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Abstract

In this paper we review a recently introduced method for solving the Hamilton-
Jacobi equations by the method of Separation of Variables. This method is based
on the notion of pencil of Poisson brackets and on the bihamiltonian approach
to integrable systems. We discuss how separability conditions can be intrinsically
characterized within such a geometrical set-up, the definition of the separation
coordinates being encompassed in the bihamiltonian structure itself. We finally
discuss these constructions studying in details a particular example, based on a
generalization of the classical Toda Lattice.
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1 Introduction

The study of the separability of the Hamilton–Jacobi (HJ) equations associated with a
given Hamiltonian function H is a very classical issue in Mechanics, dating back to the
foundational works of Jacobi, Stäckel, Levi-Civita, and others. It has recently received
a strong renewed interest thanks to its applications to the theory of integrable PDEs of
KdV type (namely, the theory of finite gap integration) and to the theory of quantum
integrable systems (see, e.g., [14, 41]).

As it is well known, the problem can be formulated as follows. Let (M,ω) be a 2n
dimensional symplectic manifold, and let (p1, . . . , pn, q1, . . . , qn) ≡ (p,q) be canonical
coordinates in U ⊂M , i.e., ω|U =

∑n

i=1 dpi ∧ dqi. The (stationary) HJ equation reads

H(q1, . . . , qn;
∂S

∂q1
, . . . ,

∂S

∂qn
) = E . (1.1)

Definition 1.1 A complete integral S(q;α1, . . . , αn) of the HJ equation is a solution of
(1.1), depending on n parameters (α1, . . . , αn) such that Det ∂2S

∂qi∂αj
6= 0. The Hamiltonian

H is said to be separable in the coordinates (p,q) if the HJ equation admits an additively
separated complete integral, that is, a complete integral of the form

S(q;α1, . . . , αn) =
n
∑

i=1

Si(qi;α1, . . . , αn). (1.2)

In this paper we will focus on an equivalent definition of separability, originally due to
Jacobi and recently widely used by Sklyanin and his collaborators. Let us consider an
integrable Hamiltonian H, that is, let us suppose that, along with H = H1 we have
further (n− 1) mutually commuting integrals of the motion H2, . . . Hn, with dH1 ∧ . . .∧
dHn 6= 0.

Definition 1.2 An integrable system (H1, . . . , Hn) is separable in the coordinates (p,q)
if there exist n non-trivial relations

Φi(qi, pi;H1, . . . , Hn) = 0, i = 1, . . . n , (1.3)

connecting single pairs (qi, pi) of canonical coordinates with the n Hamiltonians Hi.

This alternative definition is indeed a constructive approach to separability, since the
knowledge of the separation relations (1.3) allows one to reduce the problem of finding
a separated solution of HJ to quadratures. In fact, let us suppose that the relations
Φi(qi, pi;H1, . . . , Hn) = 0, for i = 1, . . . , n, can be solved in terms of the pi to get
pi = pi(qi;H1, . . . , Hn). Then one can define:

S(q;α1, . . . , αn) =
n
∑

i=1

∫ qi

pi(q
′
i;H1, . . . , Hn)∣

∣

Hi=αi

dq′i . (1.4)
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This is by construction a separated solution of HJ; the fact that it is a complete integral
is equivalent to the (already assumed) fact that the integrals of the motion depend non
trivially on the momenta.

In intrinsic terms, one notices that the equations Hi = αi, for i = 1, . . . , n, define a
foliation F of M . The leaves of F are nothing but the (generalized) tori of the Arnol’d-
Liouville theorem. The foliation is Lagrangian, that is, the restriction of the two-form
ω to F vanishes. Hence the restriction to F of the Liouville form θ =

∑n

i=1 pidqi is
(locally) exact. Indeed, the function S defined by (1.4) is a (local) potential for such
restriction. What is non intrinsic, and singles out the separation coordinates (p,q),
is that the separation relations (1.3), which are another set of defining equations for
the foliation F , have the very special property of containing a single pair of canonical
coordinates at a time. The problem to find such a system of coordinates and relations
is the core of the theory of SoV. In particular, a natural question arises:

Is it possible to formulate intrinsic condition(s) on the Hamiltonians (H1, . . . , Hn) to
a priori ensure separability in a (given) set of canonical coordinates?

