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Abstract

In this paper we consider the numerical solution of the interaction of an incom-
pressible fluid and an elastic structure in a truncated computational domain. As
well known, in this case there is the problem of prescribing realistic boundary data
on the artificial sections, when only partial data are available. This problem has
been investigated extensively for the rigid case. In this work we start considering
the compliant case, by focusing on the flow rate conditions for the fluid. We propose
three formulations of this problem, different algorithms for its numerical solution
and carry out several 2D numerical simulations with the aim of comparing the
performances of the different algorithms.

Key words: Fluid-structure interaction, flow rate conditions, haemodynamics.

1 Introduction

Numerical simulations of incompressible flows in network of pipes almost in-
variably require to bound the domain of interest with artificial boundaries that
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Artificial Boundary (inflow/outflow)

Physical Boundary (wall)

Fig. 1. Example of truncated computational domain

interfaces it with the entire network (see Fig. 1). Unfortunately, no physical
arguments can be invoked for the prescription of conditions on these bound-
aries. Data can be prescribed from available measures. In some applications
these measures are not enough for the well-posedness of the fluid problem. A
typical example of interest in the present work is when flow rate in a pipe
is measured, which is quite typical in haemodynamics. Flow rate is the av-
erage value of the normal velocity (multiplied by the fluid density) through
the artificial section. Mathematical problem would require instead a point-
wise data set for the velocity (Dirichlet conditions). Practical approaches for
overcoming the under-determination are based on the selection of a realis-
tic velocity shape fitting the measured flow rate. Despite of its simplicity, this
approach introduces a strong bias in the numerical simulation. In [13] the prob-
lem of artificial boundaries and flow rate problems has been investigated with
a more mathematically sound approach, resorting to the selection of a suit-
able variational formulation of the problem at hand. Homogeneous conditions
natural for the selected variational formulation complete the defective data.
For the flow rate problem, however, this approach requires the introduction
of non-standard functional spaces, not straightforwardly prone to numerical
discretization. Alternative approaches have been proposed in the last years,
see [10,18,19,12]. A complete introduction to these topics can be found in [11],
Chap. 11, in the context of geometrical multiscale models for the circulation.
Computational haemodynamics is the application that has mainly (even if
not exclusively) driven the present research. In this context, a complete de-
scription of the problem includes the compliance of the walls (Fluid Structure
Interaction - FSI - problems). Artificial boundaries should be considered not
only for the fluid but also for the structure problem. Specific mathematical
and numerical appropriate techniques should be devised for the reliable solu-
tion to fluid-structure interaction problems with defective boundary data both
for the fluid and the structure problems (see [11]). This paper is a first step
in this direction. More precisely, we consider the fluid problem with flow rate
conditions. We assume here that the structure problem features a complete



set of boundary conditions. In a forthcoming paper we will consider the case
where both fluid and structure have defective boundary data on the artificial
sections.

The purpose of this paper is to devise and compare possible strategies by
extending the different methods proposed for the rigid case. It is worth men-
tioning that some preliminary results have been proposed in [16] limitedly
to one particular strategy and to the case of a membrane structure (i.e. a 2D
structure coupled to a 3D fluid domain). Here we consider specifically methods
working for thick 3D structures.

The outline of the paper is as follows. In Sect. 2 we introduce the mathe-
matical formulation of the flow rate problem in compliant domains. In view
of the methods introduced later on, we address a formulation where velocity
matching condition between fluid and structures is forced in a weak sense.
We analyze the well posedness of this formulation. In Sect. 3 we present a
first class of possible methods, stemming from segregated procedures for the
fluid-structure interaction solution. Actually in partitioning fluid and struc-
ture computations, at each step fluid is solved in a ”frozen” domain, so that
methods for the prescription of the flow rate proposed for the rigid case can
be straightforwardly applied. However, both segregated methods and tech-
niques for defective flow rate problems are based on iterative procedures, so
a direct implementation of this approach leads to nested iterative methods,
typically having high computational costs. Most specific techniques for the
compliant case are introduced in Sect. 4 and 5. More precisely, in Sect. 4
we introduce a method based on the extension of the augmented formulation
introduced in [10,18] to the whole flow-rate/FSI problem. In particular, we
consider an algorithm based on an algebraic splitting of the augmented prob-
lem (see [18]), which has the practical feature of resorting to the solution of
standard FSI problems, affordable, for example, by a commercial package even
when used as black-box solvers. In Sect. 5, we recast the problem in terms of
the minimization of an appropriate functional measuring the distance between
the computed and the prescribed flow rates with the constraint of the fluid-
structure interaction problem, extending the strategy proposed for the rigid
case in [12]. In particular, we use the normal stress on the artificial boundaries
as control variable for driving the minimization of the constrained functional.
We present different methods for the solution of the minimization problem,
with the aim of reducing the computational costs mainly by avoiding nested
iterations. Sect. 6 is devoted to the numerical results. We present several test
cases, comparing numerical efficiency of the proposed methods. Finally, in
Sect. 7 we draw some conclusions.



2 The Fluid-Structure Interaction problem
2.1 General setting and weak formulation

Let us consider a truncated computational domain Q! C R¢ (d=2, 3, being the
space dimension), with r artificial sections. This domain is divided into a sub-
domain Q% occupied by an elastic structure and its complement Q} occupied
by the fluid. The fluid-structure interface ©¢ is the common boundary between
Qf and Q% (see Fig. 2), whilst with I'; and I'; | we denote the fluid and structure
artificial sections. Furthermore, n is the outward normal on 8&27}. The initial
configuration QY at ¢t = 0 is considered as the reference one.

Ls

Fig. 2. Example of truncated computational fluid domain Q’} (left) and solid domain
QL (right). In this picture r = 3.

We adopt a purely Lagrangian approach to describe the structure kinematics
and then we refer always to the reference domain €2, := QY. Hereafter, 7} de-
notes the displacement of the solid medium with respect to this configuration.
For any function g defined in the reference solid configuration, we denote by
g its counterpart in the current domain. The solid is assumed to be a linear
elastic material, characterized by the Cauchy stress tensor

Ts(m) = ANV -m)I +c(Vn+ (Vn)")
where A\ and ¢ are the Lamé constants and [ is the identity tensor.

