
Service Component Architectures in Robotics:
the SCA-Orocos integration

D. Brugali1 L. Gherardi1 M. Klotzbücher2 H. Bruyninckx2

1 University of Bergamo, DIIMM, Italy
{brugali,luca.gherardi}@unibg.it

2 Katholieke Universiteit Leuven, PMA, Belgium
{markus.klotzbuecher,herman.bruyninckx}@mech.kuleuven.be

Abstract. Recent robotics studies are investigating how robots can ex-
ploit the World Wide Web in order to offer their functionality and re-
trieve information that is useful for completing their tasks. This new
trend requires the ability of integrating robotics and information sys-
tems technology. On the first side a set of robotics component based
frameworks, which are typically data flow oriented, have been developed
throughout the last years and Orocos is one of the most mature. On
the other side the state of the art is represented by the Service Ori-
ented Architecture, where the Service Component Architecture defines
a component-based implementation of this approach.
The paper reports the progress of our work, which aims to promote in the
robotics field a cooperation between Service Oriented Architecture and
Data Flow Oriented Architecture. To achieve this we propose an integra-
tion between SCA and Orocos. We first highlight a set of architectural
mismatches that have to be faced for allowing this integration and then
we introduce a java-based library, called JOrocos, that represents our
solution to these mismatches. Finally we describe a case study in which
SCA and Orocos components cooperate for monitoring the status of a
robot.

1 Introduction

Recent advances in robotics and mechatronic technologies have stimulated ex-
pectations for emergence of a new generation of autonomous robotic devices that
interact and cooperate with people in ordinary human environments.

Engineering the control system of autonomous robots with such capabilities
demands for technologies that allow the robot to collect information about the
human environment, to discover available resources (physical and virtual), and
to optimally exploit information and resources in order to interact with people
adequately. Common approaches in robotics build on sophisticated techniques
for perception and learning, which require accurate calibration and extensive
off-line training

Recent approaches investigate how the robot can exploit the World Wide Web
to retrieve useful information such as 3D models of furniture [10] and images of



objects commonly available at home [15]. In [16] the Robotic Information Home
Appliance is illustrated as a home robot interconnected to the home network
that offers a friendly interface to information equipment and home appliances.

This new trend poses new challenges in the development of robot software
applications since they have to integrate robotic and information systems tech-
nologies, which account for quite different non-functional requirements, namely
performance and real-time guarantees at one side and scalability, portability,
and flexibility at the other side.

Modern robot control systems are typically designed as (logically) distributed
component-based systems, where the interactions between components (con-
trol, sensing, actuating devices) are usually more complex compared to more
traditional business applications. In Robotics, the software developer faces the
complexity of event-based and reactive interactions between sensors and mo-
tors and between several processing algorithms. For this reason, robotic-specific
component-based models and toolkits have been developed, which offer mech-
anisms for real-time execution, synchronous and asynchronous communication,
data flow and control flow management, and system configuration.

In contrast, the most common middleware infrastructures for the World Wide
Web and home networks are the Java Platform Enterprise Edition and Service
Oriented Architectures. Service Oriented Architectures (SOA) have been pro-
posed as an architectural concept in which all functions, or services, are defined
using a description language and where their interfaces are discoverable over a
network [8].

Some attempts to develop robotic applications as SOA systems can be found
in the literature (a recent survey can be found in [5]). Their main disadvantage
is that they give up the typical component-based nature of robotics systems and
force a pure service oriented approach.

More recently, Service Component Architectures (SCA) [12] have been pro-
posed as an architectural concept for the creation of applications that are built
by assembling loosely coupled and interoperable components, whose interactions
are defined in terms of bindings between provided and required services. As such,
SCA offer the advantages of both the Component-based engineering approach
typically used in robotics and the Service Oriented Architectures.

In order to bridge the gap between current component-based approaches to
robotic system development and modern information systems technologies, we
have developed the JOrocos library that extends the popular Orocos robotic
framework [11] with Java technologies. Thanks to the JOrocos library, a robot
control application can be designed as a SCA system, where components en-
capsulating real-time control functionality are seamlessly integrated with web
services and the most common Java toolkits, such as the SWING framework for
developing graphical user interfaces.

The paper is organized as follows. Section 2 introduces the Service Oriented
Architecture and its main features. Section 3 briefly presents the Orocos con-
cepts that are useful for better understanding the paper. Section 4 describes
the architectural mismatches between SCA and Orocos and how JOrocos is de-



signed in order to define a bridge between the two component models. Section
5 presents a simple case study in which JOrocos is used for implementing an
application where SCA and Orocos components work together. Finally section
6 draws the relevant conclusion.