Actually, this is the main issue studied by both the ‘classical’ Eisenhart-Benenti the-
ory [6] of separability of natural systems defined on cotangent bundles to Riemannian
manifolds (M, g), as well as the ‘modern’ theory, mainly due to the St. Petersburg [41]
and Montreal [1, 26] schools, of SoV for systems admitting a Lax representation. We no-
tice that both such general approaches require the presence of an additional structure to
solve the problem. Indeed, the Eisenhart-Benenti theory requires the existence of a con-
formal Killing tensor for the metric g, while the Lax theory requires – in addition to the
knowledge of a Lax representation with spectral parameter for the Hamiltonian system
under study – the existence of an r–matrix structure for such a Lax representation.

The method we review in this paper has recently been exposed in the literature
(see, e.g., [9, 37, 7, 17, 8, 27, 16, 38, 39, 21, 5, 18, 19]), and can be seen as a kind of
bridge between the classical and the modern points of view, putting an emphasis on the
geometrical aspects of the Hamiltonian theory. Its ‘additional’ structure is simply the
requirement of the existence, on the symplectic manifold (M,ω), of a second Hamiltonian
structure, compatible with the one defined by ω. Namely, the bihamiltonian structure
on M will allow us:

1. To encompass the definition of a special set of coordinates, to be called Darboux–
Nijenhuis (DN) coordinates, within a well defined geometrical object.

2. To formulate intrinsic (i.e., tensorial) conditions for the separability of a Hamilto-
nian integrable system, in the DN coordinates associated with the bihamiltonian
structure.

3. To give recipes to characterize, find and handle sets of DN coordinates.

A very important issue that is close to the separability problem is the notion of
algebraically completely integrable Hamiltonian systems (see, e.g., [3]). In general, a
(Hamiltonian) system is said to be algebraically integrable whenever its flow(s) linearize
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on the Jacobian variety of an algebraic curve (the spectral curve). The latter is usually
recovered as the characteristic polynomial of the Lax matrix of the system (provided the
latter is known/given), and the integration of the equation of motion reconducted to a
Jacobi inversion problem.

It is fair to say that in the bihamiltonian setting we are herewith discussing we are,
so far, not able to provide general criteria for the algebraic integrability of our systems.
However, as we shall see below, we are in a position to make contact with the problem
of algebraic integrability, at least in the (slightly different and weaker) setting of Veselov
and Novikov [44], that can be summarized as follows.

Given a Hamiltonian systems one assumes that the phase space M fulfills the follow-
ing properties:

a) M has the fibered structure

M
SkΓ
−→B, (1.5)

where the base B is an n-dimensional manifold whose points b determine an al-
gebraic curve Γ(b), and the fiber is the k–th symmetric product of that curve. In
more details, one requires that Γ(b) be given as an m–sheeted covering Γ(b)

m
−→C

of the complex λ-plane, and that points of M can be parameterized via the curve
Γ(b), and a set of k points on it, that is, the coordinates λ1,. . . ,λk of the projection
on the λ-plane of a set of points on it, as well as discrete parameters ǫi that specify
on which sheet of the covering the points live.

b) An Abelian differential Q(Γ) on Γ (or possibly on a covering of Γ), smoothly de-
pending on the point b ∈ B, is defined. It is furthermore required that, if Q(Γ) is
given by

Q(Γ) = Q(b;λ)dλ (1.6)

according to the representation of Γ as a covering of the λ-plane, the closed two-
form

ωQ =
k
∑

i=1

dQ(b;λi) ∧ dλi (1.7)

gives rise to a Poisson bracket, conveniently called algebro-geometric Poisson bracket,
with λi and µi = Q(b;λi) playing the role of Darboux coordinates on the symplectic
leaves of this bracket.

