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Abstract

We investigate the role of Hertling-Manin condition on the structure constants of an

associative commutative algebra in the theory of integrable systems of hydrodynamic

type. In such a framework we introduce the notion of F -manifold with compatible

connection generalizing a structure introduced by Manin.

1 Introduction

In their seminal papers [8, 25], Dubrovin, Novikov, and Tsarev pointed out a deep relation

between the integrability properties of systems of PDEs of hydrodynamic type

ui
t = V i

j uj
x, i = 1, . . . , n, (1)

(sum over repeated indices is understood) and geometrical—in particular, Riemannian—

structures on the target manifold M , where (u1, . . . , un) play the role of coordinates. Proba-

bly, the most important of such structures is the notion of Frobenius manifold, introduced by
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Dubrovin (see, e.g., [4]) in order to give a coordinate-free description of the famous WDVV

equations. A crucial ingredient involved in the definition of Frobenius manifolds is a (1, 2)-
type tensor field c giving an associative commutative product on every tangent space:

(X ◦ Y )i := ci
jkX

jY k ,

where X and Y are vector fields. More recently [17], Hertling and Manin showed that this

product satisfies the condition

[X ◦ Y, Z ◦ W ] − [X ◦ Y, Z] ◦ W − [X ◦ Y, W ] ◦ Z − X ◦ [Y, Z ◦ W ] + X ◦ [Y, Z] ◦ W+

+X ◦ [Y, W ] ◦ Z − Y ◦ [X, Z ◦ W ] + Y ◦ [X, Z] ◦ W + Y ◦ [X, W ] ◦ Z = 0 ,
(2)

or, in terms of the components of c,

(∂sc
k
jl)c

s
im + (∂jc

s
im)ck

sl − (∂sc
k
im)cs

jl − (∂ic
s
jl)c

k
sm − (∂lc

s
jm)ck

si − (∂mcs
li)c

k
js = 0 . (3)

They called F -manifold a manifold endowed with an associative commutative multiplicative

structure satisfying condition (2).

The aim of this paper is to study the properties of the PDEs of hydrodynamic type asso-

ciated with F -manifolds. The system (3) and its relation with integrable systems has been

considered from a different point of view in [18]. Here, following the insights coming from

the case of the principal hierarchy in the context of Frobenius manifolds, we will assume

such PDEs to be of the form

ui
t = (VX)i

ju
j
x, i = 1, . . . , n , (VX)i

j := ci
jkX

k, (4)

where X is a vector field on M and c satisfies (2). These assumptions have two important

consequences, spelled out respectively in Section 2 and 3:

1. For any choice of the vector field X , the Haantjes tensor associated with the (1,1)

tensor field VX vanishes.

2. They allow one to write the condition of commutativity of two flows of the form (4)

as a simple requirement on the corresponding vector fields on M .

Starting from Section 4, we put into the game an additional structure, namely a connec-

tion ∇ satisfying the symmetry condition

(∇Xc) (Y, Z) = (∇Y c) (X, Z) , (5)

for all vector fields X , Y , and Z. Remarkably, as shown by Hertling [16], condition (2)

follows from (5).

In Section 4, following Manin [20], we study the special case where the connection ∇
is flat and we show how to construct an integrable hierarchy of hydrodynamic type. The

costruction is divided in two steps. First—using a basis of flat vector fields—one defines

a set of flows, known as primary flows. Then, from these flows one can define recursively

the higher flows of the hierarchy. In this way, each primary flow turns out to be the starting
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point of a hierarchy. This construction is a straightforward generalization of the principal

hierarchy defined by Dubrovin in the case of Frobenius manifolds [4].

The general (non-flat) case is studied in Section 5, where we introduce the notion of

F -manifold with compatible (non-flat) connection ∇ and we show that the associated inte-

grable systems of hydrodynamic type are defined by a family of vector fields satisfying the

following condition:

ci
jm∇kX

m = ci
km∇jX

m. (6)

In the non-flat case the existence of solutions of the above system is not guaranteed. Indeed,

we prove that every solution X of (6) satisfies the condition

(Rk
lmic

n
pk + Rk

lipc
n
mk + Rk

lpmcn
ik)X

l = 0,

where R is the curvature tensor of ∇. It is thus natural to introduce the following requirement

on the curvature:

Rk
lmic

n
pk + Rk

lipc
n
mk + Rk

lpmcn
ik = 0 . (7)

If the structure constants ci
jk admit canonical coordinates, condition (7) is related to the well-

known semi-Hamiltonian property introduced by Tsarev [25] as compatibilty condition for

the linear system providing the symmetries of a diagonal system of hydrodynamic type.

In Section 6, motivated by the Hamiltonian theory of systems of hydrodynamic type,

we consider the case of metric connections and we introduce the notion of Riemannian F -

manifold. Finally, in Section 7, we discuss in details an important example: the reductions

of the dispersionless KP hierarchy (also known as Benney chain).

2 The Haantjes tensor

An important class of systems of hydrodynamic type, widely studied in the literature, con-

sists in those systems which admit diagonal form. We say that a system (1) is diagonalizable

if there exists a set of coordinates (r1, . . . , rn)—usually called Riemann invariants—such

that the tensor V i
j is diagonal in these coordinates: V i

j (r) = vi δi
j . Then the system takes the

(diagonal) form

ri
t = vi(r1, . . . , rn)ri

x, i = 1, . . . , n .

