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Abstract This paper discusses the effects of the existence of natural and/or exog-
enously imposed thresholds in firm size distributions on estimations of the relation
between firm size and the variance in firm growth rates. We argue that these estima-
tions are upwardly biased whenever the threshold operates on the same proxy that
is used to calculate the growth rates. We show the potential impact of the bias on
simulated data, suggest a methodology to improve these estimations, and present an
empirical analysis on Dutch firms. The only stable relation that emerges is the negative
relationship between firm size and growth rate variance.
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1 Introduction

Several studies on industrial dynamics and firm growth in particular, highlight that
the variance in growth rates decreases with increasing firm size. A negative relation
between firm size and growth rate variance contradicts the predictions of the Law of
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Proportionate Effects that the size of a firm and its growth rate are independent. Meyer
and Kuh (1957) were the first to observe this negative relation, which was confirmed
by other researchers using different datasets over different time periods: for exam-
ple Hymer and Pashigian (1962), Stanley et al. (1996), Amaral et al. (1997, 1998),
Bottazzi and Secchi (2003, 2006), and Matia et al. (2004).
Some recent works, including Bottazzi et al. (2002, 2007), and Perline et al. (2006)

find either no relation or find a positive relation between firm size and growth rate
variance. Perline et al. (2006, p. 8) observe that, beyond the possible economic expla-
nations, a simple statistical phenomenon emerges when medium or small firms are
included in the sample: “The high concentration of small establishments […] high-
lights the issue of establishments (or corporations in other studies) that exit from a
longitudinal database because they drop to size 0”. This intuition is the starting point
of our work.
In our study, we highlight the problems that arise when estimating the relation

between size and growth rate variance on panel databases of firms. In particular, we
show that an upward bias in the estimation arises whenever, on the same proxy that is
used to calculate the growth rates, a threshold operates that restricts the observational
range of the data. Most of the studies in which this condition holds, and thus where
the bias occurs, are studies in which the number of employees is used both as a proxy
for firm size and for calculating the firm growth rates.
The disappearance of small firms in the second year of a growth comparison, either

because of the natural lower bound of 0 employees (an ‘endogenous’ threshold, below
which firms exit themarket), or because of lower bounds that are artificially imposed at
higher levels (e.g., an ‘exogenous’ threshold of 20 employees, below which firms are
excluded from the data collection and thus cannot be observed), causes an upward bias
in the relationship between firm size and the variance of growth rates. We show that
the disappearance problem attenuates by running successive regressions between firm
size and growth rate variance, where we successively eliminate smaller firms from the
starting-year data set (but keep them in the second-year data set). Based on this result,
we suggest the use of an alternative methodology that reduces the estimation bias.
The paper is structured as follows. Section 2 describes the model to be estimated.

Section 3 illustrates how the bias arises, and provides a numerical example on sim-
ulated data. Section 4 describes an alternative methodology to avoid estimation bias,
and in Sect. 5 this methodology is applied to a Dutch panel dataset of manufacturing
and service firms. Section 6 concludes.

2 The Model

In this study, the main variables of interest are the size of the firm and the firm’s rate
of growth. For each firm j and each year t , we approximate the size S j (t) by one plus
the number of employees (we add 1 to allow for logarithmic transformations, since
self-employment is treated as a firm with 0 employees). Following previous studies,
for example Bottazzi et al. (2007, 2011), Coad (2007), and Coad and Hölzl (2009) the
rate of growth of firm size g j (t) is calculated as the difference in the log size across
two consecutive years, namely
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g j (t) = log(S j (t)) − log(S j (t − 1)). (1)

The choice of computing growth rates as log size differences is well grounded in the
literature on firm growth, since the process describing the evolution of firm size has
often been described as a unit root multiplicative process (see for example Gibrat
1931; Steindl 1965; and for a review Sutton 1997).
The literature commonly tests the relation between firm size and variance in growth

rates to divide a sample of firms into several equi-populated size classes. Following
Stanley et al. (1996), we model the relation between firm size and variance in growth
rates as

yi = α + βxi + εi , (2)

where xi and yi respectively are average log size and the log standard deviation of
growth rates computed within the size class i , and εi is an error term. Size and variance
in growth rates are correlated if the slope β is different from zero.