On the other hand, the fluid problem is stated in an Arbitrary Lagrangian-
Eulerian (ALE) framework (see, e.g., [15,8]). The ALE mapping is defined
by an appropriate lifting of the structure displacement. A classical choice is
to consider a harmonic extension operator in the reference domain. In order
to write the fluid problem according to the ALE formulation, we recall the
definition of ALE time derivative of the velocity u:

D4u ~ Ou
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where Ju/0t is the Eulerian derivative and w is the velocity of the points
of the fluid domain defined by the ALE map. The fluid is assumed to be
homogeneous, Newtonian and incompressible, with Cauchy stress tensor given
by

Ti(u,p) = —pI + p(Vu + (Vu)"),

where p is the pressure and p the dynamic viscosity. Moreover, we collect the
fluid artifical sections in three distinct subregions, namely I', := ", T, m <
r, I'y and I'y, and the structure ones in two subregions, namely I'}, ; and I'y ..
Then, the complete problem in strong form reads:

(1) Flow-rate/Fluid-structure problem. Find the fluid velocity u, pressure p
and the structure displacement 7) such that

P+ pp((u—w) V)u—V Ty =f;  inQx(0.7),
Vou=0 in Q% x (0,7),

P33 -V T, =F, in Q0 x (0,7), "
u= 3 on X x (0,T),
Tsn—Tin=0 on Xf x (0,7),

Jorw mdy=F;, i=1...,m t e (0,7).

(2) Geometry problem. Given the interface structure displacement n|s:, find
amap A : Q‘} — Q; through an harmonic extension Fxt of this boundary
value and find accordingly the new fluid domain Q} by moving the point
x, of the reference domain QF:

At<.’Bo) =Xy + EXt(’I/ﬂEO), w = 8tAt o (At>_l, Qt == At(Q?c)

Here, p, is the structure density, F;, i = 1,...,m, are given functions of time
and f; and f. the forcing terms. System (1) has to be endowed with suitable
Dirichlet boundary conditions on I'p and I'p ¢ and Neumann boundary condi-
tions I'y and I'y s. The partition between Dirichlet and Neumann boundaries
can be different for the normal and the tangential direction of w and 1. Two
transmission conditions are enforced at the interface: the continuity of fluid
and structure velocities (1), and the continuity of stresses (1)5. The fluid and
structure are also coupled by the geometry problem, leading to a highly non-
linear system of partial differential equations. Finally, system (1) has to be
endowed with suitable initial conditions.



2.2 Time discretization, weak formulation and treatment of the interface po-
sitton

Let us now consider the time discretization and the weak formulation of system
(1). Let At be the time step size and " = nAt for n = 0,..., N. We denote
by 2" the approximation of a time dependent function z at time level ¢".
We consider a backward Euler scheme for the time discretization of the fluid
problem and an implicit second order BDF scheme for the structure problem.
Observe, however, that all the arguments detailed in this work can be extended
to other time discretization schemes.

For the moment being, we consider the case I':, = (), that is no flow rate
conditions are prescribed. Extension to the case of such conditions is presented
later on.

In order to treat the nonlinearity given by the convective term and by the fluid
domain, we consider the semi-implicit treatment (see e.g. [9,4,3]). Denote by

, u” and w” appropriate extrapolations of the fluid domain, fluid velocity
and fluid domain velocity, respectively. The simplest choice is given by the
first order extrapolations Q3 = Q% u* = u" and w* = w". More accurate
extrapolations can be considered as well.

Let us introduce the following spaces:

Vi ={ve H'(Q}): v
Q= L*(2}),

W= {3 c H'(Q): $ro =0}
Z*:{(v,{p)eV*xW:’v

F*D - O}a

L — Yl
= At f -

Moreover, set

Ao, 9)" = B (o)) + (T, o))+ py(u' = w) - V)u. )+

a P\ (e Lon
+ps (AtQ’ At)s + (T37 NV’lp)S
and

B(g;v,9)" = —(¢,V - v);
where (v, w)} = fQ; v-wdz and (P, X)s = [ ¥ - xdx. Then, the weak
formulation for the discretized-in time problem with a semi-implicit treatment
reads as follows.

For each n we perform the following steps



1. Compute suitable extrapolations %, w* and w* of Q}*!, w"* and w"*™,
respectively.

2. Given f3*' € L*(Q3) and e L2Q), find (ut,7") € Z* and
p"*tl € Q* such that

A+ v, 9) + B v, ) = Fi(v) + Fy (£)

(2)
B(q7 un-l—l’ ,r’n+1)* =0

~

for all (v,v) € Z* and ¢ € Q™.
3. Update the fluid domain obtaining Q*'.

The functionals F} and F account for forcing terms, boundary data and terms
coming from the time discretization. We point out that, thanks to the coupling
condition (1), and the particular choice of the fluid-structure test functions
in Z*, the two interface terms coming from the integration by parts, namely
Jo- T ' m-vdy and [o. TP n - £ dvy, cancel out.

A second possibility is to treat the fluid domain and the convective term
implicitely and to embed the fluid-structure problem into a fixed-point loop
over the position of the F'S interface >*. However, for the sake of exposition we
limit our attention to the semi-implicit case, discussing whenever appropriate
the feasibility of the proposed approaches to implicit algorithms.

2.3  Weak formulation of the continuity velocity

In view of the numerical treatment of the flow rate problem based on the
control theory introduced in Sect. 5, we introduce here a different formulation
when the interface continuity conditions on the velocity are forced weakly. In
this way, test functions on the fluid problem do not necessary match at the FS
interface with the structures ones. Let D* be the space H V/2(¥*). At time
step t"™!, we consider the following “augmented” variational formulation of
the semi-discretized problem.