It is important to recall that there exists an invariant criterion for the diagonalizability. One

first introduces the Nijenhuis tensor of V as

NV (X, Y ) = [V X, V Y ] − V [X, V Y ] − V [V X, Y ] + V 2 [X, Y ],

where X and Y are arbitrary vector fields, and then defines the Haantjes tensor as

HV (X, Y ) = NV (V X, V Y ) − V NV (X, V Y ) − V NV (V X, Y ) + V 2NV (X, Y ).

In the case when V has mutually distinct eigenvalues, then V is diagonalizable if and only if

its Haantjes tensor is identically zero. In this section, we consider the Haantjes tensor of

(VZ)i
j = ci

jkZ
k, (8)
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where c satisfies the Hertling-Manin condition (2). For a (1, 1)- type tensor field of the form

(8), the Nijenhuis tensor reads

NVZ
(X, Y ) = [Z ◦ X, Z ◦ Y ] + Z2 ◦ [X, Y ] − Z ◦ [X, Z ◦ Y ] − Z ◦ [Z ◦ X, Y ].

By using the Hertling-Manin condition (2) evaluated at X = Z, this can be written as

NVZ
(X, Y ) = [X ◦ Z, Z] ◦ Y − [X, Y ] ◦ Z ◦ Y + [Z, Y ◦ Z] ◦ X − [Z, Y ] ◦ X ◦ Z,

using this identity it is easy to prove the following

Theorem 1 The Haantjes tensor associated with VZ vanishes for any choice of the vector

field Z.

Proof. Let us write for simplicity N in place of NVZ
. Then, we have that

HVZ
[X, Y ] = N [Z ◦ X, Z ◦ Y ] + Z2 ◦ N [X, Y ] − Z ◦ N [X, Z ◦ Y ] − Z ◦ N [Z ◦ X, Y ] =

= [X ◦ Z2, Z] ◦ Y ◦ Z − [X ◦ Z, Z] ◦ Z2 ◦ Y + [Z, Y ◦ Z2] ◦ X ◦ Z +

− [Z, Y ◦ Z] ◦ X ◦ Z2 + [X ◦ Z] ◦ Y ◦ Z2 − [X, Z] ◦ Z3 ◦ Y +

+ [Z, Y ◦ Z] ◦ X ◦ Z2 − [Z, Y ] ◦ X ◦ Z3 − [X ◦ Z, Z] ◦ Z2 ◦ Y +

+ [X, Z] ◦ Z3 ◦ Y − [Z, Y ◦ Z2] ◦ X ◦ Z + [Z, Y ◦ Z] ◦ X ◦ Z2 +

− [X ◦ Z2, Z] ◦ Y ◦ Z + [X ◦ Z, Z] ◦ Z2 ◦ Y − [Z, Y ◦ Z] ◦ X ◦ Z2 +

+ [Z, Y ] ◦ X ◦ Z3 = 0 ,

where Z2 = Z ◦ Z and Z3 = Z ◦ Z ◦ Z. �

Suppose now that X is a vector field such that VX has everywhere distinct real eigen-

values (v1, . . . , vn). Since the Haantjes tensor of VX vanishes, there exist local coordinates

(r1, . . . , rn) such that (VX)i
j = δi

jv
i. These coordinates are the Riemann invariants of the

corresponding system of hydrodynamic type. Moreover, we have

Proposition 2 The components of the tensor field c in the coordinates (r1, . . . , rn) are given

by

ck
ij = fiδ

k
i δ

k
j .

Furthermore, if fj 6= 0 for all j, then fi depends on the variable ri only.

Proof. In diagonal coordinates we have

(VX)i

j = ci
jkX

k = viδi
j,

hence, we get

cj
pqc

i
jkX

k = cj
pqv

iδi
j = ci

pqv
i.

On the other hand, due to the associativity of the algebra, we can also write

cj
pqc

i
jkX

k = c
j
pkc

i
jqX

k = ci
jqv

jδj
p = ci

pqv
p (no sum over p),
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and therefore,

ci
pq

(

vi − vp
)

= 0.

Since the algebra is commutative and the eigenvalues of VX are pairwise distinct, this means

that the structure constants, in the coordinates (r1, . . . , rn), take the form

ci
jk = fiδ

i
jδ

i
k, (9)

where the fi are arbitrary functions, depending in principle on all the variables r1, . . . , rn.

The requirement on the structure constants c to satisfy the Herling-Manin condition (3) im-

plies further constraints on the functions fi. Indeed, substituting (9) into (3), we get a set of

equations the fi have to satisfy; considering for instance the case m = j 6= k = i = l, we

get

fj∂jfk = 0,

which means that, in the non-degenerate case when fj 6= 0 for all j, then fk depends on

rk only. It is easy to check that conditions (3) give no further restrictions on the fi; the

proposition is proved. �

If the functions fi are everywhere different from zero, then it is easy to show that there

exist local coordinates, called canonical coordinates, such that ck
ij = δk

i δ
k
j . Moreover, in this

case, the vector field

e =
n
∑

i=1

1

fi

∂

∂ri

is globally defined and is the unity of the algebra.