2 Service Component Architecture

Robot control applications are increasingly being developed as component-based
systems [4]. The reason is that, ideally, components embedding common robot
functionality should be reusable in different robot control systems and applica-
tion scenarios

This is achieved by clearly separating the component specification, which
should be stable [3], from its various implementations.

A component specification explicitly declares which functionality (provided
interfaces) are offered to its clients (code invoking an operation on some compo-
nent, not necessarily in a distributed environment), and the dependencies (re-
quired interfaces) to the functionality that are delegated to other components.

Separating component specification from its implementation is desirable for
achieving modular, interoperable, and extensible software and to allow indepen-
dent evolution of client and provider components. If client code depends only
on the interfaces to a component and not on the components implementation,
a different implementation can be substituted without affecting the client code.
Furthermore, the client code continues to work correctly if the component im-
plementation is upgraded to support an extended specification [4].

The Service Component Architecture defines a generalized notion of a com-
ponent, where provided interfaces are called Services and required interfaces are
called References. Services and references are thus typed by interfaces, which
describe sets of related operations that can be invoked synchronously or asyn-
chronously.

The communication between pairs of components (i.e. operation invocation)
occurs according to the specific binding protocol associated to services and refer-
ences. A single service or reference can have multiple bindings, allowing different
remote software to communicate with it in different ways, i.e. the WSDL binding
to consume/expose web services, the JMS binding to receive/send Java Message
Service, the Java RMI binding for classical caller/provider interactions.

The components in a SCA application might be built with Java or other
languages, or they might be built using other technologies, such as the Abstract
State Machines Language (ASML) [14][2]. Components can be combined into
larger structures called composites [13], that are to be deployed together and
that can themselves be further combined. Components in a composite might run
in the same process, in different processes on a single machine, or in different
processes on different machines.

The structure of SCA components and their interconnections are defined us-
ing an XML-based metadata language (SCDL), by which the designer specifies:
the set of services provided and the references required by each component; the



implementation of each service as a link to a Java or other programming lan-
guages file; the component properties, i.e. data for configuring the component
functionality, whose values are not hard-coded in the component implementa-
tion; the associations between references and services of different components;
the bindings that specify access mechanisms used by services and references
according to some technology/protocol; the aggregation of components in Com-
posites.

SCA is supported by graphical tools and runtime environments. The tools
build on the Eclipse Modeling Framework and allow the generation of a SCDL
configuration file from a graphical representation of components and systems.
SCA runtime environments, like Apache Tuscany and FRAscaTI, parse the con-
figuration file, instantiate the implementation of each component, assign values
to component properties, locate component services and references and create
bindings with pairs of services and references.

3 The Orocos framework

Orocos is one of the oldest open source framework in robotics, under development
since 2001, and with professional industrial applications and products using it
since about 2005. The focus of Orocos has always been to provide a hard real-
time capable component framework — the so-called Real-Time Toolkit (RTT)
implemented in C++ — and as independent as possible from any communication
middleware and operating system.

In the context of this paper, the following Orocos primitives are most relevant
for the development of real-time components3:

– TaskContext : this is the Orocos version of a component, providing the basic
infrastructure to make a system out of pieces of code that can interact with
each other via data and events, a default life cycle state machine, reporting
and timing support, an operating system abstraction layer, etc. The latter is,
for example, provided via the primitive of an Activity, that is being mapped
onto the process or threading system of the underlying operating system.

– Data Ports: components provide or request certain data types on their in-
terface, in order to allow data flow based application architectures. Such
architectures are very common in real-time control applications, since those
typically perform the same kind of operations and interactions all over again,
triggered by time or by hardware events. Hence, data flow is used for imple-
menting the business logic of real-time components as it allows the develop-
ers to guarantee that a set of operations will be executed in a fixed amount
of time: the period of the component. Figure 1 shows a system of Orocos
components connected through their data ports according to the data-flow
paradigm. It is taken from the Component Builder’s Manual3.

3 The technical details can be found on the project’s website, and more in particu-
lar in the The Orocos Component Builder’s Manual http://www.orocos.org/wiki/
orocos/toolchain/toolchain-reference-manuals.



Fig. 1: The Orocos Data Flow Oriented Architecture.