3 The Bias

To illustrate the problem that can arise in the presence of endogenous or exogenous
thresholds we assume a very simple scenario in which firms can have only two sizes.
Suppose our sample contains two equi-populated groups of n firms. All of the firms
that belong to the first group, called A, have a size equal to xA, and all the firms
belonging to the second group, called B, have a size equal toxB , with xA < xB .
If we cannot observe firms the size of which is smaller than a given threshold

τ < xA, then we are not able to observe (in period 2) all the firms from the first group
with a growth rate smaller than log(τ ) − log(xA) nor all the firms in the second group
the growth rate of which is smaller than log(τ )− log(xB). In other words, the observed
distribution of growth rates will be left-truncated both for the firms of group A and
for the firms of group B, and the left-truncation point will be higher for the firms of
group A. As Baum (2006, p. 260) states, “The effect of truncating the distribution of a
random variable is clear. The expected value or mean of the truncated random variable
moves away from the truncation point, and the variance is reduced”.
Let us assume now that the real distribution of the growth rates is Laplace (double

exponential) for both groups A and B, with the growth rate variance of group A not
lower than the variance of group B. In this case, the number of relative frequencies
excluded from the observational range is higher for group A than for group B. Roughly
speaking, the truncated part of the distribution left tail is larger for group A than for
group B. It is intuitive to say that the negative effect of the truncation on the observed
distribution variance is then higher for group A than for group B. As a consequence,
the difference between the estimated growth rate variances of groups B and A is biased
upward; and, in turn, the estimated effect of log size on growth rate variance—i.e. the
estimation of the β parameter in (2)—is biased upward. The following simulation can
show that, for a realistic range of values assumed for α and β, the bias is far from
negligible.

123



M. Capasso, E. Cefis

Table 1 Estimated values β̂ of the scaling parameter β linking log size and log standard deviation of
growth rates

α β

−0.19 −0.18 −0.17 −0.16 −0.15
0.7 −0.03105 −0.01369 0.00215 0.01795 0.03485

0.8 −0.00522 0.01025 0.02397 0.03851 0.05193

0.9 0.01310 0.02587 0.03810 0.04948 0.06072

1.0 0.02351 0.03476 0.04542 0.05549 0.06524

1.1 0.03117 0.03961 0.04867 0.05787 0.06375

Horizontal axis: true value of the scaling parameter used for the simulation. Vertical axis: value of the
intercept of the simulated logsize-logvariance relation

We choose nA = nB = 10,000; SA = 40; SB = 80. We assume that the relation
described in the Eq. (2) holds, with α varying between 0.7 and 1.1, and β varying
between −0.19 and −0.15. The ranges of values for α and β have been chosen fol-
lowing the empirical findings of Stanley et al. (1996) and of Amaral et al. (1997),
who estimate a value of α equal respectively to 0.8 and 1, and a value of β equal
respectively to −0.16 and −0.18, when using number of employees as a proxy for
firm size.1 Therefore, at each of the 1,000 replications, the growth rates of the 10,000
firms of group A are drawn from a Laplace distribution having mean equal to zero and
log variance equal to α +β log(40), and the growth rates of the 10,000 firms of group
B are drawn from a Laplace distribution having mean equal to zero and log variance
equal to α + β log(80).2

In our simulation, we see the effect of a threshold of twenty employees that is
imposed on the data observation; that is, we assume that a firm that has less than
τ = 20 employees after the growth event drops out of the sample and cannot be
observed after the growth event. If we thus estimate Eq. (2) only on the firms that stay
in the observational range, we obtain the estimations β̂ shown in Table 1 (mean over
the 1,000 replications): The estimated value of β is always higher than the real value.
In most of the cases, the upward bias is so strong that a positive relation between log
size and log variance of growth rates is detected, instead of the ‘real’ negative relation.
Only in a few cases, corresponding to very low values of the ‘real’ scaling parameter
β and of the intercept α, the estimated value of the relation between log size and log
variance is negative, but still strongly biased upward.