Given f}*' € L*(2}) and }ZH € L*(QY), find u*! € V*, prtl € QF, "t €
W and 8"t € D* such that,

A0, )+ B, g) + C(8 0, ) = Fi(o) + . ()
B(gu™,n") =0
C(a;unJrl’,nnJrl)* — fE* - %d’}/

(3)



forall v € V*, g € Q*, % € W and a € D* and where
P
COla fim Nw— =) dy.
(aﬂlv7¢) o « (IU At fy

From now on, we drop the index "*! for the sake of simplicity. Moreover, let
us introduce the following norms

1/2
wllv- = (lol3 + IVoll?)

1/2
I llw = (112 + V%),
being || - ||y and || - ||s the L*(€}) and L*(Q))— norms. We have the following

Proposition 1 If p is big enough, problem (2) admits a unique solution
[w, p,n]. Problem (3) admits a unique solution too, namely [u,p,n, 3], with

,@ = Tfn o = Tf(ﬂ,ﬁ)n

X -

Proof. Let us introduce the following norm

2
w

I w,) I = ol + ]

From the Korn’s inequality, there exist two constants K; and K, such that
(see, e.g, [5])
(Vo + (Vo)T,v)* > K¢|vlly,

Then, if the viscosity p is big enough, we have

P
A, ;0,) 2 B lolf} + o K Vol 3+

* * * 1 KS -
+0s(((v" = w") - V)v,0); + pers 1912+ S 1w = A (0, ) |1

where v = min{ps/At, u Ky, K;/At}. From classical arguments (see, e.g.,
[7,6]), the fluid problem is well-posed, then Vq € Q* there exists v € V* such
that

—(q,V-0) = ollqlls [[0]lv-,
for a suitable o > 0. By choosing 1,~b = 0 we obtain

B(q;0,4) > ollqlly [|(w, )]

Vg € Q*, so that the fluid-structure problem (2) is proved to be well-posed as
well.



Let us now show that the bilinear form C' satisfies an inf-sup condition and
therefore that problem (3) admits a unique solution (see [7]). More precisely,
we will show that Yo € D™, there exists a couple (v,%) € Z* such that

Cla;0,9)" > aaf|a|p]| (B, )]l (4)

for a suitable o5 > 0, where

ledlp == HaHH*l/?(E*) = SUP|jaw], =1 Js- - wdy
and
[wlli2 = [wll g2y =inf 2cve |2y
Z| o =w
Given o € D*, let us choose ©» € W such that ‘ Ait = 1 and such that
1/2

Js- o %dv > %HQHD. We point out that this choice is always possible thanks
to the definition of ||- || p. Moreover, we choose v € V™ such that |0/, = 1/4.
We obtain

s _ ~ 1 1
Cles,9) = [ avdrt [ iz —lalol [+ 5o = yllexlo.

Since ||(@,4)| = /1 4 1/16, we obtain

S 1 /16 o~
R NN

and therefore condition (4) is satisfied with oy = \/%

It is now easy to show that the solutions of problem (2) and (3) coincide and

that B8 = Tyn|s- (see [1]). Let [@,p,n)] be the solution of problem (2). We
have for all v € V*, g € Q*, ¢p € W
A(u, n;v,9)" +B(p; v, ¢) :/ T;nv d’y—/ T, n-ﬂd’y—i-F*(v)—i—ﬁs v

sy U Y » @ o o At f At )

where the two terms at the FS interface come from the integration by parts
of the fluid and structure equations in strong form. Then, by noticing that
C(Tm;v,¢Y) + [5.Trn- (v — %) dy = 0, we obtain

+Ff(v) + F, (i) ~ /. Tin- <’u— i) dry.



Finally, owing to (1), we obtain

Alwm09) + Blpo, ) + O i) = Fo) + £ (1)

that is (3), is satisfied with 8= Tsn
)*:—/ -(u—)dfy— /a

and then also (3), is fulfilled. Therefore, the Lagrange multiplier 8 has the
physical meaning of normal stress at the FS interface.

s+. Moreover, from (1), we have

B(a; u,

3

On the other hand, if [w,p,n, B3] is solution of (3), then by exploiting the
property of the test functions in Z*, it follows that [u, p, ] is solution of (2).
0

In the next three Sections we introduce three different formulations of the
Flow rate/FSI problem. For this reason, from now on we set I'l, # ().

3 Partitioned methods for the Flow-rate/FSI problems

An immediate class of methods for the Flow-rate/FSI problems stems by the
staggered or partitioned approaches for solving fluid-structure interaction (see

g. [11], Chap. 9). When fluid and structure are solved separately, at each step
we resort to a rigid fluid problem in a ”frozen” domain. Numerical methods
for the flow rate problems in rigid domains can be therefore applied at each
iterative step.

Let us consider the time discretization of system (1), where a flow rate condi-
tion is prescribed on the artificial sections I';, namely

F*u”“~nd7:Ff“, j=1,...,m, (5)
;

where F;"Ll = F;(t"*!) are given functions of time. We point out the semi-
implicit treatment of the interface position.

For the sake of generality, we refer to the class of partitioned procedures
introduced in [3] as Robin-Robin schemes. For the ease of notation let us drop
the index ™! of the current time step. We have the following

10



Algorithm 1

Given two parameters oy # g, the quantities at the previous time
step, ", 1" ! and u", and the value of the structure displacement
at the current iteration n”* find the value of the solution at the
next iteration n**!, w**! and p**! by solving the following steps

1. Flow rate/fluid problem (Robin boundary condition)
k+1

pre T+ pp(ut — w*) - Vet = VT = fin Q,

V. uktl — 0 in QF,

fF;pfun+l.nd’y:F}n+17 jzla'”7m

k_gmn
apuftt + Thin = o T + Thn on X*.

2. Structure problem (Robin boundary condition)

~k

,r’ +1 Qﬁn-f—ﬁn_l k1 .
— _ : s
Ps At2 _V'Ts - fs m Qoa

s ki1 k41, _ as k+1 k41
ST AT n =" +a,u™ + T ' on ¥*

For a description of optimal choices of parameters oy and o, we refer the
reader to [3]. The previous algorithm defines a class of schemes. For example,
if oy — oo and o, = 0 we recover the well-known Dirichlet-Neumann (DN)
scheme. In [3] it has been shown that among all the possible schemes of this
class, the Robin-Neumann (RN) (a5 = 0) is the one with the best conver-
gence properties. For this reason, we consider this scheme in the numerical
simulations reported in Sect. 6.