Remark 3 If the algebra has a unity e, then the Hertling-Manin condition implies

Lieec = 0 .

Indeed, for X = Y = e the Hertling-Manin condition becomes

−[e, Z ◦ W ] + [e, Z] ◦ W + [e, W ] ◦ Z = 0.

Remark 4 An alternative proof of the existence of canonical coordinates has been given in

[17] under the assumption of semisimplicty of the algebra, that is, the existence of a basis of

idempotents.

3 Commutativity of the flows

As a consequence of the Hertling-Manin condition, the conditions for the commutativity of

two hydrodynamical flows take a rather simple form.
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Proposition 5 The flows

ui
t = [VX ]iju

j
x = ci

jkX
juk

x (10)

and

ui
τ = [VY ]iju

j
x = ci

jkY
juk

x (11)

commute if and only if the vector fields X and Y satisfy the condition

((LieXc) (Y, Z) − (LieY c) (X, Z) + [X, Y ] ◦ Z) ◦ Z = 0,

for any vector field Z. Equivalently,

((LieXc) (Y, Z) − (LieY c) (X, Z) + [X, Y ] ◦ Z) ◦ W

+ ((LieXc) (Y, W ) − (LieY c) (X, W ) + [X, Y ] ◦ W ) ◦ Z = 0

for all pairs (Z, W ) of vector fields. In local coordinates this means that

cr
is

[

(LieXc)i

jq Y q − (LieY c)i

jq Xq + ci
jq[X, Y ]q

]

+ cr
ij

[

(LieXc)i

sq Y q − (LieY c)i

sq Xq + ci
sq[X, Y ]q

]

= 0 .

Proof. It is well-known that the commutativity of the flows (10) and (11) is equivalent to the

following requirements:

1. The (1, 1)-tensor fields VX and VY (seen as endomorphism of the tangent bundle)

commute.

2. For any vector field Z the following condition is satisfied:

[VX(Z), VY (Z)] − VX ([Z, VY (Z)]) + VY ([Z, VX(Z)]) = 0 ,

that is to say,

[Z ◦ X, Z ◦ Y ] − X ◦ [Z, Z ◦ Y ] + Y ◦ [Z, Z ◦ X] = 0 .

The first requirement is automatically verified due to the associativity of the algebra. Making

use of identity (2), the second one becomes

([Z ◦ X, Y ] + [X, Z ◦ Y ] − [X, Z] ◦ Y − [X, Y ] ◦ Z − X ◦ [Z, Y ]) ◦ Z = 0. (12)

A simple calculation shows that the quantity in the bracket, namely

[Z ◦ X, Y ] + [X, Z ◦ Y ] − [X, Z] ◦ Y − [X, Y ] ◦ Z − X ◦ [Z, Y ],

is equal to

(LieXc) (Y, Z) − (LieY c) (X, Z) + [X, Y ] ◦ Z . (13)

Substituting (13) into (12), we get the thesis. �
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Corollary 6 A sufficient condition for the commutativity of the hydrodynamic flows (10) and

(11) is that

(LieXc) (Y, Z) − (LieY c) (X, Z) + [X, Y ] ◦ Z = 0 (14)

for all vector fields Z, that is,

(LieXc)i

pq Y q − (LieY c)i

pq Xq + ci
pq[X, Y ]q = 0 (15)

or, equivalently,

LieXVY − LieY VX − V[X,Y ] = 0. (16)

4 Dubrovin principal hierarchy

In this section, we adapt Dubrovin’s construction of the principal hierarchy [4] to the case of

F -manifolds with compatible flat connection introduced by Manin in [20].

Definition 7 An F -manifold with compatible flat connection is a manifold endowed with an

associative commutative multiplicative structure given by a (1, 2)-tensor field c and a flat

torsionless connection ∇ satisfying the symmetry condition

∇lc
i
jk = ∇jc

i
lk , (17)

meaning that ∇c is totally symmetric:

(∇Xc) (Y, Z) = (∇Y c) (X, Z) , (18)

for all vector fields X , Y , and Z.

Notice that Hertling-Manin condition (2) does not appear in the above definition. Indeed, as

proved by Hertling in [16], it is a consequence of the existence of a torsionless (even non-flat)

connection ∇ satisfying (17).

Remark 8 Notice that in flat coordinates condition (17) reads

∂lc
i
jk = ∂jc

i
lk.

This, together with the commutativity of the algebra, implies that

ci
jk = ∂jC

i
k = ∂j∂kC

i.

Therefore, condition (17) is equivalent to the local existence of a vector field C satisfying,

for any pair (X, Y ) of flat vector fields, the condition

X ◦ Y = [X, [Y, C]].

The above condition appears in the original definition of Manin [20].

7



Let us construct now the principal hierarchy. In order to do so, the first step con-

sists in defining the primary flows. Since the connection is flat, we can consider a basis

(X(1,0), . . . , X(n,0)) of flat vector fields; the primary flows are thus defined as

ui
t(p,0)

= ci
jkX

k
(p,0)u

j
x. (19)

Proposition 9 The primary flows (19) commute.