– Connection policy : while Orocos wants to be as independent as possible
from communication middleware (in order to let users make their choice
based on their own criteria), it does provide some “middleware” anyway,
for those interactions that take place in-process (for hard real-time data
exchange between threads). Ports hide the low-level locking primitives of
the underlying operating system, so that users don’t have to worry about
them, but the design goal of being able to guarantee real-time performance
is not well served by a complete shielding of the way Activities interact.
Hence, Orocos provides Lock free data Ports as one of its major features:
an Activity will never have to wait to get or read data when it needs them,
because Ports can be configured to copy their data when one or more other
Activities are also accessing the data.

– Services: Orocos implements the concept of services, which are containers
of operations. They are not used for implementing the kind of operations
that regard the business logic of the real-time components, but for exam-
ple for configuring their period or retrieving information about their status
(stopped, running, etc).

– Properties are part of the Service Configuration interface and are used to load
or tune application specific configurations at runtime (e.g. the parameters
of a PID).

4 SCA - Orocos Integration

In order to make possible the interaction between SCA and Orocos components
we had to face some architectural mismatches presented by the two frameworks.
In fact, despite both SCA and Orocos components interact by exchanging mes-
sages, the syntax and semantics of these messages is fundamentally different.

In SCA messages are used for invoking services provided by components. Ser-
vices are defined by explicit interfaces that completely describe the name of each
operation, its arguments and the return value (the signature of the method). The
message sent by the requester component to the provider component describes
which operation has to be executed and provides its parameters. Hence the ex-
ecution of the component functionality starts when the message is received.



In Orocos instead the communications are based on data flows and the mes-
sages are used for exchanging data. Components periodically elaborate data re-
ceived on the input ports and write their results on the output ports. This means
that the components business logic is regularly executed every T milliseconds,
where T is the period of the component.

This meaningful difference introduces two main problems:

1. How an invocation of a SCA service can produce an input that will be
processed in the next cycle of an Orocos component business logic?

2. How the data published on an Orocos output port can trigger the execution
of a SCA service?

Let’s introduce how we solved these problems by means of a simple scenario
in which two SCA components and an Orocos component cooperate in order
to move a Kuka youBot [9] towards a given position. The youBot is a mobile
manipulator with an omnidirectional and holonomic base and a five degrees of
freedom arm. The components are described below:

– A SCA component, called Locomotor, which provides a service for moving a
youBot towards a position defined by the client and monitoring its activity.
The component is in charge of transforming the given cartesian position
in a set of commands (joint positions), forwarding them to the robot and
retrieving its status. In order to do that the component requires two services,
which are provided by the driver of the robot for sending and receiving these
information.

– An Orocos component, called youBotDriver, which provides an input port
and an output port. The component implements the API of the youBot
and is in charge of actuating the axes in order to reach the joints positions
specified by the client on the input port. The output port is instead used for
periodically publishing the status of the robot, for example the position and
the velocity of the joints.

– A SCA component, called SCAyouBotDriver, which is implemented by using
the JOrcos library and represents a proxy to the youBotDriver component
within the SCA system.

The SCAyouBotDriver is described by means of the following interfaces:

– Provided interface sendingCommand. This interface provides a service for
receiving commands from the Locomotor and writing these commands on
the input port of the youBot Driver. The result is the activation of the
youBot Driver operations that are in charge of moving the robot.

– Provided interface retrievingStatus. This interface is invoked by the Loco-
motor. The SCA youBot Driver periodically checks and retrieves the new
data available on the youBot Driver output port. The interface provides the
operation for retrieving these values.



– Required interface notifying. This interface is provided by the Locomotor and
is used by the SCA youBot Driver for notifying some events. The possible
events are idle, busy, refresh. The component raises the event busy when it
starts the execution of an operation and the event idle when this operation
is completed. In this way the Locomotor knows whether the operation that
it requested is completed or not. The state refresh is instead raised when
new data are read from the youBot Driver output port.

Here is important to consider that in order to notify the Locomotor about
the availability of new data before the youBot Driver deadline, the SCA youBot
Driver should check the output port with a frequency at least two times greater
than the one of the Orocos component.

The components and the interfaces of this scenario are depicted in figure 2.