Algorithm 1 splits the solution of the fluid and the structure problems in
an iterative framework and contains a flow rate problem at each iteration.
The latter can be solved by considering one of the strategies proposed for the
solution of a flow-rate problem in the rigid case (see [14,10,18,19,12]). Indeed,
at each time step, the fluid problem (6) is solved in a fixed domain ;.

Remark 1 Due to the mass conservation, in the rigid case it is not possible to
prescribe an arbitrary flow rate on all the artificial sections Tt i =1,...,m,
if T% = 0. In the compliant case this compatibility condition does not hold
anymore. Nevertheless, as pointed out in [16,2], if we use a partitioned pro-
cedure in which the structure prescribes a Dirichlet condition at the interface
to the fluid (as, e.g., in the Dirichlet-Neumann algorithm) an incompatibility
might arise between the flow rates F;, i = 1,...,m,, the velocity on T, and

11



the velocity at the interface, and then the mass conservation

on

. Bt ‘ndy = / u - nd’y—l—ZF (7)

s not in general satisfied. However, when adopting Robin-Robin schemes, on
¥t we prescribe a Robin condition in place of a Dirichlet one, so that mass
conservation (7) is still fulfilled, for all the choices of F;, i =1,...,m and of
the Dirichlet datum on T,

We point out that the previous algorithm extends easily to the implicit treat-
ment of the FS interface, simply by considering it in a fixed-point loop.

4 Augmented formulation of the Flow-rate/FSI problem

We extend here to the FSI case the augmented formulation proposed in [10] for
the flow rate problem in the rigid case. In Sect. 4.1 we introduce the continuous
formulation and in Sect. 4.2 we introduce the related algebraic problem. We
also detail the GMRes+Schur complement (GSC) scheme for its numerical
solution.

4.1 The augmented variational formualation

Let us consider the flow rate conditions (5) as constraints to be forced to
the variational formulation of the FSI problem (2), by the introduction of a
Lagrange multiplier \;, one for each flow-rate condition. Here we force the
continuity of the velocity in an essential way. Then the augmented formula-
tion for the flow-rate/FSI problem reads:

Given f77 € L2(0) and F,"" € LX(Q0), find (w'!,7"*) € 27, p+t € @
and )\"H € R such that,

A(u"*l,nnﬂ;'v,'gb)* + B(anrl;’U,'l,b)* + D(}\n—H;’U,'l,/J)* — F}‘('v) + ﬁs (%)
B(gu™ n" ) =0
D(V, ’U/n+1, nn+1)* — " 1 ]/an+1

(8)
for all (v,¢) € Z*, ¢ € Q" and v € R™ and where

D(v;v, )" Zyj/vndy

12



Remark 2 As proven in [18], the bilinear form D(-;-,-) satisfies an inf-sup
condition. Therefore, the augmented/FSI problem well-posedness is inherited
by well-posedness results of the non augmented FSI problem.

4.2 The algebraic problem and the GSC algorithm

We discretize in time with the schemes illustrated in Sect. 2 and in space with
Lagrangian finite elements. To this aim, we introduce a triangulation of fluid
and structure domains and we assume that the meshes are conformal at the

interface ¥*. At each time step t"!, we obtain the following linear system
A* ([I;*)T xntl bn-I—l .
> 0 AL | ©)
where
[ * * * 1 [ n+1 1
D; 0 Dg 0 0 prtt
A'=1 0 0 My —Mg/At 0 |, X" =|yst!
v Gn Css Suz Sss Dy
0 0 0 Ssx Sss Dt
_ b?+1 -
0
b = | —My/AtDY |, = {@nﬂ o} :
byt
bn+1

We have set @7, = fpz l; - dry, where the [;’s are the Lagrange basis functions
related to the fluid velocity. My, is the mass matrix at the interface ¥* and
the size of the zero-matrices is understood. Moreover U?H is the vector of
nodal values of the fluid velocity at the interior nodes, U™ that at the FS
interface, P"*! is the vector of (interior and interface) nodal values for the
pressure. D! and D% contain the structure degrees of freedom related
to interior and interface nodes, respectively. Finally, A" is the vector of
Lagrange multipliers. The right hand side b™"*! accounts for external forces,
boundary data and other terms related to the time discretization scheme,
whilst F™*! is the vector whose component are the data Fj”H. The first two

13



rows of (9) are the fully discrete versions of the flow-rate/momentum and mass
conservation equations for the fluid. The third equation states the continuity
of velocities on the interface and is the algebraic counterpart of (1),. The
fourth row enforces continuity of the normal stresses at the interface in weak
form and the fifth row is the structure problem for the internal nodes. Finally,
the last row is the algebraic counterpart of the flow-rate conditions (5).

Following [10,18], we can formally eliminate the unknown X™*! from the first

equation of system (9). Dropping for the sake of simplicity the index "', we
obtain an equation for the unknown A solely, namely
DA TPTA = D(A) b - F, (10)

which is a linear system of dimension m. We point out that with (A4*)~! we
indicate formally the solution of a FSI problem with Neumann conditions at
the artificial sections.

Since the bilinear form D(-;-,-) satisfies an inf-sup condition, it follows that
ker(&))T = (). Then, if the algebraic-FSI problem admits a unique solution
(that is if A* is invertible), ®(A*)~'®” is formally invertible and a unique
solution A does exist. Therefore, we can formally apply an iterative methods,

such as GMRes, to system (10) (as done in [18]). In particular, we have
Algorithm 2 : GMRes + Schur Complement
For each n solve:

AO = ()\017 . 7~)\Om) is given
a) A*X1~: b— ((I)*)TAO

ro=®X, - F
’U1:’H:73H
forj=1,...,m
nj:(q)*)ij
b) A*Y] :’I’]j
UJj:(T)*Yj
forl=1,...,j

hiv15 = [lw;
lf thrLj = 0
n=7jgoto (+)
else vj;1 = h;ﬁi .
end
end
(+) z = min]|||ro|le; — Huz|, H,, € R™" x R™: H = [h;]

14



A=Ay +Vz, V=1[v1...0,]
X=X,-Yz, Y=y, ...y, ©

This algorithm is quite expensive, since at each time step it requires to solve
m + 1 FSI problems, indicated at points a) and b) in the algorithm. However,
the algorithm allows to compute the unknown X at the last step without
solving any additional linear system. Obviously, each of FSI problems can
be solved with any of the strategies proposed in the literature (partitioned,
monolithical, etc.), since all of them are equipped with standard Neumann
boundary conditions at each of the artificial sections. Despite its cost, this
algorithm is of practical use when one have at disposal a black-box FSI solver,
without the possibility to treating the fluid and the structure subproblems
separately.