Proof. Since the X(p,0) are flat and the torsion vanishes, they commute and

LieX(p,0)
c = ∇X(p,0)

c .

Therefore, the commutativity condition (14) for the vector fields X = X(p,0) and Y = X(q,0)

follows from condition (17). �

Starting from the primary flows (19) one can introduce the “higher flows” of the hierar-

chy, defined as

ui
t(p,α)

= ci
jkX

j

(p,α)u
k
x, (20)

by means of the following recursive relations:

∇jX
i
(p,α) = ci

jkX
k
(p,α−1). (21)

Remark 10 The flatness of the connection ∇, the symmetry of the tensor ∇c (condition (17))

and the associativity of the algebra with structure constants ci
jk are equivalent to the flatness

of the one-parameter family of connections defined, for any pair of vector fields X and Y ,

by

∇̃XY = ∇XY + zX ◦ Y, z ∈ C .

The vector fields obtained by means of the recursive relations (21) are nothing but the z-

coefficients of a basis of flat vector fields of the deformed connection [4].

In order to show that the higher flows (20) are well-defined, it is necessary to prove the

following

Proposition 11 The recursive relations (21) are compatible.

Proof. We note that the recursive relations (21) can be written in the form

∂jX
i
(p,α) = −Γi

jkX
k
(p,α) − ci

kjX
k
(p,α−1),

thus, we have

(∂j∂m − ∂m∂j)X
i
(p,α) =

[

∂mΓi
jl − ∂jΓ

i
ml − Γi

jkΓ
k
ml + Γi

mkΓ
k
jl

]

X l
(p,α) +

[

∂mci
jl − ∂jc

i
ml − Γi

kjc
k
ml − Γk

lmci
jk + Γi

kmck
jl + Γk

ljc
i
mk

]

X l
(p,α−1)

+
[

ci
jkc

k
ml − ci

mkc
k
jl

]

X l
(p,α−2).
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The flatness of the connection ∇, together with identity (17) and the associativity of the al-

gebra, implies the vanishing of the quantity above. Therefore, relations (21) are compatible.

�

Since the primary flows (19) commute and the recursive relations (21) are compatible, it

only remains to prove the following

Theorem 12 The flows of the principal hierarchy commute.

Proof. Let us consider the hydrodynamic flows associated with the vector fields X(p,α) and

X(q,β). In order to show that these flows commute, we prove that they satisfy the sufficient

condition (15). In local coordinates it reads:

Xm
(p,α)(∂mci

jk)X
k
(q,β) − Xm

(q,β)(∂mci
jk)X

k
(p,α)+

−cl
jk(∂lX

i
(p,α))X

k
(q,β) + ci

lk(∂jX
l
(p,α))X

k
(q,β)+

+ci
jl(∂kX

l
(p,α))X

k
(q,β) + cl

jk(∂lX
i
(q,β))X

k
(p,α)+

−ci
lk(∂jX

l
(q,β))X

k
(p,α) − ci

jl(∂kX
l
(q,β))X

k
(p,α)+

−ci
jk

(

(∂lX
k
(p,α))X

l
(q,β) + (∂lX

k
(q,β))X

l
(p,α)

)

= 0.

In particular, if the coordinates are flat, the first row vanishes due to the symmetry of the

tensor ∇c. Moreover, using the recursive relations (21) we obtain

−cl
jkc

i
lnX

n
(p,α−1)X

k
(q,β) + ci

lkc
l
jnX

n
(p,α−1)X

k
(q,β)+

+ci
jlc

l
knX

n
(p,α−1)X

k
(q,β) + cl

jkc
i
lnX

n
(q,β−1)X

k
(p,α)+

−ci
lkc

l
jnX

n
(q,β−1)X

k
(p,α) − ci

jlc
l
knX

n
(q,β−1)X

k
(p,α)+

−ci
jkc

k
mnX

n
(p,α−1)X

m
(q,β) + ci

jkc
k
mnX

n
(q,β−1)X

m
(p,α)

which vanishes due to the associativity of the algebra. �

Remark 13 The flows of the principal hierarchy are well-defined even in the case when

the torsion of ∇ does not vanish. However, their commutativity depends crucially on this

additional assumption.

5 F -manifolds with compatible connection and related in-

tegrable systems

From the point of view of the theory of integrable systems of hydrodynamic type, the “flat

case” and the associated principal hierarchy are exceptional. Therefore, it is quite natural to

extend the notion of F -manifolds with compatible flat connection to the non-flat case. As a

starting point, we consider an F -manifold endowed with a connection ∇ satisfying (17). If

∇ is flat, we know how to construct integrable systems of hydrodynamic type. Indeed, the

9



starting point of the construction of the previous section is a basis of flat vector fields, and

the recursive procedure (21) defining the “higher” vector fields and the corresponding flows

is well-defined as a consequence of the vanishing of the curvature. In the non-flat case, in

order to define integrable systems of hydrodynamic type one needs to find an alternative way

to select the vector fields.

