An eclipse-based Feature Models
toolchain

Luca Gherardi, Davide Brugali

Dept. of Information Technology and Mathematics Methods, University of Bergamo
luca.gherardi@unibg.it, brugali@unibg.it

Abstract. Feature models are used in software engineering for modeling
all the possible configurations of the software of a specific domain. They
capture the commonalities and the variabilities among these software
and offer a formalism to clearly represent these properties in a separate
way. Features represent end-user characteristic of the software and can be
optional or mandatory. A selection of a number of these features defines
one specific configuration of the software and could be used for example
for configuration purpose.

Along the years, at least two extensions of the feature models have been
proposed in order to improve the original proposal, but only few attempts
of providing a set of graphical tools can be found in literature. Moreover
some of those are not open source.

In this paper we propose a tool chain completely based on the Eclipse
Modeling Framework and the Graphical Modeling Framework. It con-
sists of: (i) a meta-model that describes the rules for defining feature
models, (ii) a graphical tool for creating feature models and defining
constraints between the features, (iii) a graphical tool for selecting one
possible configuration and checking if it satisfies all the constraints.

1 Introduction

Feature models were introduced for the first time two decades ago and are today
widely spread in the context of the Software Product Lines [13]. They are really
generic and for this reason they can be used in various different fields. In this
paper we describe the meta-model and the tools that we have designed in the
context of the European project BRICS [1] in our attempt of introducing feature
models in the robotics field. Despite our work is more focused on robotics, in
the paper we will keep our attention on the feature models and we will use
a generic example because it allows us to describe the feature models without
having to introduce a number of terms that are specific of the robotics field. In
the description of the tools we will show a more complex example related to the
robotics field without going into details of the meaning of the terms.

Feature models are a useful formalism, which allows the developers to model
and define all the possible configurations of a family of software in such a way
that is independent from the implementation mechanism. These configurations
share a set of properties and functionality (aka features) that are always present

in the software of the specific domain and that are called commonalities. On the
other side some features are present only in some specific configurations and so
they define a subset of the domain. They are called variabilities. Feature models
capture these commonalities and variabilities among a family of software and
offer a method to clearly represent them in a separate way.

Feature models are typically used in two phases of the software development
process:

— During the specification of the requirements they allow the designers to
define which configurations of the software will be supported by the product
line. In this stage they give to the designers a view on the entire family of
systems.

— During the composition of the software instead, they allow the developers
to select a particular configuration of the system and so they provide a view
on a specific application. In this stage it is particularly interesting the use
of the defined configuration as input for an automatic toolchain, which is in
charge of deploying the final product.

The two stages of the development process also suggest two different users
of these models: the system designer and the application developer. The first
one is in charge of designing the models and defining the allowed configurations.
The second one instead has the role of selecting one available configuration and
developing the corresponding application.

The work described in this paper is part of a work package of the BRICS
project that aims to provide a set of tools that allow the management of the
software variability in robotics. In particular our final goal is to make as easier
as possible the process of designing and transforming feature models in order to
realize an input for the application deployer. That means to provide to the system
designers and the application developers with the possibilities of specifying all the
possible configurations, selecting one of them, transforming it in a configuration
file and finally easily deploying the desired application.

For achieving this goal we have to model the variability from three different
points of view:

— Variability specification. That means describing which are the variabilities
of a system (variation points) and how they can be solved (variants).

— Variability implementation. That means specifying how the different vari-
ants will be implemented in the final applications in terms of architectural
elements.

— Variability resolution. That means defining a function that maps each variant
to one or more architectural elements.

In this paper we focus on the first point and we propose two completely
eclipse-based tools that allow the specification of the variability through the use
of the feature models. We started the implementation of a new plugin because
no one of the open source eclipse-based tools that we analyzed provides all these
features:

— Conformity to the standard specification of the feature models that was
defined in literature (see section 2) for what regards the features, the con-
tainments and the constraints.

— The presence of a graphical tool that allows the system designers to define
feature models in form of feature diagrams in a simple and user-friendly way.

— The presence, in the same graphical editor, of a functionality that allows the
application developers to select one available configuration directly from the
same feature diagram defined by the system designer.

In particular for what regards the last point we found out that most of the
available plugins allow the selection of a configuration only by using a tree-view
of the model or by recreating a new feature diagram in which the user has to
insert some of the features defined in the feature model. Let’s think about a
use case in which the model defines more than hundred features. In that case
those ways of selecting configurations can be very uncomfortable since the user
doesn’t have a complete view of the available features and of the structure of
the model. In our opinion it would be more user-friendly and quick reusing the
diagram defined by the system designer and having a toolbar button that allows
the selection of the features that have to be included in the configuration.