We point out that the previous algorithm extends easily to the implicit case,
simply by considering it in the fixed-point loop for the implicit treatement of
the interface position.

5 Control theory-based approach

In this section we extend to the compliant flow rate problem the strategy
introduced for the rigid case in [12]. In particular, we seek for constant in space
Neumann data at the artificial sections which enforce in some sense the flow
rate conditions. We limit our attention only to the semi-implicit treatment of
the interface position. Indeed, the implicit treatment would require to consider
also the shape derivatives, that is the derivatives of the fluid domain (which
is unknown in this case) with respect to the other unknowns of the problem.
This case will be considered in a forthcoming study.

5.1 Reformulation of the problem

Let us define the state problem by considering problem (3) equipped with
Neumann boundary conditions at the artificial sections, given, at each #"*1,
by

Tfn:—k;”ln, on I}, Jj=1...,m, (11)

where the kjs are the control variables and we have set B = ky(eT).
Therefore, the weak formulation of the state problem with a weak prescription

15



of the interface velocities (see Section 2.3) reads

A(u™ o)t + Bt v, 9)7 + C(B" v, )"+
FELR Y o mdy = Fi() + B ()
B(g;u™,m"t) =0

Clou™ ™) = fy. - Ky

(12)

forall v € V*, g€ Q*, 9 € W and a € D*.

We introduce at each time step ¢’ the following functional (see [12])
1 & N2
) =53 ([ zmdy- ) (13)

which is clearly minimal (and equal to zero) if conditions (5) are satisfied and
!

z=u'
The Lagrangian functional related to (13) constrained with the state problem
(12), given u™, n™ and n" !, reads

L(U,P,H,B; Ay, \p, A, A\; K) = Jp(U)+AU, H; Ay, Ag)*+B(P; Ay, Ag)*+

+C(B; Av, An)* + B U, H) + CAp; U, H)* + 3 /F KA, -ndy+
7=1 J

o " o) - B (M
/E*AB dy = () F5<At>. (14)

Here, the quantities Ay, Ap, Ay and Ap are the adjoint variables associated
to the state variables U, P, H and B, respectively. From now on, for the
sake of simplicity we drop the temporal index "!. In order to find the corre-
sponding Euler equations, we impose that in correspondance of the solution
[w, p, M, B; Aus A\py Ay, Ag; k] the Gateaux differentials of £ evaluated for any
test function vanish. Let us introduce the following notation. Given N Hilbert
spaces Z1,..., Ay, let Z =71 X Zy x ... X Zy and M : Z — R, be such that
(Y1, yn) € Z — M(y1,...,yn) € R, and let < -, > be the duality pairing
between Z' and Z. We indicate with

<dMy, [z, ... 2n], 9 >=

= lim

(M(yl7"'7yj+€ga"'ay]\f)_M(yla"'vyja"'ayN)>

3

Yy=z

the Gateaux differential of M with respect of y;, computed at z = (21,...,2n) €
Z and acting along the direction g € Z;. For the sake of notation, we will set
< dMZj7g >=< dMyj [217 tr ZN]ag >
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Then, the solution which minimizes functional J(-) under the constraint is a
stationary point of the Lagrangian functional and therefore can be computed
by imposing that the gradient of £ vanishes. In particular, by setting to zero
the Gateaux derivatives of the Lagrangian functional with respect to the state
variables we obtain the adjoint problem, namely

<dLy,v >+ <dLy, £ >=0
<dL,,q>=0
<dLg,a>=0,

for all v € V*, ¢ € Q*, % € W and a € D*. Optimality conditions are
obtained by vanishing derivatives with respect to the control variables

<dLy,v>=0, j=1,...,m,

for all v € R. These two problems together with the state problem

<dlx,,v>+<dly, 2 >=0
< dﬁ)\p,q >=0

<dLy,;, a>=0,

for all v € V* ¢ € QF, 1Ab € W and a € D", yield the following coupled
system.

Given F € R™, f, € L*(Q}) and f, € L*(Q)) find k € R™", u € V*,p €
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Q*meW.,B8eD" A\, €V N\ Q" X\, € Wand A\sg € D*, such that

A(u,m;v,9)* + B(p;v,9)* + C(B;v,9)*+
T2 Ky v mdy = Fj(v) + F, (%)
B(g;u,m)* =0

State problem

Closu,m)* = [y o Zi’:d,y
(15a)
A(v,P; Xy, Ay + B\ v,9)* + C(Ag; v, )"+
= (ffy*-”'"dV—Fj> Jpsv-mdy =0
B(g; Ay, Ay)* =0
Cla; Ay, Ap)* =0

Adjoint problem

(15Db)
Optimality Conditions/ VA, mdy=0, j=1,....m (15¢)
=

J

forallve V', ge Q" Y e W, a € D" and v € R.

We point out that system (15) couples two linearized fluid-structure inter-
action problems and m scalar equations. For its numerical solution, we can
resort to iterative techniques. As already done for the rigid case (see [12]), it
is worth noting that, if the iterative process converges, at the limit, i.e. when
Jr = 0, the fulfillment of the adjoint problem and of the optimality conditions
implies that the adjoint solution is equal to zero. Indeed, the adjoint problem
is linear with the only forcing term given by the Neumann boundary condi-
tions at the artificial sections I'; which, clearly, are zero when Jp = 0. The
adjoint variables are however needed to drive iterative schemes to the optimal
solution.