5.1 Hydrodynamic-type systems associated with F -manifolds

In the flat case, the vector fields X defining the principal hierarchy satisfy the condition

(∇ZX) ◦ W = (∇W X) ◦ Z (22)

for all pairs (Z, W ) of vector fields, that is, in local coordinates,

ci
jm∇kX

m = ci
km∇jX

m . (23)

Indeed, in the case of the flat vector fields X(p,0) defining the primary flows, both sides of

(23) vanish due to

∇kX
m
(p,0) = 0, p = 1, . . . , n ,

while the vector fields defining the higher flows of the hierarchy satisfy (23) due to the

associativity of the algebra:

ci
jm∇kX

m
(p,α) = ci

jmcm
klX

l
(p,α−1) = ci

kmcm
jlX

l
(p,α−1) = ci

km∇jX
m
(p,α).

A crucial remark is the following: if ∇ satisfies condition (17), then any pair of solutions

of (23) defines commuting flows even if the connection ∇ is not flat. More precisely, we have

the following

Proposition 14 If X and Y are two vector fields satisfying condition (22), then the associ-

ated flows

ui
t = ci

jkX
kuj

x (24)

and

ui
τ = ci

jkY
kuj

x (25)

commute.

Proof. Recall from Proposition 5 that the flows (24) and (25) commute if and only if

((LieXc) (Y, Z) − (LieY c) (X, Z) + [X, Y ] ◦ Z) ◦ Z = 0 (26)

for any vector field Z. On the other hand, the vanishing of the torsion of ∇ gives the identity

(LieXc) (Y, Z) = (∇Xc) (Y, Z) −∇c(Y,Z)X + c(Y,∇ZX) + c(∇Y X, Z) ,

10



and this, together with the symmetry (18) of ∇c, can be used to write the term in the bracket

of (26) as

−∇Y ◦ZX + ∇X◦ZY + [Y, X] ◦ Z.

Multiplying the above identity by Z, and using property (22) for the vector fields X and Y ,

we obtain
− (∇Y ◦ZX) ◦ Z + (∇X◦ZY ) ◦ Z + [Y, X] ◦ Z2 =

− (∇ZX) ◦ (Y ◦ Z) + (∇ZY ) ◦ (X ◦ Z) + [Y, X] ◦ Z2 =

− (∇Y X) ◦ Z2 + (∇XY ) ◦ Z2 + [Y, X] ◦ Z2 = 0.

The proposition is proved. �

Remark 15 From (17) and (22) it follows that the (1,1)-tensor field

(VX)i
j = ci

jkX
k

satisfies the condition

∇k(VX)i
j = ∇j(VX)i

k,

which is well-known in the Hamiltonian theory of systems of hydrodynamic type [8].

5.2 Integrability condition

In the flat case, we have seen that system (23) admits a set of solutions, given by the vector

fields of the principal hierarchy. However, if ∇ is non-flat, existence of solutions for system

(23) is not guaranteed; additional constraints have to be imposed on the curvature R of the

connection ∇.

Proposition 16 If X is a solution of (22), then the identity

Z ◦ R(W, Y )(X) + W ◦ R(Y, Z)(X) + Y ◦ R(Z, W )(X) = 0, (27)

holds for any choice of the vector fields (Y, W, Z).

Proof. Condition (22) implies

∇W (Z◦∇Y X−Y ◦∇ZX)+∇Y (W ◦∇ZX−Z◦∇W X)+∇Z(Y ◦∇W X−W ◦∇Y X) = 0.

Using the symmetry condition (17) written in the form

∇Y (X ◦ Z) −∇X(Y ◦ Z) + Y ◦ ∇XZ − X ◦ ∇Y Z − [Y, X] ◦ Z = 0

we obtain identity (27). �

Condition (27) must be satisfied for any solution X of the system (23). Since we are

looking for a family of vector fields satisfying (23), it is natural to require that (27) holds

true for an arbitrary vector field X .
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Definition 17 An F -manifold with compatible connection is a manifold endowed with an

associative commutative multiplicative structure given by a (1, 2)-tensor field c and a tor-

sionless connection ∇ satisfying condition (18) and condition

Z ◦ R(W,Y )(X) + W ◦ R(Y, Z)(X) + Y ◦ R(Z, W )(X) = 0, (28)

for any choice of the vector fields (X, Y, W,Z). In local coordinates this means that

Rk
lmic

n
pk + Rk

lipc
n
mk + Rk

lpmcn
ik = 0 . (29)

Remark 18 An equivalent form of condition (28) can be easily obtained using the (second)

Bianchi identity for the deformed connection

∇̃XY = ∇XY + zX ◦ Y, z ∈ C,

where X and Y are arbitrary vector fields. Indeed, due to associativity and symmetry condi-

tion (17), the Riemann tensor of this connection does not depend on z [24]. Using this fact

it is easy to see that the Bianchi identity reduces to

0 = ∇̃XR(Y, Z)(W ) + ∇̃ZR(X, Y )(W ) + ∇̃Y R(Z, X)(W )

= X ◦ R(Y, Z)(W ) + Z ◦ R(X, Y )(W ) + Y ◦ R(Z, X)(W )

−R(Y, Z)(X ◦ W ) − R(X, Y )(Z ◦ W ) − R(Z, X)(Y ◦ W )

for any choice of the vector fields (X, Y, W,Z). Hence, condition (28) is equivalent to

R(Y, Z)(X ◦ W ) + R(X, Y )(Z ◦ W ) + R(Z, X)(Y ◦ W ) = 0,

for every (X, Y, W,Z).