During the development of our plugin we tried to take in account all these
points and at the same time to keep the graphical interface and the feature
model design flow as simple as possible.

The paper is structured as follows.

Section 2 describes the fundamental concepts of the feature models and their
extensions that have been proposed along the years. Section 3 briefly presents
some attempts of providing eclipse based feature model tools. Section 4 describes
the tools that we have developed and in particular the meta-model on which they
are based. Finally section 5 draws the relevant conclusions.

2 Feature Models

Feature models were proposed for the first time in 1990 in the context of the Fea-
ture Oriented Domain Analysis (FODA) approach [15]. FODA aims to identify
the properties and the functionality of a software, which are commonly present
in applications of a specific domain, and separate them in two groups: those that
are always present and those that are present only in some applications. For rep-
resenting these properties and functionality FODA proposes a formal method:
the feature model. In this section we will describe its original proposal and the
two major extensions that were proposed along the years.

2.1 Basic Feature Models

A feature model is an hierarchical composition of features. A feature defines
a software property and represents an increment in program functionality [10].
Compose features, or in other words select a subset of all the features contained

in a feature model, corresponds to define a possible configuration of a software
that belongs to the application domain described by the model. This selection
is usually called instance.

On the base of the feature models, the FODA experts have defined a graphical
representation called feature diagram. In this section we will refer to the feature
diagram depicted in figure 1 in order to exemplify the characteristics of feature
models. The diagram describes the functionality of a family of geographical maps
websites.

Geographical
Maps Web Site

View Directions Zoom in/out

O

Read only Read and edit Map Hybrid || Satellite

User access

Fig. 1. An example of Feature Diagram of a geographical maps website

Feature models are organized as a tree and the root feature, also called con-
cept, defines the application domain. Features are represented by means of white
boxes, which contain the feature names, and are connected to the children fea-
tures by means of edges, which represent containment relationships [9].

Features can be discerned in two main categories:

— Mandatory. Mandatory features have to be present in every possible con-
figuration of a software that belongs to the domain described by the model.
They usually define the core of the software and represent functionality or
properties that are fundamental in the specific domain: the commonalities.
In the feature diagrams they are depicted by means of a black circle on the
top. In the example the Zoom in/out functionality is a mandatory feature.
Every maps website in fact allows the user to execute zooming operations in
order to explore the maps.

— Optional. Optional features can be present but they are not mandatory.
They represent functionality or properties that characterize a specific con-
figuration of the software: the variabilities. In the feature diagrams they are
depicted by means of a white circle on the top. In the example the Direc-
tions functionality is an optional feature, which means that not all the maps
websites provide it.

Features can be connected to their children features by means of three types
of containment relationships:

— One-to-one containment. It is the simplest relationship and it means that
the parent feature can (or has to) contain the child feature. In the example
it is represented by the containment between the root and the Directions
feature and by the containment between the root and the Zoom in/out fea-
ture.

— Or containment. It is a relationship between the parent feature and a set of
children features. It means that from the children features at least one has
to be present in a possible configuration of the software. In the example it is
represented by the containment between the View feature and its children.
This relationship is depicted by means of the black semi-circle that connects
the edges.

— Alternative containment (X-Or). It is a relationship between the parent
feature and a set of children features. It means that from the children features
only one can be present in a possible configuration of the software. In the
example it is represented by the containment between the User access feature
and its children. This relationship is depicted by means of the white semi-
circle that connects the edges.

The basic feature models also define two kinds of constraints between the fea-
tures: requires and excludes. These constraints allow the definition of a subset of
valid configurations. They are typically expressed in the form A kind_of_constraint
B, where A and B can be a simple feature or a composition of features by means
of logical operators (AND, OR, XOR, NOT).

— Requires constraint. It means that if a feature A is selected to be part of
a configuration, then also a feature B has to be selected. If A and/or B
represent logical rules the constraint imposes that if A is true, then also B
has to be true. To be noticed that for solving the logical rules the value of a
feature has to be considered true if the feature is selected.

— Excludes constraint. It means that if a feature A is selected to be part of a
configuration, then a feature B cannot be selected. If A and/or B represent
logical rules the constraint imposes that if A is true, then B has to be false.

2.2 Cardinality-Based Feature Models

The cardinality-based feature models propose to replace the properties optional
and mandatory and the containments or and alternative with a cardinality-based
annotation. In particular these ideas are proposed in two different works:

— [14] proposes a feature-cardinality approach. The idea consists of marking
each feature with a lower bound and an upper bound. The upper bound
defines the maximum number of times that the feature can be present in an
instance.

