltonian scheme for SoV reducing the systems
to a suitable ωN manifold. More precisely, one can consider a symplectic leaf S ⊂M of
P0 and a suitable deformation of the Poisson pencil, discussed in detail in [10, 11, 5, 17].

First one fixes a maximal set C1, . . . , Ck of independent nontrivial Casimirs of P0,
and finds k (independent) vector fields Z1, . . . , Zk such that

LieZa(Cb) = δab, LieZaKα = 0,

where Kα are the common Casimirs2. We will hereinafter refer to the distribution Z
generated by the k vector fields Zi as the transversal distribution.

Then one considers the vector fields Xa = P1dCa, for a = 1, . . . , k, and the “de-
formed” tensor

P̃1 = P1 −
k∑

a=1

Xa ∧ Za, (3.2)

that restricts to S. If the algebra of functions vanishing along Z1, . . . , Zk is a Poisson

algebra for the pencil P1 − λP0, it turns out [10] that the deformation P̃1 defines on

S a Poisson tensor P̃1|S compatible with the restriction P0|S of P0 to its symplectic

2In the papers referred to above, the distribution Z spanned by Z1, . . . , Zk was required to be
satisfy the stronger condition TpM = TpS ⊕Zp for all p ∈ S. Actually, as it should be clear form [11],
common Casimirs do not enter the reduction procedure. A similar instance with common Casimirs
has been considered in [12].

7



leaves. So S is endowed with the structure of a ωN manifold. By the definition of P̃1,

the restrictions of the coefficients H
(a)
l of H(a)(λ) to S will be separable Hamiltonians

in the Darboux-Nijenhuis coordinates defined on S (provided S is semisimple).
Remark. To summarize, the ideas underlying such a reduction procedure are the

following: the Gel’fand-Zakharevich scheme provides – under some technical assump-
tions – a way for defining, via Magri-Lenard sequences, a distinguished integrable dis-
tribution A on a bi-Hamiltonian manifold (M,P0, P1). It is called the axis of M , and is

generated by the Hamiltonian vector fields associated with the coefficients H
(a)
i of the

Casimir polynomials, so that the leaves F of A are defined by the requirement that
these coefficients be constant along A.

If we fix our attention on one of the elements of the Poisson pencil, say, P0, and
consider its symplectic foliation S, we have that F∩S defines, on the generic symplectic
leaf S of S, a Liouville integrable system.

However, since in general the symplectic foliation associated with the other Poisson
tensor P1 does not coincide with S, S does not come equipped with a natural bi-
Hamiltonian structure. Finding the distribution Z with the properties outlined above

amounts to finding a deformation P̃1 of P1 that
a) endows the symplectic manifold S with a compatible second Poisson tensor, and

hence with the structure of a ωN manifold.
b) Preserves the commutativity of the Hamiltonians H

(a)
i , that is, provides F ∩ S

with the structure of a bi-Lagrangian foliation.
Although to find the transversal distribution Z is a non algorithmic procedure, we

notice that this is a quite efficient way of providing the symplectic leaves S of P0 with
a compatible Nijenhuis tensor (a problem which, in principle, requires the solution of a
system of nonlinear partial differential equations).

Definition 3.1 We say that a GZ manifold (M,P0, P1), endowed with a transversal
distribution Z satisfying the above mentioned assumptions, admits an affine structure
if it is possible to choose a complete set of nontrivial Casimirs of P0, and a corresponding
basis of normalized flat generators {Zb} b=1,...,k in Z such that, for every Casimir of the
Poisson pencil Ha(λ) and every b, c, one has the vanishing of the second Lie derivative
of the Casimir polynomials:

LieZb
LieZc(H

a(λ)) = 0. (3.3)

The above definition might seem somewhat ad hoc. Its relevance can be summarized
in the following points (whose proof can be, once more, found in [11]) that hold in the
case of affine structures.

• The nonconstant roots λi of the determinant of the matrix whose entries are

Gab = LieZb
(Ha(λ))

satisfy
N∗dλi = λidλi,
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namely, they are roots of the minimal polynomial of the Nijenhuis tensor induced

on (any of) the symplectic leaves of P0 by the pair (P0, P̃1). In particular, if
there is only one non-trivial Casimir polynomial H(λ), and Z is a corresponding
normalized flat generator, the nonconstant roots of the polynomial LieZ(H(λ))
are “nonconstant” eigenvalues of the Nijenhuis tensor N .