From now on we will assume the existence of canonical coordinates (r1, . . . , rn), discussing

the meaning of condition (29) under this additional assumption.

Proposition 19 In canonical coordinates, system (23) reduces to

∂kv
i = Γi

ki(v
k − vi), i 6= k , (30)

where vi are the components of X in such coordinates.

Proof. Writing (23) in canonical coordinates, we get

δi
j(∂kv

i + Γi
klv

l) = δi
k(∂jv

i + Γi
jlv

l).

In the case i = j 6= k, using the identities

Γi
kk = −Γi

ki (31)

and

Γi
kl = 0, i 6= k 6= l 6= i, (32)

which follow from (17), we obtain system (30). The remaining conditions give no further

constraints. �

12



Remark 20 We recall that, in canonical coordinates, the components of the vector field X

coincide with the characteristic velocities of the associated system of hydrodynamic type:

ri
t = ci

jkv
krj

x = viri
x , i = 1, . . . , n.

Compatibility conditions of system (30) are well-known in the literature [25], and are given

by the following conditions:

∂iΓ
k
mk − ∂mΓk

ik = 0, (33)

∂iΓ
k
km − Γk

kmΓm
im + Γk

ikΓ
k
km − Γk

ikΓ
i
im = 0, (34)

for pairwise distinct indices k, i, m.

Proposition 21 Condition (29) is equivalent to conditions (33) and (34).

Proof. In canonical coordinates, condition (29) reads

Rk
lmic

n
pk + Rk

lipc
n
mk + Rk

lpmcn
ik =

Rk
lmiδ

n
p δn

k + Rk
lipδ

n
mδn

k + Rk
lpmδn

i δn
k =

Rn
lmiδ

n
p + Rn

lipδ
n
m + Rn

lpmδn
i = 0 .

If all the indices m, i, p, n are distinct the above condition is trivially satisfied. Let us consider

the case n = p (the case n 6= p can be treated in the same way and does not add further

condition). If n = i, we obtain

Rn
lmn + Rn

lnm + δn
m Rn

lnn = 0 ,

that is satisfied due to the skew-symmetry of the Riemann tensor with respect to the second

and third lower indices. The same if n = m. For n 6= i, m, we obtain

Rn
nmi = 0, (35)

if l = n and

Rn
lmi = 0, (36)

if l 6= n. Since, due to (31), the components of the Riemann tensor vanish if all the indices

are distinct, condition (36) reduces to

Rn
mmi = 0, n 6= m 6= i 6= n. (37)

Finally, using (31) and (32), it is easy to check that conditions (35) and (37) are equivalent

to conditions (33) and (34) respectively. This proves the proposition. �

13



Remark 22 If the compatibility conditions (33) and (34) are satisfied, the general solution

of the system (30) depends on n arbitrary functions of a single variable. Moreover, due to

(33), any solution (v1, . . . , vn) of (30) satisfies the condition

∂k

(

∂jv
i

vj − vi

)

− ∂j

(

∂kv
i

vk − vi

)

= 0, i 6= j 6= k 6= i, (38)

known in literature as semi-Hamiltonian property [25]. An invariant and highly non trivial

formulation of such a property has been found in [22].

Due to the above remark, under the assumption of existence of canonical coordinates we

have a set of solutions of (30) leading to a family of commuting systems of hydrodynamic

type, depending on n arbitrary functions. This result shows the deep relation between F -

manifold with compatible connection (Definition 17) and integrable systems of PDEs.

6 Riemannian F -manifolds and Egorov metrics

In this section we consider the special case where the connection ∇ is a metric connection.

This assumption plays an important role in the Hamiltonian theory of systems of hydrody-

namic type (see for instance [3, 21, 23] and references therein), as well as in the theory of

Frobenius manifolds [4, 5].

Definition 23 A Riemannian F -manifold is an F -manifold with a compatible connection ∇
satisfying the following additional conditions:

1. The connection is metric:

∇g = 0 .

2. The inner product 〈·, ·〉 defined by the metric g is invariant with respect to the product ◦:

〈X ◦ Y, Z〉 = 〈X, Y ◦ Z〉 . (39)

In local coordinates, condition (39) reads

giqc
q
lp = glqc

q
ip, or giqcl

qp = glqci
qp, (40)

where gij and gij are respectively the covariant and the contravariant components of the

metric g.

If there exist canonical coordinates, the metric g entering the definition of Riemannian

F -manifold is an Egorov metric. Let us recall the definition of this special class of metrics.

Definition 24 A metric is called Egorov if there exist coordinates (r1, . . . , rn) such that it is

diagonal and potential:

gij = δi
j gii(r

1, . . . , rn) = δi
j ∂iF,

for a certain function F .