4 Alternative Methodology

In empirical terms, the truncation can derive from reality (firms cannot have less than
zero employees) or from exogenous thresholds deriving from the construction of the

1 Notice that their data were collected on publicly traded manufacturing firms, so that only the natural
boundary of zero firm employees was present, but no additional boundary on firm size was deriving from
the data collection.
2 Simulations were performed using the Matlab software package. The program code is available on
request.
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database (e.g. if the database collects data only on firms with at least 10 or 20 employ-
ees, which is the case for the Community Innovation Survey [CIS] for all European
countries). To limit the biases deriving from truncation, we suggest the exclusion from
the dataset of firms that are below a given size threshold M (slightly higher than the
threshold already imposed on the data) at time t − 1, and that the remaining firms are
used to construct the balanced sample of growth rates between time t − 1 and time t .
Notice that our artificial threshold is applied only at time t − 1: no constraint on firm
size should be imposed at time t .
The resulting distribution of growth rates is not bounded from above because, in

theory, a firm could grow indefinitely and still belong to the sample, and is not strictly
bounded from below because the firm would have to experience a very low negative
growth rate (high in absolute value) in order to approach the natural (or endogenous)
threshold of zero employees or any exogenous threshold that is imposedby thedatabase
construction. This methodology extends the proposal in Perline et al. (2006) simply
to exclude from the regression the first size class (i.e. associated with the smallest
average size). In order to show how our methodology applies with respect to real data,
and to calibrate M for the reduction of the number of firms that are excluded from the
dataset, we conduct the following empirical analysis.

5 The Empirical Analysis

5.1 The Case of an Endogenous Threshold

The data in this paper were collected by the Centraal Bureau voor de Statistiek (CBS)
and stem from the Business Register of enterprises. The Business Register data-
base includes all firms registered for fiscal purposes in the Netherlands in the year
considered. The population includes firms with zero employees, referred to as self-
employment. We consider growth rates between 2002 and 2003 for all Dutch firms in
manufacturing and services (approximately 60,000 manufacturing and 1,000,000 ser-
vices firms), considered separately: that is, the two groups belong to two different
macro-sectors. Therefore, the data do not have any exogenous lower threshold but just
the endogenous natural limit of zero employees.
In a first step, we exclude from the sample all firms with less than M employees at

time t − 1 (i.e., in year 2002) and retain all of the remaining firms that still exist at
time t (i.e., in 2003). M is an integer value varying between 0 and 20, and we consider
all of the cases between 0 and 20: When M is equal to 0, no firms are excluded by
the artificial threshold, and we retain all firms that exist in 2002 and 2003. In a sec-
ond step we estimate the relation between firm size and growth rate variance (Eq. 2)
by minimizing the Least Absolute Deviation of the error terms εi , assuming that the
residuals are Laplace distributed as in Bottazzi et al. (2007).3 25 equi-populated size
classes will be used for estimating (2).

3 The variables that are used in the regressions were built using the R software package. The LAD regres-
sions were run using the qreg function of the Stata software package.
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Table 2 Empirical relation between size and growth rate variance: The case of an endogenous threshold
(whole population)