SCA youBot Driver

<< Component >>

youBot Driver

<< Component >>

retrievingStatus

JOrocos
communication

functionality

SCA
Orocos

sendingCommands

Locomotor

<< Component >>

commands

status

movingTo notifying

Fig. 2: The youBot Scenario

Another difference between SCA and Orocos regards the synchronization of
the component operations after the action of sending a message. In SCA it is
possible to define by means of an annotation whether the message is sent in
a synchronous or asynchronous way. In the first case the thread that sends the
message suspend itself until the result is returned. In the second case instead the
thread continues its execution without waiting for the return value. A callback
message will notify the component when the return value of the sent message will
be computed. In Orocos all the messages are sent in an asynchronous way. The
components read the data on the input ports and publish data on the output
ports without waiting for other component activities.

Our library face this problem by providing the possibility of reading data
from the Orocos output port in an asynchronous way, according to the Pub-
lish/Subscribe communication paradigm [6] (more information about the imple-
mentation will be described in the subsection 4.2). In this way both SCA and
Orocos component don’t have to wait after sending a message. However a syn-
chronous communication can always be defined in the implementation of SCA
youBot Driver.

The last mechanism provided by SCA that is not defined in Orocos is the
hierarchical composition of the components. In SCA this functionality is available
by using the concept of composite. A composite contains different components



and allows the developer to promote a set of their services in order to make them
accessible to the clients of the composite. In this way a composite can be reused
as a simple component in a more complex architecture.

Here is possible to leverage on this SCA mechanism and create compos-
ites that contains different bridges to Orocos components (like the SCA youBot
Driver) and promotes their operations as services. This approach is inspired by
the facade design pattern, which aims to provide a unified interface to a set of
interfaces in a subsystem [7]. In this way a single reusable SCA component, the
composite, can provide the functionality defined in several Orocos components
to its client.

4.1 The JOrocos library and its architecture

The JOrocos library offers a set of mechanisms that allow the implementation
of the proxies of Orocos components mentioned in the previous pages (e.g. SCA
youBot Driver). These mechanisms provide the functionality for reading and
writing on Orocos data ports, reading and writing Orocos properties and invok-
ing operations provided by Orocos components.

Another interesting mechanism offered by JOrocos is the introspection of
Orocos running components. It provides the functionality for discovering at run-
time which components are available, their ports, their operations and their
properties. This mechanism allows the development of systems more complex
than the scenario defined in introduction of this section: systems in which the
SCA composite doesn’t have a priori knowledge of the Orocos components and
configures itself at runtime according to the information retrieved through the
introspection. For example, with reference to the previous scenario, it will be
possible to design a system in which the SCA composite doesn’t know at com-
pile time which robot has to be controlled. This information will be retrieved at
runtime by introspecting the current Robot Driver component and according to
its ports the SCA Robot Driver will configure itself.

This functionality is realized on the top of Corba, the middleware that Oro-
cos uses for exchanging messages between distributed components. Corba doesn’t
guarantee the respect of real-time constraints and for this reason when the com-
munication between Orocos components has to be real-time the components
have to run on the same machine. In this way the communication between the
local components doesn’t rely on Corba and so the respect of the real-time con-
straints is not compromised. In the same way the use of Corba is not a problem
for our integration because the real-time components will be implemented by
using Orocos and will run on the same machine.

The architecture of the library is depicted in the UML class diagram reported
in figure 3. As showed in the diagram the classes of the library are organized in
two main packages: core and corba.

– The core package contains the classes that store data structures and offer
operations that are middleware independent. These classes define the core
of the library and represent the main entities of an Orocos system.



Fig. 3: The JOrocos Architecture

– The corba package contains instead the classes whose methods provide a set
of operations that are corba specific.

The classes of the core package whose name starts with the word Abstract
are abstract classes and have to be extended in order to provide the functionality
that are middleware specific. They represent proxies of Orocos entities and offer
methods for introspecting them and interacting with them. The other classes of
the package are instead completely middleware independent.

The idea is that the separation of the middleware-independent parts (core
package) from the middleware-specific parts (corba package) will allow in fu-
ture an easier extension of the library in order to provide a support for other
middlewares.

The main class of the library is named AbstractOrocosSystem. It offers the
functionality that allows a developer to connect his software to a running Orocos
system, introspect its components and retrieve references to them.

An AbstractOrocosComponent is a proxy to an Orocos component and allows
the clients to introspect its data ports and its own service. The class offers the
operations for creating connections to Orocos ports and writing and reading data
on these ports.