14



Now, if we assume the existence of canonical coordinates, condition (40) tells us that the

metric g is diagonal in such coordinates, while condition (32)—which follows from (17)—

implies that the metric is potential. Therefore, g is an Egorov metric. Conversely, given an

Egorov metric g whose curvature tensor satisfies condition (37), we can locally construct

a Riemannian F -manifold. More precisely, let (r1, . . . , rn) be the coordinates where g is

diagonal and potential. Then, the metric g and the structure constants

ci
jk(r) = δi

jδ
i
k

endow the open set where the coordinates (r1, . . . , rn) are defined with the structure of a

Riemannian F -manifold.

We point out that condition (29) is far from being trivial. Indeed, using the above remark,

it is easy to construct examples of metrics satisfying properties (39) and (17). Much more

difficult is the problem of finding Egorov metrics which satisfy also condition (29), since the

potential has to fulfill (37). However, there exists an important class of metrics, appearing

in the Hamiltonian theory of integrable hierarchies of hydrodynamic type (not necessarily of

Egorov type) whose curvature satisfies (29). These are the metrics whose Riemann tensor

admits “a quadratic expansion” in terms of the flows of the hierarchy [9, 10]:

ui
tα

= ci
jkX

k
(α)u

j
x, i = 1, . . . , n.

This means that

Rsk
mi =

(

cs
mlc

k
iq − cs

ilc
k
mq

)

∑

α

ǫαX l
(α)X

q

(α), ǫα = ±1, (41)

where the index α can take value on a finite or infinite—even continuous—set.

Proposition 25 Suppose that ∇ is the Levi-Civita connection of a metric g, and that its

curvature satisfies condition (41). In this case, condition (29) is automatically satisfied.

Proof. We have that

Rsk
mic

n
pk + Rsk

ip cn
mk + Rsk

pmcn
ik =

∑

α

ǫα[(cs
mrc

k
iq − cs

irc
k
mq)c

n
pk + (cs

irc
k
pq − cs

prc
k
iq)c

n
mk + (cs

prc
k
mq − cs

mrc
k
pq)c

n
ik]X

r
(α)X

q

(α) =

∑

α

ǫα[(ck
iqc

n
pk − ck

pqc
n
ik)c

s
mr + (ck

pqc
n
mk − ck

mqc
n
pk)c

s
ir + (ck

mqc
n
ik − ck

iqc
n
mk)c

s
pr]X

r
(α)X

q

(α) ,

which vanishes due to associativity. �

Remark 26 If the functions

glq :=
∑

α

ǫαX l
(α)X

q

(α)

define the contravariant components of a metric satisfying condition (40), then the operator

∑

α

ǫα (wα)i

k uk
x

(

d

dx

)

−1

(wα)j

h uh
x, (wα)i

j := ci
jkX

k
(α)

is a purely nonlocal Poisson operator (see [13] for details).

15



7 An example: reductions of the dispersionless KP hierar-

chy

In this section we will consider a class of Riemannian F -manifolds associated with a well-

known class of hydrodynamic type systems: the reductions of the dispersionless KP hierar-

chy. For a generic reduction, the metric will be non-flat.

The dispersionless KP (or dKP) hierarchy can be defined by introducing the formal series

λ = p +
∞
∑

k=0

Ak

pk+1
, (42)

which has to satisfy the following dispersionless Lax equations

λtn =

{

λ,
1

n
(λn)+

}

.

Here {f, g} = ∂xf ∂pg − ∂pf ∂xg denotes the canonical Poisson bracket, and ( · )+ is the

polynomial part of the argument. For simplicity, we will consider here only the second flow

(n = 2); all other flows of the hierarchy can be treated in the same way. For the second flow,

we have

λt2 =

{

λ,
1

2
p2 + A0

}

= pλx − A0
xλp, (43)

or, explicitly in terms of the variables Ak,

Ak
t2

= Ak+1
x + kAk−1A0

x, k = 0, 1, 2, . . . (44)

This last system is also known in the literature as Benney chain [1]; its Lax representation

(43) appeared for the first time in [19]. An n-component reduction of the Benney chain is a

restriction of the infinite dimensional system (44) to a suitable n-dimensional submanifold,

that is

Ak = Ak(u1, . . . , un), k = 0, 1, . . . .

The reduced systems are systems of hydrodynamic type in the variables (u1, . . . , un) that

parametrize the submanifold:

ui
t = vi

j(u)uj
x, i = 1, . . . , n.

Reductions of the Benney system were introduced in [14], and there it was proved that such

systems are diagonalizable and integrable via the generalized hodograph transformation [25].

Clearly, in the case of a reduction, the coefficients of the series (42) depend on the Riemann

invariants (r1, . . . , rn) and the series can be thought as the asymptotic expansion for p → ∞
of a suitable function λ(p, r1, . . . , rn) depending piecewise analytically on the parameter p.

It turns out [14, 15] that such a function satisfies a system of chordal Loewner equations,

∂λ

∂ri
=

∂iA
0

p − vi
λp, i = 1 . . . , n, (45)
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describing families of conformal maps (with respect to p) in the complex upper half plane.