Weak imposition of the continuity of the velocity at the interface has been
preferred since the interface condition for the adjoint problem in this way are
easily derived. In particular, it is given by

Ay

Kt = )\u on X%

The next result states the well-posedness of system (15).

Proposition 2 If problem (2) admits a unique solution, then also system (15)
admits a unique solution.

Proof. The proof follows the same guidelines of Proposition 2.1 in [12]. For
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any h = [hy,..., hy], let Pg, s,(h) be the velocity w solution of problem

A(’U,, n;v, ¢)* + B(p7 v, ’(p)* + C(/Bv v, T,b)* = - Z;nzl hj fl";‘ v nd’Y + Sl(v7 ’(p)
B(g;u,m)" =0
Cla;u,m)* = Sy (o),
(16)
YVoe V' qge Q" ¥ € W and a € D*, where S;(v, ) and Sy(a) are a given
form and functional, respectively. Moreover, let Av be the vector whose 7 —th
component is [ v - ndy, and Bg, s, := APs, s,. Then, by setting
Gilv.9) == F(v) + P ()
Ga(a) == [p %d%
we can write system (15) in term of the only unknown k, as

Boo[Be, c.(k) — F] = 0. (17)

Moreover, by setting [u;, p;, n;, 3;] as the solution of (16) with S; = Sy = 0
and h = e;, being e; the j — th unit vector, from (16) we have, by choosing
[uj, pj,m;, B,] as test functions and by setting h = e;, S; = 0 and Sy = 0,

A, my;ug,m;)" = _/F* u;-ndy.
This implies that matrix By has component

[BO,O]ij = —A(u;,m; Uuj, 77]')*-

Thanks to the coercivity of A, it follows that By is negative definite and then
(17) becomes

Be, ., (k) = F.
Thanks to the linearity of Bg, «,, system (17) effectively reduces to

BO,O(k> =F - BGhG2 (O)

and therefore the solution k exists unique. The corresponding [u, p, n, 3] and
[Au, Ap, Ay, Ag] are then defined uniquely by the well posedness of problem (16)
a

As pointed out in Proposition 1, the hypothesis of Proposition 2 is satisfied for
a linear elastic structure coupled with a viscous fluid featuring a large enough
viscosity .
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5.2 Algorithms for the numerical solution

In this section we detail some algorithms for the numerical solution of the cou-
pled system (15). Resorting to iterative methods has the advantage of splitting
the global problem into simpler subproblems and of possibly using standard
FSI solvers. The steepest descent method applied for the localization of a sta-
tionary point of the Lagrange functional (14) can be equivalently thought as
a Richardson method applied to equations < dLy,,v >=0,j=1,...,m. In
this way we solve separately the two FSI problems, namely the state and the
adjoint ones, and we check the optimality conditions until convergence.

Let us introduce two inf-sup compatible finite dimensional subspaces V; C V*
and 7 C (* and the finite dimensional subspace W, C W. Moreover, given
a quantity f, we indicate again with f its finite element approximation. In
what follows, we detail three alternative algorithms.

“Exact” algorithm

The following algorithm solves the space discretization of system (15) exactly
up to the error associated with the convergence test.

Algorithm 3

- Temporal loop
- Internal loop: given kj, j=1,...,m,and e >0, set [ = 1 and
do until convergence
- Solve the numerical approximation of the state problem
(15a), obtaining the solution u!, p';
- Solve the numerical approximation of the adjoint FSI problem
(15b), obtaining the solution A!, AL

| Joe Xy .
- Convergence test: if m <e Vj=1,...,m then
break; ’
else ké-*l = ké + 7 fp; )\L ‘ndy, Vj=1,...,m, and set
l=1+1;

end;
end temporal loop.

Parameter 7! can be chosen following different strategies. The following ex-
pression
Jr(u!)
! ! F
TN =Ty = — , (18)
M VN

stems from the application of the classical Newton method for the equation
Jr(k) := Jp(u(k)) = 0. A further improvement can be obtained by observing
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that Jp is a quadratic functional and the associate solution is supposed to
have multiplicity 2, so that we could select 7 = 274 (see [12]).

“Inexact” algorithms

Since we are not interested to the whole adjoint solution, but only in its
flow rates through the sections I'}, 7 = 1,...,m, we can consider an inexact
solution of this problem, leading to a considerable saving of the computational
cost. More precisely, we solve, out of the temporal loop, m FSI problems in
the reference domain Q%, with unit Neumann conditions at I'}, j = 1,...,m,
that is

A, 33 X0 Agg)* + Bhyjiv,9)° + C(Ap5:0,9)" = — frov - ndy

B(Q;)‘uﬁ)‘m]’)o =0 (19>

),

C(a, 5\%]’, )\mj)o = 0,

Yo eV, 17) € Wy, and ¢ € QY. Then, at each internal iteration of Algorithm
3 we combine linearly these solutions, obtaining

Ay = ( u-ndy— Fj> Aujs (20)
-

where the A, ;’s are obtained from Xu’j through the ALE map. This introduces
an approximation error in the construction of the adjoint problem, since we
are combining solutions obtained in the fixed reference frame.