— [16] proposes a containment-cardinality approach. The idea consists of
marking each containment with a lower bound and an upper bound. The
lower bound defines the minimum number of sub-features that have to be
present in an instance whereas the upper bound the maximum number.
According to this approach the containment relationships “or” and “alter-
native” are respectively replaced by [1...%] and [1...1].

2.3 Extended Feature Models

The extended models propose to attach some information to the features by
means of attributes [14]. The purpose of the attributes is to allow a more concise
representation of feature models. In fact the idea is to use the attributes for
representing information that are important but not so relevant to be represented
as features. Attributes are defined by means of a name, a type and a value.

3 Related Works

Despite along the years feature models have gained popularity, only few attempts
of providing a set of tools, which support the design of these models, can be found
in literature. Moreover some of those are not open source. In this section we will
focus on the eclipse-based tools, because with respect to the standalone tolls
they can be more easily integrated with other tools. From this point we will use
the term graphical editor for defining an editor which allows the representation
of the feature models in form of feature diagrams (see figure 1).

The Eclipse Modeling Framework Technology project (EMFT)[4], which aims
to provide a set of new tools that extend or complement the Eclipse Model-
ing Framework (EMF)[2], proposes a feature model plugin called EMF Feature
Model [3]. This plugin is still in the incubation stage and it is based on two
meta-models. The first one describes the rules for modeling the variability and
designing feature models, whereas the second the rules for creating instances of
the feature models. The major drawback of this plugin is the dependency to
pure::variants [11] for providing a graphical representation and the constraints
evaluation. Pure::variants is another well done plugin but we avoided using it due
to the commercial license. Indeed, it is free available only in a limited version.

Another interesting plugin, which is still in development, was designed at the
university of Waterloo [6]. In contrast to the proposal of [3], this plugin uses a
single meta-model for representing both the feature model and its configurations.
They provide an XPath support for the definition of the constraints and also
a constraints evaluation engine. This plugin is completely open source but it
doesn’t provide a graphical editor.

The P&P Software GmbH and the ETH-Zurich developed an open source
feature model plugin called XFeature [12]. This plugin provides a graphical edi-
tor, an XPath constraints definition support and a constraints evaluation engine.
The editor is in general very complete but in our opinion the editing of the fea-
ture model is not really user friendly. For example a tools palette is not provided

and the user has to edit the model by continuously using the context menu.
Furthermore the plugin allows the users to define an instance only by creating
a new feature diagram in which only the features defined in the feature-model
can be inserted.

Finally one of the most complete and open source plugin that we found in
literature is FeatureIDE [5]. It provides a lot of functionality, for example a
graphical editor which is compatible with the standard notation (as far as we
know it is the only one), a statistics view that collects information about the
number of features, the number of variants and the number of possible config-
urations and last but not least the possibility of comparing the current version
with the last saved version in order to reason about how the changes in the
model will affect the product line. Despite this editor is very complete, in our
opinion it has some drawbacks: (i) like the previous plugin it doesn’t provide a
tools palette for editing the model, (ii) it provides a tree representation for the
definition of the feature model instances but it doesn’t allow the users to do this
operation by using the standard feature diagram representation, which is more
intuitive, (iii) it doesn’t explicit allow the definition of the exclude constraint
(the workaround is defining “A excludes B” in the form “not (A and B)”).

4 The meta-model and the tools

The tools that we are going to propose in this section are based on the Eclipse
Modeling Framework (EMF) and on the Graphical Modeling Framework (GMF)
[7]. EMF and GMF are two eclipse projects that allow the development of domain
specific languages (DSLs) and graphical editors for their visual representation.
Every DSL is based on a set of rules that are defined by means of a formal
meta-model. During the development of the eclipse plugins these meta-models
are typically expressed through the Ecore format [17], which is a small and
simplified subset of UML.

4.1 The Feature Meta-model

Figure 2 depicts the Ecore meta-model that represents the core of our tools. Due
to the fact that it was designed by following the feature models specification,
which is a standard, it is quite similar to the meta-models of other tools presented
in the previous section.

The root entity of this model is the class FeatureModel. It represents the
feature model and contains a set of Features, Constraints and Instances.

— Feature. The features are defined by a name and by the boolean attribute re-
quired. When its value is true the feature is mandatory, otherwise the feature
is optional. Features also have another boolean attribute (root, true only for
the root feature) and two integer attributes (lowerBound and upperBound)
which allow the definition of the feature cardinality (see sub-section 2.2).
Finally features contain Attributes, CompositeFeatures and the sub-features
that are their direct children (one-to-one containment).