The data port of an Orocos component are represented by means of the
class OrocosDataPort. The interaction with these ports is made available by
the class AbstractOrocosConnection, which provides the channel that allows the
operations of writing data on the output ports and reading data from the input
ports.

An AbstractOrocosService is a proxy to an Orocos service and offers the
functionality for introspecting and invoking its operations and introspecting,
reading and writing its properties.

The operations of an Orocos service are represented by means of the class
OrocosOperation. The properties are instead described by means of the class
OrocosProperty.



4.2 The SCA-OROCOS component

In this subsection we will explain how the interaction between Java and Orocos
works and how the component SCA youBot Driver is implemented. The code
reported in the listing 1.1 shows the interfaces of the services provided by the
component. The annotation @Callback defines the interface that will be used
for notifying the events to the Locomotor. The annotations @OneWay instead
means that the invocation of method will be asynchronous.

1 public interface retrievingStatus{
2 public double[] getJointsPositions();
3 }
4 @Callback(Notifying.class)
5 public interface SendingCommands {
6 @OneWay
7 public void setJointsPositions(double[] values);
8 }

Listing 1.1: The interfaces of the SCA youBot Driver services

The listing 1.2 reports the variables declared in the implementation of the
SCA youBot Driver component.

1 @Service(interfaces={retrievingStatus.class,SendingCommands.class})
2 public class SCAYouBotDriver implements retrievingStatus,SendingCommands,Observer{
3 @Property
4 protected String orocosIP;
5 @Property
6 protected String orocosPort;
7 @Callback
8 protected Notifying locomotor;
9 private AbstractOrocosSystem orocosSystem;

10 private AbstractOrodocComponent youBotDriver;
11 private double[] jointsPosition;

Listing 1.2: Part of the implementation of the SCA youBot Driver component

The class implements the interface java.util.Obsever (Observer design pat-
tern [7]), which defines a method for being notified when a new data is available
on an Orocos output port. Furthermore the class implements the two interfaces
that describe the services.

The first line is a SCA annotation that defines the interfaces of the services
of the component. The lines from 3 to 6 declare two SCA properties used for
configuring the IP address and the port number of the Corba name service, lines
7 and 8 instead declare a reference to the SCA callback interfaces.

Read and write data on Orocos data ports The JOrocos library allows
both the operations of reading and writing on an Orocos data port. In order to
be executed these operations require a connection between the java client and
the Orocos port. Two types of connections are available: data and buffer. On a
data connection the reader has access only to the last written value whereas on
a buffer connection a predefined number of values can be stored.



The listing 1.3 reports the constructor of the class SCA youBot Driver in
which the connections to the port are created.

1 public SCAYouBotDriver(){
2 orocosSystem = CorbaOrocosSystem.getInstance(orocosIP,orocosPort);
3 orocosSystem.connect();
4 youBotDriver = orocosSystem.getComponent(”youBotDriver”, false);
5 youBotDriver.createDataConnectionToInputPort(”commands”, LockPolicy.LOCK_FREE, this);
6 youBotDriver.subscribeToDataOutputPort(”joinstStatus”, LockPolicy.LOCK_FREE, this, 500);
7 }

Listing 1.3: The implementation of the service SubscribingTojoinstStatusPort

– Lines 2-3 retrieve a reference to an Orocos running system and create a
connection to it.

– Lines 4 retrieves a reference to the youBot Driver component.
– Line 5 creates a data connection to the input port commands of the Orocos

component youBot Driver.
– Line 6 creates a data connection to the output port status and starts a

thread that periodically check if new data are available on the port. This
functionality is implemented in JOrocos (methods subscribeToDataOutput-
Port and subscribeToBufferOutputPort). In this case a data connection with
a lock free policy is created. The third parameter specifies the Observer ob-
ject that will be notified when new data will be available on the port (in this
case it is the component). Finally the last parameter defines the frequency
with which the availability of new data on the port will be checked (it is
expressed as period in milliseconds).

Once the component is subscribed to the output port it will be notified as
soon as a new data will be available by means of the method update (inherited
from the Observer interface). The implementation of this method is reported in
the listing 1.4. It simply stores the new data on the variable jointsPosition and
notifies the Locomotor that new data are available.

1 public void update(Observable arg0, Object arg1) {
2 OrocosPortEvent event = ((OrocosPortEvent)arg1);
3 jointsPosition = ((YouBotStatus)event.getValue()).getJointsPosition;
4 locomotor.notify(”refresh”);
5 }

Listing 1.4: The implementation of the method update

From this moment the Locomotor can retrieve the new data through the op-
eration provided by the interface retrievingStatus. Its implementation is reported
in the listing 1.5. It simply returns the position of the joints.