In what follows, we detail two possible inexact algorithms. If we choose a
monolithic strategy for the treatment of interface conditions, the only quan-
tities updated in the inner loop in Algorithms 3 are the control variables
ki, 5 = 1,...,m. Otherwise, if we use a partitioned procedure we need to
subiterate also on the interface position between the fluid and the structure
subproblems. In this case, we can consider either “nested iterations” or just
“one loop”. In particular, we detail for the sake of exposition the case in which
the Dirichlet-Neumann scheme is used for the treatment of the interface con-

ditions. However, extension to general Robin-Robin schems is straightforward.
Algorithm 4 : Inexact Nested Loops

- Solve for each ¢=1,...,m the numerical approximations of the
FSI problems (19), obtaining, in particular, the velocities S\W;
- Temporal loop;
- ‘‘Control variables’’ loop (index [): given kjl-, j=1....m
and €9 > 0, set [ =1 and do until convergence
- ‘‘Interface condition’’ loop (index p): given 'lﬁ7 and g; >

21



0, solve in sequence until convergence

e A Fluid subproblem with the following boundary conditions

l n

1 _ =M *
Uy g = Px7 on X

l 1l * - .
T ﬁp+l1z«—-kg7z on,Iy, j=1,....,m;

e A Structure subproblem with the following boundary
condition

l _ *,
T.pn=Tsm onXy
- Convergence test: if
! !
|, — w2z < €1, (21)

then break;
- end ‘‘interface conditions’’ loop;
- Compute the approximate adjoint solution with (20);
- Convergence test: if

|Jf;ALﬁ‘7ld7|
|J};Aim'71d7|

<&y, Vi=1,....m (22)

then break;
else

;gfhl:k;’hjurl/r* A, ndy, Vi=1,...m, (23)
J

and set [=1[+1;
- end ‘‘control variables’’ loop;
- end temporal loop.

Algorithm 5 : Inexact One Loop

- Solve for each ¢=1,...,m the numerical approximations of the
FSI problems (19), obtaining, in particular, the velocities;i%ﬁ
- Temporal loop;
- ‘‘Control variables’’ and ‘‘Interface condition’’ loop (index
D: given ki, j =1,...,mand &g > 0 and g, > 0, set [ = 1 and
solve until convergence
e A Fluid subproblem with the following boundary conditions

I—1_
At

T
ul =11 on ¥*

Tlfn:kén onT% j=1,...,m;
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Solve (19) Vj=1,...,m

CONTROL LOOP

n=ntl FSI LOOP

1=1+1

|Solve the fluid problem |

p=ptl |

| Solve the structure problem |

Update rule
(23)
A Convergence test
(21)
NO

YES

Compute the adjoint

solution with(20)

NO

Convergence test
(22)

YES

Fig. 3. Scheme of Algorithm 4.

e A Structure subproblem with the following boundary condition
Tlsn:Tlfn on X%

- Compute the approximate adjoint solution with (20);
- Convergence test: if

UF]*. )‘Z,h -ndy|
|fr; }‘i,h -ndy|

Ju'—u'""| 2y < &1 and <egy, Vy=1,....,m

then break;
else kﬁf :kéh—i-Tl/ A, -mdy, Vj=1,...,m, and set [=
b bl F* )
J
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[+ 1;
- end ‘‘control variables’’ and ‘‘interface conditions’’ loop;
- end temporal loop.

Solve (19) ¥j=1,...,m

y

CONTROL & FSI LOOP

n=n+l
A | Solve the fluid problem |

| Solve the structure problem |

¥

Update rule Compute the adjoint
(23) solution with(20)

A ¢

Convergence tests
(22) and  (21)

NO

YES

Fig. 4. Scheme of Algorithm 5.

Obviously, for Alg. 5 the convergence is not guaranteed, since at each subiter-
ation the interface conditions are not satisfied exactly. However, the numerical
results presented in Sect. 6, show that at least for the cases treated in this
work, convergence is always achieved.

In Fig. 3 and 4 schemes of Algorithms 4 and 5 are reported.
Remark 3 In all the three strategies proposed in Sect. 3, 4 and 5, in fact

the flow rate at an artificial section I' is prescribed by forcing an appropriate
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unknown constant normal stress on T'. As observed in [18,17,12], when the
transpose formulation of the diffusion term is considered, namely p(Vu +
(Vu)T), the solution is affected by a spurious tangential velocity ul, at . In
the rigid case, this drawback can be overcome by imposing directly that the
tangential velocity u™ = u, is equal to zero (see [17]) or by resorting to the
minimization of a suitable functional (see [12]). However, in the compliant
case the tangential velocity on I is given by two contributions, namely u™ =
ug, +uy, where the latter term is due to the displacement of the FS interface.
Numerical strategies for the separation of the two contribution in order to skip
the spurious one are under investigation. However, numerical evidences show
that, for the problems considered in this work, the contribution of ug, is only of
about 1% of the total tangential velocity w™, so it is supposed to play a minor
role in numerical simulations.

6 Numerical results

In this section we present some numerical results with the aim of testing the
algorithms proposed in the previous sections. In all the simulations, we have
considered a semi-implicit treatment of the interface position.

6.1 Comparison among the various algorithms

In the first set of simulations we test the performances of Algorithms 1, 2,
3, 4 and 5 in terms of number of iterations and CPU times. The numerical
simulations are performed in a rectangular domain both for the fluid and for
the two structures, whose size is 6 x 1 cm and 6 x 0.1 em, respectively (see Fig.
5). For the structure, we consider the following equation of linear elasticity

% |

Fig. 5. Computational fluid and structure domains.

psOum — V- (Vi + (Vn)') = AV - ((V-m)I) + n = 0,

where [ is the identity operator, ¢ = E/(1+v), A = vE/((1 +v)(1 — 2v))
and § = E/(1 — v*)R?, with E the Young modulus, v the Poisson ratio and
R the radius of the fluid domain. The reaction term stands for the transversal
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membrane effects. We prescribe the flow rate F' = cos(27t) at the inlet of the
fluid domain.

We use a 2D Finite Element Code written in Matlab at MOX - Dipartimento
di Matematica - Politecnico di Milano and at CMCS - EPFL - Lausanne. We
consider Py — bubble /P, elements for the fluid and P; element for the structure
and a space discretization step h = 0.02 cm. Moreover, we set = 0.035 cm?/s
and p; = 1g/cm? and, unless otherwise specified, we consider the following
reference values: At = 107%s,p, = 1.1g/em?, ¢ = 1.15 - 10°dyne, A = 1.7 -
106 dyne, B = 6.5 - 10° dyne/cm? and the thickness of the structure H, =
0.1cm.

For all the algorithms a Robin-Neumann partitioned procedure is used for the
solution of the FSI problems, with a stopping criterion based on the normalized
residual (see [3]) and tolerance equal to 10~%. For Algorithms 3 and 4, the
tollerance for the stopping criterion in the control loop is set equal again to
10~*. For Algorithm 5 we have only one tollerance, set again equal to 10~%.