Threshold M Manufacturing Services

Coefficient SE t ratio p value Coefficient SE t ratio p value

0 0.2307 0.0726 3.18 0.004 0.2062 0.0685 3.01 0.006

1 0.2640 0.0556 4.75 0.000 0.4570 0.0234 19.54 0.000

2 0.1715 0.0429 4.00 0.001 0.3309 0.0696 4.76 0.000

3 0.0394 0.0658 0.60 0.555 0.2090 0.0695 3.01 0.006

4 −0.0201 0.0546 −0.37 0.715 0.0999 0.0581 1.72 0.099

5 −0.0200 0.0391 −0.51 0.614 0.0807 0.0453 1.78 0.088

6 −0.0979 0.0718 −1.36 0.186 0.0691 0.0378 1.83 0.081

7 −0.1411 0.0603 −2.34 0.028 0.0010 0.0635 0.02 0.987

8 −0.1561 0.0730 −2.14 0.043 −0.0247 0.0403 −0.61 0.546

9 −0.2203 0.0491 −4.49 0.000 −0.1058 0.0253 −4.18 0.000

10 −0.2025 0.0344 −5.89 0.000 −0.1141 0.0387 −2.95 0.007

11 −0.2401 0.0493 −4.87 0.000 −0.1063 0.0154 −6.89 0.000

12 −0.2635 0.0494 −5.33 0.000 −0.1112 0.0410 −2.71 0.012

13 −0.2077 0.0474 −4.38 0.000 −0.1284 0.0208 −6.17 0.000

14 −0.2165 0.0640 −3.38 0.003 −0.1126 0.0458 −2.46 0.022

15 −0.2920 0.0523 −5.58 0.000 −0.1472 0.0276 −5.34 0.000

16 −0.2045 0.0454 −4.51 0.000 −0.0638 0.0419 −1.52 0.142

17 −0.2138 0.0500 −4.28 0.000 −0.0471 0.0378 −1.25 0.225

18 −0.2700 0.0786 −3.43 0.002 −0.0199 0.0393 −0.51 0.618

19 −0.1955 0.0627 −3.12 0.005 −0.0833 0.0258 −3.23 0.004

20 −0.2155 0.0848 −2.54 0.018 −0.0603 0.0325 −1.86 0.076

Table 2 shows that the estimated coefficient β seems to decrease with M , with a
clear tendency to move from positive to negative values as the threshold increases. Our
methodology consists of excluding from the database the firms that have employees
that are, at time t − 1, below a numerical threshold M , letting M increase until the
estimated coefficient is stable (i.e., keeping the smallest M for which the estimated β

finds a plateau). It should be possible to achieve stability for a reasonably small M ; in
our case M = 9 for the manufacturing and services sectors. If estimation of the coef-
ficient β does not stabilize at small values of M , model (3) is probably mis-specified
(i.e., there are nonlinearities in the relation being studied). Our methodology allows
us to observe that the relationship between firm size and variance in firm’s growth
rates is stable only for negative values of the coefficient.4 A positive relation is due

4 An additional analysis has been conducted at a disaggregated level, in particular on two 2-digit sectors
(SBI sectors 15 and 50, where SBI—i.e., Standard Bedrijfsindeling—is the Dutch correspondent of SIC
codes). In both cases the ‘artificial’ threshold M has the same effect as in the general analysis on manu-
facturing and services: as M increases, first the sign of the estimated relation between size and growth rate
variances changes from positive to negative, and then the value of the estimated parameter becomes more
stable.
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Fig. 1 Histograms of the growth rate distributions for the first and the last size classes of manufacturing
firms, when M = 3 and M = 6 (imposed thresholds on the initial number of employees). a First size class,
M = 3. b Last size class, M = 3. c First size class, M = 6. d Last size class, M = 6

only to the effects of truncation, which flow from the existence of endogenous and/or
exogenous thresholds that bias the estimation upwards.
Figure 1 helps to explain how our methodology corrects the bias, in practical terms.

We focus on the population of manufacturing firms, and consider the two cases of
M = 3 and M = 6. For each of the two cases, we consider only the firms that have
employees that are equal to or higher in number than M , and we divide them into 25
equi-populated size classes (in increasing order of average size), as we would nor-
mally do before estimating model (2). Figure 1a, b show the distribution of growth
rates of firms belonging respectively to the first and last size classes (i.e., the classes
with smallest and largest average size) for the case of M = 3. Figure 1c, d show the
distribution of growth rates of firms belonging respectively to the first and last size for
the case of M = 6.
It is evident that, for the size class corresponding to the highest average firm size,