1 public double[] getJointsPositions() {
2 returns joinstPosition();
3 }

Listing 1.5: The implementation of the service SubscribingTojoinstStatusPort



The listing 1.6 reports instead the implementation of the operation defined
in the service sendingCommands. The purpose of this operation is writing the
data received from the Locomotor to the Orocos output port. The component
first notifies the Locomotor that the operation is started, then writes the values
on the commands port and finally notifies the Locomotor that the operation is
completed.

1 public void setJointsPositions(double[] values) {
2 locomotor.notify(”busy”);
3 youBotDriver.writeOnPort(”commands”, values, this);
4 locomotor.notify(”idle”);
5 }

Listing 1.6: The implementation of the service sendingCommands

The operations of writing and reading data support both simple and complex
data types and respectively receive as parameter and return as result instances
of the class Object. In this context corba introduced two issues:

1. Corba returns references to the requested objects as instances of the class
Any. Hence the result of a read operation is an Any object, whereas we want
to return a more general Object instance.

2. The cast from Any to the right type is possible only by means of the “Helper”
classes that are automatically generated from the IDL-to-Java compiler.
However we cannot know every possible data type a priori and consequently
implement all the possible cast in the code of our library.

We solved these two problems by means of the Java reflection. Indeed, in
the code of the write and read operations we retrieve the class name from the
object that has to be written (in the case of the write operations) or from the
Any object (in the case of the read operations). Then we use the name of the
class for loading at runtime the right “Helper” class and using its static method
for casting Any to Object or vice versa. The listing 1.7 shows how our library
casts an Any to an Object.

1 // value is the object that has to be written
2 String className = value.getClass().getName(); + ”Helper”;
3 Class<?> helper = Class.forName(className);
4 Method castMethod = helper.getMethod(”insert”, Any.class, value.getClass());
5 // the insert method inserts value in the any object received as second parameter
6 castMethod.invoke(null, any,value);

Listing 1.7: The Any to Object cast

5 The case study

In order to test the functionality provided by JOrocos we have implemented
a simple case study application. It is similar to the scenario introduced in the
section 4 but the Locomotor component is replaced by a graphical interface



(youBot Monitor component), which is in charge of plotting the current state of
the joints and allowing the user to set the period (inverse of frequency with which
the operations of the component is executed) of the youBot Driver component.

The youBot Driver is currently a dummy component. Indeed we are working
on its implementation in the context of the European project BRICS (Best of
Robotics [1]), but unluckily it is not ready yet. The dummy component pub-
lishes on the output port a set of random values that describe for each joint
position, velocity, current, temperature and error flag (10 bits that provide in-
formation about a set of possible errors). For the purpose of the test it doesn’t
matter whether the values published on the port a real or random. In fact we
are only interested in testing the communication between SCA and the Orocos
components.

The youBot Driver component has a new input port called period. When a
new data is written on this port the component set its period according to the
value of this new data. Due to this new port also the SCA youBot Driver has a
new provided interface named settingPeriod. It provides a service for receiving
a new period value from the youBot Monitor and writing it on the input port
of the youBot Driver.

The youBot Monitor component has two required interfaces that correspond
to the provided interfaces of the SCA youBot Driver. It also provides the notify-
ing interface, which is used by the SCA youBot Driver for notifying its events.

The SCA components and the Orocos component run on two different ma-
chines: the last one on board of the robot whereas the other two on the supervisor
workstation.

The implementation of the SCA youBot Driver component is very similar
to the one reported in section 4. The youBot Monitor component is instead
implemented by using the Java SWING and provides several tabs. In the main
tab a set of global information about the state of the joints is showed. This tab
also allows the configuration of the youBot Driver period. The other tabs instead
provide information about a specific joint and plot on a set of charts the trend
of the joint values. The graphical interface is depicted in figure 4.

This case study demonstrated how JOrocos makes possible and simple the
communication and the cooperation between SCA and Orocos. By writing few
lines of Java code we were able to retrieve data from the Orocos output port and
set the period of the youBot Driver component. Furthermore we didn’t have to
care about the location of the components on the network (except for setting
the IP address and the port of the name service) and the different programming
language used for implementing the Orocos component.