H FeatureModel

constraints instances

rootFeature

0.* 1
0.* 0..*
H constraint H Featre L H Instance
T name : EString T name : EString T id : EString
T type : ConstraimType = root : EBoolean selectedFeatures = descritpion : EString
= rule : EString T required : EBoolean
subFeatures T lowerBound : Eint attributes 0.7
T upperBound : Eint H Attribute
T name : EString
<<enumeration>> :
® ConstraintType 0.* T type : EString
— EXCLUDES subCompositeFeatures I value : EString
= REQUIRES

subFeatures
0.*

H compositeFeature

T upperBound : EInt
T lowerBound : Elnt

Fig. 2. The Meta-Model

o Attribute. The attributes are defined by a name, a type and a value.
They allow the representation of the extended models (see sub-section
2.3).

e CompositeFeature. The composite features are used for representing
the group containments. They are defined by two integers (lowerBound
and upperBound) that allow the representation of the standard con-
tainments (alternative and or) and of the cardinality containments. The
composite features contain the features that are part of the containments.

— Constraint. The constraints are defined by a name and a rule. The rule is
a string and it is composed of two members separated by the Constraint-
Type, which can assume two values: requires or excludes. The members can
be defined as any possible logical combination of the features.

— Instance. The instances represent a possible configuration of the model and
are defined by a name and a description. An instance contains references
to the features that are selected for being part of the configuration. More
instances can have references to the same feature.

The presented model defines the rules for creating feature models that are
conforming to the specification described in the section 2. After having defined
this model in EMF, it is already possible to create feature models by means of a
simple tree-view editor. In the following sub-section we will introduce the editor
that we have developed in order to provide a graphical representation.

4.2 The feature model editor

The feature model editor allows the creation of feature models that are conform-
ing to the meta-model presented in the previous sub-section. It is a graphical
editor realized by means of the eclipse GMF tools. Figure 3 depicts the editor
and shows how the feature models are represented. The figure reports a feature
model that describes the possible configurations of a motion planning software.
It is a software that involves different functionality in order to plan a path for
moving a robot along a collision free trajectory.

[d) RoboticsExample.featuremodel_diagram 23

2% Palette >
- RQQo-
4 Feature
. . p.
Path Pl Collision Environment 4 CompositeFea...
i Panner Checker Model 4 Attribute
4 Connection

.
Mesh Primitive

.
Sampler Planner 1.1 Bounding Box

Representation

L A Rapid el il

PQP
Random Oriented
Sampler PCD Bounding Box Triangle Mesh

Gaussian Rectangle
Sampler PRM Swept Sphere Polygon Mesh

Grid Based

Sampler RRT N. of Iterations

Fig. 3. The feature model Editor

The graphical representation is conforming to the standard convention of the
feature diagrams, except for the group containments. In particular we represent
the different entities defined in the model in the following way.

— Features are represented by means of a white box that contains the name of

the feature. The blue box represents the concept (root feature).

Mandatory features are represented by means of a black circle on the top

whereas optional features by means of a white circle.

Group containments are represented by means of a grey box that shows the

lower and the upper bound of the cardinality.

— Attributes are represented by means of a cyan box that contains the name
of the attribute.

The editor also provides the possibility of defining constraints by means of
the dialog window depicted in figure 4. It forces the user to create rules that are
syntactically correct, for instance it doesn’t allow him to insert two logical oper-
ators without a feature between them. The constraint presented in the example
means that if the feature Rapid is selected then also the Oriented Bounding Box
and Triangle Mesh features have to be selected.

Name: Rapid requirements

'Rapid' REQUIRES 'Oriented Bounding Box' AND Triangle Mesh'

Oriented Bounding Box
PCD
PQP

PRM

wept Sphere

Triangle Mesh

AND OR XOR EXCLUDES

NOT REQUIRES

OK Cancel

Fig. 4. The Constraints Editor

4.3 The instance editor

The instance editor allows the user to create instances of an existent feature
model. That means select a sub-set of features from all the features that are
defined in the model. This selection has to contain all the mandatory features,
satisfy the cardinality of the containments and respect all the constraints defined
on the model. Figure 5 depicts the instance editor. It is composed of two parts:
the visual representation of the model and the instances view.

The instances view shows the information about the existent instances and
offers a set of commands that allow the user to create, remove and select in-
stances. By looking at the third column of the view it is possible to find out
which instance is currently showed in the visual representation. In the presented
example it is the “Config 1”.