the distribution of growth rates is similar for M = 3 and M = 6 (Fig. 1b, d). This
is due to the fact that only a few firms having an initial high number of employees
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suffer a size decrease that is so dramatic that the firm exits the observational range that
is defined by the natural threshold of zero employees. In other words, the observed
distribution of growth rates of bigger firms is not strongly influenced by any truncation
effect that is caused by firm exit, and therefore our imposed threshold defined by M is
not correcting any truncation effect: the observed growth rate variance of bigger firms
is not influenced by the ‘artificial’ threshold M .
For the smaller firms the picture is completely different. Figure 1a, c show that the

distribution of the smaller firms’ growth rates is strongly affected by the truncation
caused by firm exit, leading to a strong decrease of variance. However, the effect of
truncation is much stronger when the M threshold imposed by us is lower (Fig. 1a,
where M = 3) than when the threshold M is higher (Fig. 1c, where M = 6). In other
words, a higher M allows us to reduce the effect of dropouts on the left-truncation of
the growth rate distribution, and thus to reduce the downward influence of dropouts
on the observed growth rate variance, for the size classes that are associated with low
firm sizes.
The comparison between Fig. 1a, b shows that the increase in growth rate variance

associated with an increase in firm size, observed when M = 3, is mainly due to the
fact that many small firms cannot experience very low growth rates without exiting the
market (or, in general, the observational range). That is: for M = 3, our methodology
is still not able to correct for the dropout bias, because the left-truncation of the growth
rate distribution is still affecting strongly the observed growth rate variance of the first
size class. For M = 6, the left-truncation of the growth rate distribution of the first size
class (Fig. 1c) does not have a dramatic effect on the observed growth rate variance.
Indeed, the statistics of Table 3 (left panel corresponding to Fig. 1a, b, right panel
corresponding to Fig. 1c, d) suggest that the variance of the first size class is higher for
M = 6 than for M = 3 because the first ten percentiles of the growth rate distribution
are shifted downward, which in turn depends on the fact that the left-truncation of the
distribution occurs at a lower value of the growth rate. The downward shift of the first
ten percentiles increases the growth rate variance of the first class, and the upward
bias in the relation between firm size and growth rate variance is then reduced.

5.2 The Case of an Exogenous Threshold

We now turn to the case of an exogenous threshold, occurring when data have been
collected only for firms that have employees that are greater in number than a given
lower bound (as for the cases of databases that do not include micro and small firms).
In other words, firms that have less than a given number of employees at time t − 1,
or at time t , or both, are excluded from the 2-year panel and thus cannot be observed.
In this case, we must apply a slight modification to our procedure described in the

previous subsection: Instead of approximating firm size simply by adding one to the
number of employees, as was previously done in order to allow logarithmic transfor-
mations for self-employed firms (having zero employees), we approximate firm size
by one plus the number of employees minus the value of the exogenous threshold.
Roughly speaking, we measure firm size as a distance from the exogenous threshold
rather than as a distance from the endogenous threshold of zero employees. Apart

123



Firm Size and Growth Rate Variance

Table 3 Statistics of the growth rate distributions for the first and the last size classes of manufacturing
firms, when M = 3 and M = 6 (imposed thresholds on the initial number of employees)

M = 3 M = 6

First size class Last size class First size class Last size class

Number of firms 954 954 653 653

Mean −0.0127 −0.0387 −0.0389 −0.0361
Variance 0.0600 0.0387 0.0855 0.0405

Skewness −1.3804 −0.5282 −3.8751 0.0699

Kurtosis 18.4024 22.5843 26.0127 25.3170

Minimum −1.3863 −1.3298 −1.9459 −1.3298
10th percentile 0 −0.2072 −0.1542 −0.2163
20th percentile 0 −0.1022 0 −0.0993
30th percentile 0 −0.0391 0 −0.0369
40th percentile 0 −0.0066 0 −0.0064
50th percentile 0 0 0 0