The analytic properties of λ characterize the reduction. More precisely, in the case of an n-

reduction the associated function λ possesses n distinct critical points on the real axis; these

are the characteristic velocities vi of the reduced system, that is,

λp(v
i) :=

∂λ

∂p
(vi) = 0, i = 1, . . . , n,

and the corresponding critical values can be chosen as Riemann invariants. Compatibility

conditions of the Loewner system (45) are of the form

∂iv
j =

∂iA
0

vi − vj

i 6= j,

∂2
ijA

0 =
2∂iA

0∂jA
0

(vi − vj)2

and were found by Gibbons and Tsarev [15]. Thus, every reduction of the Benney chain is

described by a particular solution of the Loewner system (45).

Starting from the function λ, we will show now how to give to the manifold parametrized

by the Riemann invariants (r1, . . . , rn), a structure of F -manifold with a compatible connection—

in general non-flat. In order to do this, we define a metric

g(∂, ∂′) =
n
∑

i=1

res
p=vi

(

∂λ(p) ∂′λ(p)

λp

dp

)

, (46)

and structure constants

c(∂, ∂′, ∂′′) =
n
∑

i=1

res
p=vi

(

∂λ(p) ∂′λ(p) ∂′′λ(p)

λp

dp

)

, (47)

where ∂, ∂′, ∂′′ are arbitrary tangent vectors on the manifold. In the coordinates (r1, . . . , rn),
and making use of the Loewner equations (45), the metric takes the diagonal form

g

(

∂

∂ri
,

∂

∂rj

)

=
n
∑

i=1

res
p=vi

(

∂λ

∂ri

∂λ

∂rj

dp

λp

)

=
n
∑

i=1

res
p=vi

(

∂iA
0∂jA

0 λp dp

(p − vi)(p − vj)

)

= ∂iA
0∂jA

0λpp(v
i) δij = ∂iA

0 δij,

where we used the fact [12] that

λpp(v
i) =

1

∂iA0
.
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In particular, the metric is Egorov. Moreover, a similar calculation for the structure constants

gives

c

(

∂

∂ri
,

∂

∂rj
,

∂

∂rk

)

=
n
∑

i=1

res
p=vi

(

∂λ

∂ri

∂λ

∂rj

∂λ

∂rk

dp

λp

)

=
n
∑

i=1

res
p=vi

(

∂iA
0∂jA

0∂kA
0 (λp)

2
dp

(p − vi)(p − vj)(p − vk)

)

= ∂iA
0∂jA

0∂kA
0
(

λpp(v
i)
)2

δijδik = ∂iA
0 δijδik,

and from this it follows that
∂

∂ri
◦

∂

∂rj
= δij

∂

∂ri
,

namely (r1, . . . , rn) are canonical coordinates for the algebra.

Remark 27 The metric (46) and the structure constants (47) were introduced for the first

time by Dubrovin in [4], in the particular case of the Gelfand-Dikii reductions of the dKP

hierarchy, where the function λ is a polynomial in p. The same metric and constants were

also used by Chang [2] and Ferguson and Strachan [11], for the study of reductions where λ

is rational or logarithmic. We remark that in all these examples the metric considered turns

out to be flat.

We have now to prove that the metric and the structure constants defined in this way are

compatible, namely that conditions (17) and (29) are satisfied. As regard condition (17)—

due to the results of Section 6—it is sufficient to note that the metric (46) is Egorov. On the

other hand, for condition (29), we only have to recall the result of [12], where the curvature

tensor of the metric (46) has been shown to possess the following quadratic expansion:

R
ij
ij =

1

2πi

∫

C

wi(λ) wj(λ) dλ, wi(λ) =
∂p

∂λ

(p(λ) − vi)2
,

where p(λ) = λ−1(p) is the inverse of λ with respect to p, and C is a suitable contour

on the complex λ-plane. Due to Proposition 25, the existence of a quadratic expansion of

the curvature implies that condition (29) is satisfied. Alternatively, such a condition follows

from the well-known fact that the characteristic velocities vi—which satisfy condition (30)—

satisfy the semi-Hamiltonian condition (38).

Remark 28 A similar construction can be done using instead of the metric (46), one of the

metrics

g

(

∂

∂ri
,

∂

∂rj

)

=
n
∑

i=1

res
p=vi

ϕi(r
i)

(

∂λ

∂ri

∂λ

∂rj

dp

λp

)

(48)

where ϕi are arbitrary functions of a single variable, and defining the corresponding struc-

ture constants as

c

(

∂

∂ri
,

∂

∂rj
,

∂

∂rk

)

=
n
∑

i=1

res
p=vi

(ϕi(r
i))2

(

∂λ

∂ri

∂λ

∂rj

∂λ

∂rk

dp

λp

)

. (49)
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If all the functions ϕi are different from zero, it turns out that the structure constants (49)

admit canonical coordinates. Moreover, in such coordinates, the metric (48) is potential.

In this way, repeating the construction described in this section, one defines, for any choice

of the functions ϕi, a new structure of F -manifold with compatible connection on the same

manifold. Notice that in case of reductions related to Frobenius manifolds, such as the

Zakharov and the Gel’fand-Dikii reductions [4, 7], one of the metrics (48) is the intersection

form of the Frobenius manifold. Using this metric, the construction above reduces to the

Dubrovin’s duality of the theory of Frobenius manifolds [6].
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