• The separation relation satisfied by the non-trivial Hamiltonian functions and
the Darboux-Nijenhuis coordinates are linear in the Hamiltonians, that is, are of
(generalized) Stäckel type.

The following Lemma, whose proof is a simple application of some notions of Poisson
geometry, will be frequently used in the sequel. It provides a link between the properties
of functions on the GZ manifold M , which depend polynomially on the parameter λ of
the Poisson pencil P1 − λP0 defined on M , and the properties of the evaluation of such
functions in λ = λi w.r.t. the induced Nijenhuis structure on the symplectic leaves. In
plain words, it allows us to work on the GZ manifold M , without having to actually
perform the reduction procedure.

We still suppose that (M,P0, P1) is a GZ manifold, with k non-trivial Lenard-Magri
sequences. We suppose that Z1, . . . , Zk are normalized transversal generators for the
distribution Z we considered above. We recall that, in this situation, the symplectic

leaves of P0 are ωN manifolds, with induced Nijenhuis tensor N = P−1
0 P̃1..

Lemma 3.2 Let Fλ be a function on M , invariant along the fields Zi, that depends
holomorphically (say, polynomially) on an additional parameter λ; its restriction fλ to
a symplectic leaf S of P0 satisfies the “eigenvector” equation

N∗dfλ

∣∣
λ=λi

= λidfλ

∣∣
λ=λi

for all eigenvalues λi if and only if the following equality holds, parametrically in λ, on
the GZ manifold M :

{G,Fλ}P1 −
k∑

a=1

LieZa(G){K(a)
1 , Fλ}P0 = λ{G,F}P0 , (3.4)

for any G ∈ C∞(M), where the K
(a)
1 satisfy P1dCa = P0dK

(a)
1 , a = 1, . . . , k. Otherwise

stated, we have to require that

P̃1dFλ = λP0dFλ.

where P̃1 is defined in (3.2)

A direct generalization of the above proposition shows that spectral curves might
be a source for finding Nijenhuis functions generators.

Proposition 3.3 Let us consider a generating function Γ(λ, µ) of Casimirs of a Pois-
son pencil Pλ, and let us suppose that Γ(λ, µ) = 0 defines a smooth algebraic curve. Let
S be a generic symplectic leaf of P0 and let N be the Nijenhuis tensor associated —
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according to the scheme outlined above — with Pλ and a suitable transversal distribution
Z. Suppose that f is a Z-invariant root of the minimal polynomial of N , i.e.,

N∗df = fdf, and Zi(f) = 0, i = 1, . . . , k, (3.5)

and suppose that Γ(µ, f) = 0 defines generic point(s) of the affine curve Γ(λ, µ) = 0.
Then, any solution g of the equation Γ(g, f) = 0 which is invariant as well under Z
satisfies N∗dg = fdg.

Proof: We first notice the following. Let us consider a bivariate polynomial F (λ, µ) =∑
i,j f(i,j)λ

iµj, with coefficients f(i,j) that are functions defined on a manifold M , and

two more distinguished functions on M , say f and g. If we define F := F (f, g), then:

dF = dF (λ, µ)
∣∣∣λ=f
µ=g

+
∂F

∂λ

∣∣∣λ=f
µ=g

df +
∂F

∂µ

∣∣∣λ=f
µ=g

dg. (3.6)

We consider the equation of the “spectral curve”, Γ(µ, λ) = 0; so we get for the zeroes
of the function R = Γ(f, g),

0 = dΓ(λ, µ)
∣∣∣λ=f
µ=g

+
∂Γ

∂λ

∣∣∣λ=f
µ=g

df +
∂Γ

∂µ

∣∣∣λ=f
µ=g

dg. (3.7)

Let us suppose, for simplicity, that Γ(λ, µ) = Γ0(λµ) +
∑k

i=1 µ
niH i(λ), where Γ0(µ, λ)

is a constant polynomial (possibly depending on the common Casimirs), and ni ares
suitable integers. Considering the action of the k transversal vector fields Zi, we get
the k equations:

LieZi
(g)

∂Γ

∂µ

∣∣∣λ=f
µ=g

+ LieZi
(f)

∂Γ

∂λ

∣∣∣λ=f
µ=g

+
k∑

j=1

µnj LieZi
(Hj(λ))

∣∣∣λ=f
µ=g

= 0. (3.8)

Applying P̃1 − fP0 to eq. (3.7) we get, using Lemma 3.2 and taking into account
that (P1 − λP0)dΓ(λ, µ) = 0,

∂Γ

∂µ

∣∣∣λ=f
µ=g

(N∗ − f)dg +
∂Γ

∂λ

∣∣∣λ=f
µ=g

(N∗ − f)df −
k∑

i=1

k∑
j=1

(
gniLieZj

H i(λ)
)∣∣

λ=f
dHj

1 = 0. (3.9)

Plugging into equations (3.8,3.9) the hypotheses on f we arrive at the system

Γ(f, g) = 0

LieZi
(g)

∂Γ

∂µ

∣∣∣λ=f
µ=g

−
n∑

j=1

gnj LieZi
(Hj(λ))

∣∣
λ=f

= 0, i = 1, . . . , k.

∂Γ

∂µ

∣∣∣λ=f
µ=g

(N∗ − f)dg −
n∑

i=1

n∑
j=1

gniLieZj
H i(λ)

∣∣
λ=f

dHj
1 = 0.

(3.10)
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The thesis follows noticing that if g is invariant under Z then this system reduces to
Γ(f, g) = 0

∂Γ

∂µ

∣∣∣λ=f
µ=g

(N∗ − f)dg = 0,
(3.11)

and taking into account that, for Γ(λ, µ) smooth, the solution of system
Γ(f, g) = 0

∂Γ

∂µ

∣∣∣λ=f
µ=g

= 0

are the (fixed) ramification points of Γ(λ, µ) = 0.

�

This proposition provides us with the desired link between the bi-Hamiltonian ap-
proach and the VN axiomatic picture of AG brackets. Indeed, it can be restated as
follows: suppose we can find (by means of a Lax representation, or by other means) a
generating function for the Casimirs polynomials of an affine GZ pencil in the form of a
bivariate polynomial Γ(λ, µ). Then, suppose that the coordinates of the points on the
curve Γ(λ, µ) = 0 (whose λ-projections give the roots of the minimal polynomial of the
Nijenhuis tensor N induced on symplectic leaves of P0) satisfy the invariance condition
specified in the above proposition. Then they are Nijenhuis coordinates, and so their
Poisson brackets are given by

{λi, µj}0 = δijϕi(λi, µi), {λi, µj}1 = δijλiϕi(λi, µi),

Under the further assumption of irreducibility of the minimal polynomial of N , one
sees that the unknown functions ϕi cannot explicitly depend on the index i. Thus the
formal integral

Q(γ, λ)dλ =

(∫ µ dν

ϕ(λ, ν)

)
dλ (3.12)

will give the VN meromorphic differential defining Algebro-geometrical Poisson brackets

corresponding to P0 (as well as Q′ =
Q

λ
gives those corresponding to P1).

4 The Volterra Lattice

The Volterra lattice equations are the following set

ċi = ci(ci+1 − ci−1), (4.1)

which we consider to be defined on a periodic lattice ci > 0, ci+n ≡ ci. They are
generalization of the famous Volterra equations describing time evolution of competing
species.
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The phase space of the VL can be seen as the restriction to the submanifold of
vanishing momenta of the periodic n-site Toda Lattice. It is well-known [7, 19, 23, 21, 4]
that eq. (4.1) are isospectral deformation equations for the periodic difference second
order operators of the form

(Lψ)k = ak+1ψk+1 + akψk−1, an+i = ai, ψn+i = λψi. (4.2)

where ak =
√
ck. In complete analogy with the Toda case, it admits a dual Lax

representation3 in terms of a 2 × 2 matrix L′ being given by the (ordered) product of
site matrices

L′ = `n`n−1 · · · `1, `i(µ) =

(
µ ci
−1 0

)
.