In the visual representation the selected features are drawn in green. The
user can select a feature for being part of the instance by simply clicking on it
and pressing a button in the toolbar.

Once the user has completed the selection of the features, the instance can be
validated. The process of validation checks if the instance satisfies the following
requirements.

— All the mandatory features have to be selected to be part of the instance.
— All the cardinalities of the containments have to be satisfied, which means
that the number of the selected sub-features of a containment has to be

|d] RoboticsExample.featuremodel_diagram 53 =g

. & .
h Pl Collision Environment
el Checker Model
* * Boundil :o *
Sampler unding Box
P! Planner 1..1 Representation Mesh Primitive
1.1 1.1 Rapid 1..1 1.1
PQP
Random Oriented
Ssampler PCD Bounding Box Triangle Mesh
Gaussian Rectangle
Sampler PRM Swept Sphere Polygon Mesh
Grid Based
sampler RRT N. of Iterations
[2(Problems | @ Javadoc [Declaration |] Properties | @ Instance View 52 &+ Y=0
Id Description Selected
Config 1 PRM planner with Rapid Collision Checker Selected
Config 2 RRT Planner with PQP Collision Checker

Fig. 5. The Instance Editor

greater than or equal to the lower bound and less than or equal to the upper
bound.

— All the constraints have to be respected. The constraint checking is done
by using an external open source library called MVEL [8], which resolves
the two members of the constraint rule. After that, if the constraint type is
“require”, the constraint checker controls that both the members are true.
In case of an “exclude” constraint instead when the first member is true the
constraint checker controls that the second is false.

Finally the instances can be saved on an XML file, which will be the input
for the next tools that we are going to develop (see section 1).

5 Conclusions and future works

In this paper we have introduced the feature models, their syntactic and semantic
and their typical use in the software development process. We have also described
the tools that we have developed and the meta-model that describes the rules
for the definition of the feature models.

Our plugin provides a simple and intuitive tool for designing feature models
that are conforming to the syntactic that was presented for the first time in
1990 and then extended in different works described in literature. The plugin
also provides a tool for creating and validating instances of the designed models.

These instances describe concrete applications and can be saved as an XML file
in order to be reused by other tools. We have tested the plugin by using it for
representing the possible configurations of robotics software and validating them
according to the constraints imposed on the models.

In the next months we plan to design a new meta-model that allows the rep-
resentation of the variability resolution (sec 1). In particular we plan to associate
to each variant described with a feature model one or more of the architectural
elements that compose a component based system and that define how these
variants are implemented (variability implementation). By using this mapping
we finally plan to develop a tool that helps the developers in the process of
deploying the applications defined with the Instance editor.

6 ACKNOWLEDGMENTS

The work described in this paper has been funded by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no.
FP7-ICT-231940-BRICS (Best Practice in Robotics). The authors would like to
thank all the partners of the project for their valuable comments.

References

BRICS, Best Of Robotics. http://www.best-of-robotics.org/.

EMF: Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/.

EMF Feature Model. http://www.eclipse.org/modeling/emft/featuremodel/.

EMFT: Eclipse Modeling Framework Technology Project.

http://www.eclipse.org/modeling/emft/.

5. FeatureIDE, an Eclipse plug-in for Feature-Oriented Software Development.
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/.

6. Fmp: Feature Model Plug-in. http://gsd.uwaterloo.ca/fmp.

7. GMF, the Eclipse Graphical Modeling Framework. www.eclipse.org/gmf/.

8. MVEL, MVflex Expression Language. http://mvel.codehaus.org)/.

9

0

Ll

. OMG, Common Variability Language Wiki. http://www.omgwiki.org/variability/.

. Pamela Zave, FAQ Sheet on feature interaction.

http://www2.research.att.com/ pamela/faq.html.

11. Pure::variants. http://www.pure-systems.com/.

12. XFeature - Feature Modelling Tool. http://www.pnp-software.com/XFeature/.

13. P. Clements and L. Northrop. Software product lines. Addison-Wesley, 2001.

14. K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. Generative programming
for embedded software: An industrial experience report. In Generative Program-
ming and Component Engineering, pages 156—172. Springer, 2002.

15. K. Kang. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990.

16. M. Riebisch, K. Bollert, D. Streitferdt, and I. Philippow. Extending feature dia-
grams with UML multiplicities. In 6th Conference on Integrated Design € Process
Technology (IDPT 2002), Pasadena, California, USA. Citeseer, 2002.

17. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF': Eclipse Modeling
Framework. Addison-Wesley Professional, 2008.