In Fig. 6 the fluid axial velocity at the inlet of the domain at two different
instants obtained with Algorithms 1, 2 and 3 is shown. The solution obtained
with the inexact Algorithms 4 and 5 are not reported since they are in excellent
agreement with the solution obtained with Alg. 3.

ot |—Algorithm 3 - RN
X Algorithm 1 - RN
-0.2f O Algorithm 2 - RN

—Algorithm 3- RN
X Algorithm 1 - RN
O Algorithm 2 - RN

ial velocity (cm/s)

% 0.50

axial velocity (cm/s)

0 o1 02 03 04 05 0 0.1 0.2 03 04 05

radial coordinate (cm) radial coordinate (cm)

Fig. 6. Comparison of axial velocities obtained with Algorithms 1, 2 and 3. -
t =10.10s (left), t = 0.30 s (right) .

In Tab. 1, the left value in each box is the mean number of total iterations
per time step. In particular, for Algorithm 2 we reported the sum of the mean
number of Robin-Neumann iterations needed to solve the first and the second
FSI problem in the GMRes loop. For Algorithm 1 each of the RN iterations
is a flow rate problem which has been solved with the GSC (rigid) scheme,
requiring the solution of two fluid problems. For what concerns Algorithms
3 and 4, the mean number of iterations per time step of the control loop
multiplied for the mean number of iterations of the Robin-Neumann scheme
per control loop’s iteration, is reported. For Algorithm 5 the mean number of
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iterations per time step refers to the unique loop. On the right of each block
the CPU time to perform 10 time steps, normalized with the best performance,
is shown.

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5
B8, At, ps 91 —-100 114 —-124 3x76 —246 3x59—196 11.6 — 1.32
106, At, ps | 4.7 — 1.00 X 3x4.0 — 249 3x3— 191 52 — 1.16

B, At/10, ps | 21.9 — 1.04 28.1 — 1.34 3x 182 — 2.60 3 x13.5 —1.99 19.4 — 1.00

B, At, 10ps | 84 —1.00 108 —1.26 3x74 — 258 3x57—205 114 — 1.39
Table 1
Mean number of iterations per time step (left) and relative CPU time in seconds to
perform 10 time steps (right). X means that convergence is not achieved.

Let us discuss the results in Tab. 1 starting from the three algorithms for the
solution of system (15), namely Alg. 3, 4 and Alg. 5 . First of all, we point
out that both the inexact algorithms 4 and 5 converge in all the numerical
simulations. A convergence analysis of such schemes is still missing. However,
these experimental results are very promising. Among these three schems, Alg.
5 seems to be the most performing. Indeed, the (mean) reduction factor of the
CPU times is 2.08 with respect to Alg. 3 and 1.61 with respect to Alg. 4.
Therefore, the use of just one loop seems to be the most promising and then
only Algorithm 5 is considered in the sequel.

Let us now focus on Alg. 1, 2 and 5. We observe that Alg. 1 is the most per-
forming in all cases but one, that is for a small value of the time discretization,
where Alg. 5 is faster. Alg. 2 works quite well for big values of At and (3 and
does not converge for a value of 3 equal to 10 times the reference value. All the
algorithms seems to be insensitive to an increment of the structure density.
This is due to the choice of the Robin-Neumann scheme as partitioned pro-
cedures, which has been shown to be robust with respect to the added mass
effect (see [3]).

6.2 An application to a 2D bifurcation geometry

In this section we apply Alg. 1 and 5 to a 2D geometry which is an ideal-
ization of a realistic domain, namely the human carotid. We use the same
parameters introduced in the previous subsection, apart for the values g =
1.3-10%dyne/cm? and At = 1073s. We impose the following flow-rate impulse

Fi, t <0.005s
0 ¢>0.005s

F(t) =
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and we use the Robin-Neumann scheme as partitioned procedure. In Fig. 7
the pressure in the deformed fluid domain and the exploded position of the
structure obtained with Alg. 5 are shown at 4 different instants. The flow-
rate impulse is Fj, = 50 cm? /s. The solutions obtained with Alg. 1 are in
excellent agreement and for this reason their visualization are not reported.
In Tab. 2 the mean number of iterations (left) and the CPU times normalized

Fig. 7. Pressure in the deformed fluid domain and position of the structure obtained
with Alg. 5 - t = 0.004 (up-left), ¢ = 0.008 s (up-right), ¢ = 0.012 s (bottom-left)
and t = 0.016 s (bottom-right).

with the best performance (right) are reported for 2 values of the flow-rate
impulse, namely Fj, = 10cm?/s and Fj, = 50 cm?/s. We point out that the
‘ Alg. 5 Alg. 1
Fj,, =10em? | 142 — 1.00 20.25 — 1.37
Fy, =50cm? | 143 — 1.00 19.9 — 1.39

Table 2
Mean number of iterations per time step (left) and relative CPU time in seconds
(right) to perform 16 time steps for the carotid simulation.

computational effort of the two algorithms seems to be independent of the
Reynolds number. However, Alg. 5 performs better than Alg. 1, both in term
of number of subiterations needed to reach convergence and of CPU time.

7 Conclusions

In this paper we focus on the problem arising when the fluid-structure in-
teraction (FSI) problem is solved in a truncated computational domain, in
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particular when no sufficient data are available to be prescribed at the artifi-
cial sections. Among the varoius “defective” data, we consider here the flow
rate conditions for the fluid. This paper has to be intended as a first step in
the direction of solving a FSI problem with general fluid and structure defec-
tive data. We propose three different strategies for the numerical solution of
the Flow rate/FSI problem. Among the various algorithms proposed for the
numerical solution, the numerical results have showed that Alg. 5 seems to
be the most suited for realistic simulations. Moreover, its versatility is very
attractive when other defective data (such as the ones related to the structure)
are considered. Indeed, the inclusion of these defective informations through
the enrichment of the functional to be minimized should not increase the com-
putational cost if just “one loop” implementation is used, contrary to the other
strategies.
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