60th percentile 0 0 0 0

70th percentile 0 0 0 0

80th percentile 0 0.0126 0 0.0188

90th percentile 0 0.0863 0 0.0911

Maximum 1.6582 1.9674 0.9985 1.9674

from this particular way of measuring firm size, our methodology is exactly the same
as for the case of the endogenous threshold, described in the previous subsection. We
can explain the reason behind such technical device by a simple example.
Let us come back, first, to the case of endogenous threshold, and consider the

example of a firm j having 10 employees at time t − 1. At time t , this firm can have
a minimum number of employees equal to zero (in case it becomes self-employed).
If we simply approximate the firm size by adding one to the number of employees (for
allowing logarithmic transformations), the firm of our example can have a minimum
growth rate of log(S j (t))− log(S j (t−1)) = log(1+0)− log(1+10) = −2.40. If this
firm were the largest firm of the first size class at time t − 1, then the left-truncation
of the growth rate distribution, for the first size class, would be at −2.40.
Suppose now that the data are bounded by an exogenous lower threshold of five

employees, i.e. only firms having at least five employees (both at time t − 1 and at
time t) can be observed. In this case, the firm of our example will be included in
the database only when its minimum growth rate is log(S j (t)) − log(S j (t − 1)) =
log(1 + 5) − log(1+ 10) = −0.61. If this firm were the largest firm of the first size
class at time t − 1, then the left-truncation of the (observed) growth rate distribution
for the first size class would be at −0.61—i.e., at a value that is much higher than for
the case of an endogenous threshold—thus leading to a very strong downward bias in
the variance estimation for the growth rate distribution of the first size class, and in
turn to a strong upward bias in the estimation of the relation between firm size and
growth rate variance.

123



M. Capasso, E. Cefis

If we had to apply directly the procedure described in the previous subsection,
our artificial threshold M should be very high in order to erase the effect of the left-
truncation in the growth rate distribution. In particular, in order to reach the previous
left-truncation value of −2.40, the largest firm of the first size class should have 65
employees at time t − 1 as −2.40 = log(1) − log(11) = log(6) − log(66), i.e. our
artificial threshold M should be high enough to exclude all of the firms that have less
than 65 employees at time t − 1 from the analysis.
Our point is the following: The customary use of log differences to proxy firm

growth rates creates a hidden link between the (endogenous or exogenous) data thresh-
olds and the left-truncation of the growth rate distributions. This link acts through the
first term of the log-difference, and creates a much higher estimation bias when the
data lower bound is higher, which is the case for exogenous thresholds in the data
collection.
Fortunately, we can easily reduce the extent of the problem by approximating firm

size by one plus the number of employees minus the value of the exogenous threshold.
For example, if the data allow us to observe only firms having at least five employees
at time t − 1 and at time t , then a firm having 10 employees at time t − 1 has a size,
according to our new definition, equal to (1 + 10 − 5), and can reach a minimum
observable size, at time t , of (1+ 5− 5). Its minimum growth rate, in order not to be
excluded from the data collection, would be log(1+5−5)− log(1+10−5) = −1.79,
and so the left tail of the growth rate distribution would be truncated at −1.79 rather
than −0.61.
Therefore, by measuring firm size as a distance from the exogenous threshold, we

need a much lower value of the artificial threshold M , and a much lower number of
excluded firms, to reduce the upward bias in the estimation. Indeed, this way of mea-
suring firm size reduces the extent of the left-truncation problem back to the case of
the endogenous threshold, so that the methodology described in Sect. 4 is able to work
well without further modifications, and with the exclusion of a relatively low number
of firms.
To show the effectiveness of this method in practical terms, we use the same data as

in the previous subsection, but we now apply an exogenous threshold of five employ-
ees. In other words, we exclude from the panel the firms that have less than five
employees at time t −1, or at time t , or at both t −1 and t , in order to simulate a lower
bound of five employees exogenously imposed in the data collection. Following the
intuition of the previous paragraph, we approximate firm size by one plus the firm’s
number of employees minus five (the exogenous threshold), and we then apply our
methodology as described in Sect. 4.
The results are in Table 4. Manufacturing firms exhibit a strong negative relation