The Volterra Lattice equations admit a bi-Hamiltonian formulation. Indeed, if one
considers the quadratic Poisson tensor

P ij = cicj(δi+1,j − δj+1,i) (4.3)

and the cubic one

Qij = cicj(ci + cj)(δi+1,j − δj+1,i) + cici+1ci+2δi+2,j − cici−1ci−2δi−2,j (4.4)

one notices that (4.1) can be written as

ċi =
∑

j

P ij ∂h

∂cj
=
∑

j

Qij ∂k

∂cj
, (4.5)

where

h =
1

2
log

n∏
i=1

ci, k =
n∑

i=1

ci. (4.6)

We can collect those remarkable results by Pensköı and Veselov-Pensköı [19, 23], that
will be used in the sequel, as follows.

Let us set π = (
∏n

i=1 ci)
1/2, and consider the (normalized) characteristic equation

Γ(λ, µ) ≡ 1

π
Det(µ− L(λ)) = 0. (4.7)

Then it holds:

1. Γ(λ, µ) = λ+ 1
λ
−H(µ), where the polynomial H(µ) is expressed as

H(µ) =



∑k
i=0(−1)iµ2k+1−2iJi

π
=

µ · (
∑k

i=0(−1)iµ2(k−i)Hi), if n = 2k + 1

∑k+1
i=0 (−1)iµ2k+2−2iJi

π
=

µ2 · (
∑k

i=0(−1)iµ2(k−i)Hi) +Hk+1, if n = 2k + 2

(4.8)

3This duality involves also, as in the case of the Toda Lattice, an exchange of the roles between the
spectral parameter λ and the eigenvalue µ.
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The functions Ji can be usefully characterized in the following way: Ji is the sum of
all possible monomials cl1cl2 · · · cli of lenght i, where the indices lp are all different
and not congruent to 1 modulo n. In [23] subsets {l1, . . . , li} ⊂ {1, . . . n} satisfying
this property are called totally disconnected and we will adopt this definition in
the next subsection. Notice that, e.g., J0 = 1, J1 =

∑
i ci. Furthermore, notice

that for n = 2k + 2 the last Hamiltonian Hk+1 is given by

Hk+1 = A+
1

A
, with A =

√
c2 c4 · · · c2k+2

c1 c4 · · · c2k+1

. (4.9)

2. (Theorem 3 of [19]). The functionsHi satisfy the Lenard-Magri recursion relations

PdH0 = 0, PdHi = QdHi−1, i = 1, . . . , k, QdHk = 0. (4.10)

For n = 2k + 2 the last Hamiltonian Hk+1 is in the kernel of both P and Q.

3. Let {ζ1, . . . , ζk} be a suitably chosen subset of k poles of a suitably normalized
Baker-Akhiezer function Ψ associated with the Lax operator L of (4.2), and let
λi be corresponding coordinates on the spectral curve Γ. Then the coordinates

{ζi, ρi = 2 log |λi|
ζi

} parametrize the symplectic leaves of P and satisfy

{ζi, ρj}P = δij, {ζi, ρj}Q = ζ2
i δij. (4.11)

We remark that one can compactly restate the results of item 2) in the following form:

Proposition 4.1 Let us define the Poisson pencil

Pµ2 = Q− µ2P,

where P and Q are the quadratic and cubic Poisson tensors (4.3,4.4). Then the poly-
nomial H(µ) defined by (4.8) is a Casimir polynomial of the pencil Pµ2. Moreover, for
n = 2k+2 the function Hk+1 is a common Casimir of the two basic elements P and Q of
the pencil. Since functional independence of the Hamiltonians Hi is self-evident, we see
that, in the GZ terminology, the phase space M of the n-site Volterra lattice, equipped
with the Poisson structures P and Q, is a GZ bi-Hamiltonian manifold. If n = 2k + 1
or n = 2k+ 2, we have a single non-trivial Lenard-Magri sequence comprising k vector
fields. If n = 2k + 2 is even, the GZ manifold has a trivial Casimir Hk+1.