6 Conclusions

In this paper we have discussed the problem of making possible the cooperation
between Service Oriented Architectures (SOA) and Data Flow Oriented Archi-
tectures in the robotics field. In particular we have focused our attention on SCA
and Orocos, the first a component based SOA and the second an hard real-time



(a) Global status (b) Joint 1 charts

Fig. 4: The graphical interface

component based robotics framework. We have presented a set of architectural
mismatches between the two component models and a java-based library, named
JOrocos, which allows the developers to bridge these differences by defining prox-
ies components. We have also provided a guideline for the development of these
proxies and we have applied it in a case study.

The first mismatch regarded the syntax and the semantics of the messages
exchanged between the components in the two frameworks. Here JOrocos pro-
vides to the developers the mechanisms for allowing the communication between
SCA and Orocos components and translating SCA messages to Orocos messages
and vice-versa. However JOrocos doesn’t provide the possibility of directly con-
necting a SCA Service (or Reference) to an Orocos Port. The developer has to
define, according to our guideline, a proxy component which provides input to
the Orocos component when one of its services is invoked and invoke a service
of its client (the SCA component) when the Orocos component produces data
on the output port. In this direction a possible improvement will consist of (a)
using JOrocos for extending the SCA runtime in order to define a new binding
for Orocos and (b) extending the SCA composite designer for supporting this
new binding. These extensions will replace the role of the proxy components and
will allow the developer to directly connect SCA and Orocos components.

The second mismatch was about the synchronization of the component op-
erations after the action of sending a message. Here JOrocos doesn’t provide the
possibility of choosing a specific synchronization mechanism. In order to permit
both synchronous and asynchronous way, a specific synchronization mechanism
has to be implemented in the proxy components. For example, in our scenario we
have demonstrated how it is possible to send messages synchronously and asyn-
chronously. Indeed the operation of retrieving the robot status is executed by
the SCA youBot Driver in a synchronous way, whereas the operation of sending
commands in an asynchronous way.

Finally the last mismatch concerns the absence of an hierarchical composition
mechanism in Orocos. Here JOrocos allows the developers to leverage on the



SCA composition mechanism for encapsulating several Orocos proxies in SCA
composites and reusing them in complex and hierarchical systems.

7 ACKNOWLEDGMENTS

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

The authors would like to thank all the partners of the BRICS project for
their valuable comments.

References

1. BRICS - Best of Robotics. http://www.best-of-robotics.org/.
2. D. Brugali, L. Gherardi, E. Riccobene, and P. Scandurra. A formal framework

for coordinated simulation of heterogeneous service-oriented applications. In 8th
International Symposium on Formal Aspects of Component Software (FACS), 2011.

3. D. Brugali and P. Salvaneschi. Stable aspects in robot software development.
International Journal on Advanced Robotic Systems, 3(1):17 –22, march 2006.

4. D. Brugali and P. Scandurra. Component-based robotic engineering, part I:
Reusable building block. Robotics & Automation Magazine, IEEE, 16:84–96, 2009.

5. R. de Molengraft, van, M. Beetz, and T. Fukuda. A special issue toward a www
for robots. Robotics Automation Magazine, IEEE, 18(2):20, june 2011.

6. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces of pub-
lish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

7. E. Gamma. Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

8. E. Marks and M. Bell. Service-Oriented Architecture (SOA): A planning and im-
plementation guide for business and technology. John Wiley & Sons, 2006.

9. KUKA youBot store. http://youbot-store.com/.
10. O. Mozos, Z.-C. Marton, and M. Beetz. Furniture models learned from the www.

Robotics Automation Magazine, IEEE, 18(2):22 –32, june 2011.
11. Open Robot Control Software. http://www.orocos.org.
12. Service Component Architecture (SCA). http://www.osoa.org.
13. SCA Specifications - SCA Assembly Model. http://www.osoa.org/display/Main/

The+Assembly+Model.
14. P. Scandurra and E. Riccobene. A modeling and executable language for designing

and prototyping service-oriented applications. In EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2011), 2011.

15. M. Tenorth, U. Klank, D. Pangercic, and M. Beetz. Web-enabled robots. Robotics
Automation Magazine, IEEE, 18(2):58 –68, june 2011.

16. T. Yoshimi, N. Matsuhira, K. Suzuki, D. Yamamoto, F. Ozaki, J. Hirokawa, and
H. Ogawa. Development of a concept model of a robotic information home appli-
ance, aprialpha. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 1, pages 205 – 211, 2004.