between size and growth rate variance, even when the artificial threshold M is not
excluding any additional firm (i.e., when M is equal to five, the same value of the
exogenous threshold). Coefficients are smaller, in absolute value, than was observed
in the previous subsection, but they are still negative and significant. For the case
of services, we obtain significant, and negative, coefficients for values of M that are
equal to or higher than nine. This corresponds to what was observed in the previous
subsection (without an exogenous threshold), although now the negative significant
coefficients are lower in absolute value. In other words, our methodology still detects
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Table 4 Empirical relation between size and growth rate variance: The case of an exogenous threshold
(considering only firms that have at least five employees in both years 2002 and 2003)

Threshold M Manufacturing Services

Coefficient SE t ratio p value Coefficient SE t ratio p value

5 −0.1005 0.0273 −3.68 0.001 −0.0107 0.0208 −0.51 0.612

6 −0.0800 0.0257 −3.11 0.005 −0.0144 0.0168 −0.86 0.400

7 −0.0745 0.0320 −2.33 0.029 −0.0074 0.0251 −0.30 0.771

8 −0.1034 0.0311 −3.33 0.003 −0.0114 0.0188 −0.61 0.551

9 −0.1077 0.0237 −4.53 0.000 −0.0504 0.0198 −2.55 0.018

10 −0.1242 0.0314 −3.96 0.001 −0.0660 0.0198 −3.32 0.003

11 −0.1086 0.0261 −4.15 0.000 −0.0773 0.0140 −5.54 0.000

12 −0.1089 0.0312 −3.49 0.002 −0.0433 0.0233 −1.86 0.076

13 −0.0987 0.0289 −3.42 0.002 −0.0466 0.0199 −2.35 0.028

14 −0.1097 0.0410 −2.68 0.013 −0.0581 0.0164 −3.55 0.002

15 −0.1513 0.0520 −2.91 0.008 −0.0579 0.0240 −2.42 0.024

16 −0.1263 0.0242 −5.21 0.000 −0.0397 0.0244 −1.62 0.118

17 −0.1562 0.0443 −3.52 0.002 −0.0341 0.0183 −1.87 0.075

18 −0.1491 0.0637 −2.34 0.028 −0.0340 0.0257 −1.33 0.198

19 −0.1541 0.0613 −2.51 0.019 −0.0272 0.0303 −0.90 0.378

20 −0.1285 0.0396 −3.24 0.004 −0.0301 0.0268 −1.13 0.272

a negative relation between firm size and growth rate variance even after replicating
the exogenous lower bounds that some data collection services impose, and without
increasing the number of firms that are excluded from the analysis.

6 Conclusions

We have shown that a bias can arise in the estimation of the relation between firm size
and variance in growth rates, when endogenous and/or exogenous thresholds truncate
the firm size distribution; that is, when micro firms are included in the analysis or
when the dataset considers only firms with sizes that are above a certain threshold
in terms of numbers of employees. In particular, we show that an upward bias in the
estimation exists whenever the threshold operates on the proxy that is used to construct
the growth rates. This problem was highlighted by Perline et al. (2006), but is ignored
in most of the literature. However, it seems to be a determinant of the explanation of
the contrasting evidence from previous studies.
After pointing to the bias that can follow from a truncated firm’s size distribution,

from a theoretical perspective, we suggested a simple methodology to estimate the
relation between firm size and the variance in firm growth rates that avoids the bias.
We tested our methodology on the population of manufacturing and service firms in
the Netherlands. The results show that the methodology that we propose allows us to
observe how the estimated coefficients of the size-growth rate variance relation change
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depending on the firm size threshold. We suggest using an artificial threshold M that
can increase until the estimated coefficient is stable and retaining the lowest M for
which the estimated β finds a plateau.
Our empirical analysis shows that there is a stable, negative relationship between

firm size and variance in growth rates: The dynamics of smaller firms are characterized
by a stronger turbulence. Many recent studies show a positive relationship, but this is
due to the presence of natural/endogenous or exogenous thresholds in the firm size
distributions.
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