5 Separation of Variables for the Volterra Lattice

in the bi-Hamiltonian setting

In this section we will make the final contact between the known results we collected
above, and explicitly show how the picture of [23] can be naturally framed within the
bi-Hamiltonian theory of Separation of Variables for GZ systems described in Section 2
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Our starting point are the GZ formulation of Pensköı’s results, collected in Section
3, as well as the normalized spectral curve equation (4.8). Obviously enough, we will
set, as natural parameter of the Poisson pencil, the quantity ν = µ2.

We remark that both in the even and odd number of sites (or species) as there is
only one non-trivial Lenard–Magri chain, we have to look for a single transversal vector
field to deform the Poisson pencil Q− νP .

Let us consider

Z0 = c1
∂

∂c1
+ cn

∂

∂cn
, (5.1)

and define
X = QdH0. (5.2)

The vector field Z is the required ingredient for applying the bi-Hamiltonian setting to
the Volterra lattice. This follows from the properties we list and prove below in a series
of steps.

a) Z0 is a symmetry for the quadratic Poisson tensor P ,

LieZ0P = 0.

This follows noticing that the Jacobian of Z0 with respect to the coordinates
(c1, . . . , c0) is, in terms of the standard generators Eij of n×n matrices, given by
E11 + Enn, and by the explicit form of P .

b) Still taking this property into account, one can easily verify that the action of Z0

on Q is given by
LieZ0Q = Z0 ∧W0, (5.3)

where

W0 = c1cn

(
∂

∂c1
− ∂

∂cn

)
+ c1c2

∂

∂c2
− cn−1cn

∂

∂cn−1

. (5.4)

c)
LieZ0(H0) = −H0. (5.5)

d) If n = 2k + 2, then
LieZ0Hk+1 = 0, (5.6)

where Hk+1 is given by (4.9). These last two properties can be easily verified by
straightforward computations.

Hence we can state

Proposition 5.1 Let Z := − 1

H0

Z0 be the normalized symmetry of P . The two bivec-

tors
P, Q̃ = Q− Z ∧X (5.7)

form a Poisson pencil that restricts to the (generic) symplectic leaf S of P . The func-
tions Hi are in involution also with respect to the deformed Poisson bracket {·, ·}′ asso-

ciated with the bivector Q̃; hence their restrictions Ĥi define a bi-Lagrangian foliation
of S.
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We are now left with the characterization of the Nijenhuis coordinates associated with

the restriction of the pencil Q̃− νP to the symplectic leaf S.
Let us consider the vector field Z and the Hamiltonians Hi, with i = 1, . . . , k if

n = 2k + 1, and i = 1, . . . , k + 1 if n = 2k + 2.

Lemma 5.2

LieZ(Hi) = LieZ

(
Ji

π

)
= Ji

∣∣∣
c1=cn=0

, (5.8)

that is, the Lie derivative of Hi with respect to Z is nothing but the numerator of Hi,
evaluated at c1 = cn = 0.

Proof. The proof is a simple chain of computations. We report it here since this
Lemma is crucial for the conclusion of the paper.

We remark that, by the definition of the functions Ji and that of Z0, we have

LieZ0(Ji) = Ji

∣∣∣
c2=···=cn−1=0

, (5.9)

along with (eq (5.5)) LieZ0(H0) = −H0. Thus

LieZ(Hj) = −
( 1

H0

LieZ0(H0Ji)
)

= −(Ji − Ji

∣∣∣
c2=···=cn−1=0

) = Ji

∣∣∣
c1=cn=0

. (5.10)

�

From the Lemma above, it immediately follows

Proposition 5.3 The polynomial LieZ(H(µ)) factors as

LieZ(H(λ)) = µa∆(ν), (5.11)

where a = 1 if n is odd, a = 2 if n is even, and ∆ is a monic degree k polynomial in
ν = µ2 which, thanks to (5.10), is invariant along Z.

From the results recalled after Definition 3.1, we thus recover the eigenvalues of the
Nijenhuis tensor on S as the roots νi of ∆(ν). Since they clearly are functionally
independent, we can choose, as first half of Darboux-Nijenhuis coordinates, their square
roots:

ζi =
√
νi. (5.12)

Also, if we consider the normalized spectral curve relation, we see that the solutions λi

of the equation
Γ(λ, ζi) = 0 (5.13)

are invariant under Z as well, so that choosing one of the two solutions of this equations
will provide a natural candidate for the remaining half of Nijenhuis coordinates.

To show that actually this is the case, and simultaneously define a set of Darboux-
Nijenhuis coordinates (that is, normalized Nijenhuis coordinates), we can rely, once
more, on the results of [23, 19], thanks to the following
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Proposition 5.4 Let us consider the Lax operator L of (4.2) and let ψ be a Baker
Akhiezer vector, for L, normalized with ψ1 = 1. Then on the k points Pi = (λi, ζi)
chosen according to the above recipe, ψ has a pole.

Proof. The normalized BA function ψ has poles in the zeros of the (1, 1) element of
the classical adjoint matrix

(µ− L)∨. (5.14)

This is the determinant of the (n− 1)× (n− 1) matrix

M = µ1−
n−2∑
a=1

√
ca+1(Ea,a+1 + Ea+1,a), (5.15)

whose determinant equals the ∆(µ2) if n is odd, and µ∆(µ2) if n is even.

�

This shows that the functions (ζi, λi)i=1,...,k selected according the bi-Hamiltonian scheme
herewith presented do indeed coincide with those found by Veselov and Pensköı via the
method of poles of the BA function.

As a closing remark, we notice that a set of canonical coordinates for the Volterra
lattice can be obtained via “purely bi-Hamiltonian methods” as follows. As it has been
remarked in Proposition 2.2, a possible path is to use the Hamiltonian vector fields
associated with the coefficients pi of the minimal polynomial of the Nijenhuis tensor
∆(λ) to deform the polynomial Casimir of the Poisson pencil. In this way we obtain new
polynomials that satisfy the characteristic equation of a Nijenhuis functions generator
(2.4), and hence we can use them to generate Darboux-Nijenhuis coordinates.

For the sake of concreteness we will stick to the case of an odd number of sites n.
We consider the minimal polynomial of the induced Nijenhuis tensor, given by (ac-

cording to Proposition 5.3, with n = 2k + 1),

∆(ν) =
( 1

µ
LieZ(H(µ))

)∣∣∣
µ2=ν

= νk − p1ν
k−1 − · · · pk, where pj = −LieZ(Hj). (5.16)

Thanks to the explicit characterizations of the Hamiltonians Hi and of the vector field
Z, and taking Lemma 5.2 into account, it is not difficult to ascertain that

pk =
k∏

i=1

c2i. (5.17)

Keeping into account the explicit form of the quadratic Poisson tensor (4.3), the Hamil-
tonian vector field associated with log pk is given by the very simple expression

Y = P d log pk = c1
∂

∂c1
− cn

∂

∂cn
(5.18)

If we define as “first half” of the Darboux-Nijenhuis coordinates the logarithms of the
eigenvalues of the Nijenhuis tensor, rather than their square roots, that is, if we consider

φi = log(νi),
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we clearly have that, in terms of the canonical coordinates ψi conjugated to the φi we
are seeking, it holds

Y = P
∑

i

dφi =
∑

i

∂

∂ψi

, (5.19)

so that according to the recipe we are using, we need to find an exact eigenfunction
generator Ψ(ν) satisfying

Y (Ψ(ν)) ≡ 1 mod ∆(ν).

Thanks to the explicit form of the vector field Y we can easily establish, arguing as in
the proof of Lemma 5.2, the following equalities:

J ′i := LieY (Ji) = Ji(c1, 0, . . . , 0,−cn),

J ′′i := LieY (J ′i) = Ji(c1, 0, . . . , 0, cn),

and, finally, J ′′′i = J ′i .

(5.20)

This shows that the functions

ηi = log(νi), ψi = log

(
Y (
∑

k

νk
i Hk) + Y 2(

∑
k

νk
i Hk)

)
, i = 1, . . . , k.

provide a set of canonical DN coordinates for the Volterra lattice with 2k+ 1 sites. An
analogous result holds for the VL with an even number of sites, although the vector
field Y has a more complicated expression.
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