In such a case, it was proven in [44] that functions that depend only on the curve Γ
– i.e., on the points of B – are in involution with respect to the Poisson bracket de-
fined by (1.7), and these geometric data explicitly define action-angle variables for the
corresponding Hamiltonian flows. Moreover, Sklyanin’s method [41] of the poles of the
Baker-Akhiezer function can be seen as a particularly efficient scheme of implement-
ing the Veselov–Novikov axiomatic picture. In [22] we studied some relations between
the bihamiltonian approach to SoV and the Veselov-Novikov description of algebraic
integrability, especially within the example of the Volterra lattice.
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As far as the organization of this paper is concerned, in Section 2 we briefly intro-
duce the notions of bihamiltonian geometry relevant for the subsequent sections. In
particular, we discuss the notion of DN coordinates, as well as methods to find them.
In Section 3 we present the main theorems of the bihamiltonian set-up for SoV, namely,
the tensorial conditions ensuring separability of the HJ equations in DN coordinates.
Section 4 is devoted to separable systems coming from bihamiltonian systems by means
of a reduction along a suitable transversal distribution. Then we discuss our construc-
tions in a specific example, whose separability, to the best of our knowledge, has not
been considered in the literature yet. It is a generalization of the periodic Toda lattice
with four sites. In Section 5 we recall its definition, and show how the “bihamiltonian
recipe” for SoV can be applied to it. Although our constructions can be generalized to
the generic N -site system, for the sake of concreteness and brevity we choose to consider
the four-site system only, and sometimes rely on direct computations to prove some of its
properties. In the last subsection we apply our geometrical scheme to study a specific
reduction of this generalized Toda system, and to find integrals of the motion which
are not encompassed in the Lax representation. This result can possibly be a suitable
step towards an alternative approach to the so–called chopping method [12] for the full
(non-periodic) Toda Lattice.

2 Some issues in the geometry of bihamiltonian man-

ifolds

We start this section recalling some well known facts in the theory of Poisson manifolds
(see, e.g., [43]).

Definition 2.1 A Poisson manifold (M, {·, ·}) is a manifold endowed with a Poisson
bracket, that is, a bilinear antisymmetric composition laws defined on the space C∞(M)
satisfying:

1. The Leibniz rule: {fg, h} = f{g, h} + g{f, h};

2. The Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0.

A Poisson bracket (or Poisson structure) can be equivalently described with the corre-
sponding Poisson tensor, i.e., with the application P : T ∗M → TM , smoothly varying
with m ∈M , defined by

{f, g} = 〈df, Pdg〉,

where 〈·, ·〉 denotes the canonical pairing between T ∗M and TM . In a given coordinate
system (x1, . . . , xn) on M , the Poisson tensor P associated with the Poisson bracket
{·, ·} is represented as

P =
n
∑

i,j=1

P ij ∂

∂xi

∧
∂

∂xj

, with P ij = {xi, xj}.
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The Jacobi identity is translated into a quadratic differential condition on the matrix
(P ij), known as the vanishing of the Schouten bracket, which in local coordinates reads

n
∑

s=1

(

P is∂P
jk

∂xs
+ P js∂P

ki

∂xs
+ P ks∂P

ij

∂xs

)

= 0, ∀ i > j > k. (2.1)

A function in C∞(M) is said to be a Casimir function if its Poisson bracket with any
other function on M vanishes, or, equivalently, if its differential lies in the kernel of P .

The local structure of a Poisson manifold is described in details in [45, 14, 43]. For
our purposes, we just need to recall that (in the open subset of M where the rank r = 2n
of the Poisson tensor is maximal) M is foliated in symplectic leaves, that (locally) are
the common level sets of k Casimir functions C1, . . . , Ck of P . The dimension of M is
related with the integers n and k by dimM = k + 2n.

Let us now come to the definition of bihamiltonian manifold.

Definition 2.2 A manifold M is called a bihamiltonian manifold if it is endowed with
two Poisson brackets {·, ·} and {·, ·}′ such that, for any λ ∈ R (or λ ∈ C if M is
complex), the linear combination

{f, g}′ − λ{f, g} ≡ 〈df, (P ′ − λP )dg〉 (2.2)

defines a Poisson bracket. This property is known as the compatibility condition between
the two brackets.

The expression (2.2) will be referred to as pencil of Poisson brackets, and the sum
Pλ = P ′ − λP as pencil of Poisson tensors. The most ‘popular’ property of bihamil-
tonian manifolds is contained in the following

Proposition 2.3 Let f and f ′ be two functions on a bihamiltonian manifold M , which
satisfy the characteristic condition Pdf = P ′df ′. Then the Poisson brackets {f, f ′} and
{f, f ′}′ vanish.

Proof. It consists of a one-line computation. Let us consider, e.g., {f, f ′}:

{f, f ′} = 〈df, Pdf ′〉 = −〈df ′, Pdf〉 = −〈df ′, P ′df ′〉 = 0.

The vanishing of the other Poisson bracket is even easier.

�

Definition 2.4 A vector field X that can be written as X = Pdf = P ′df ′ is called a
bihamiltonian vector field.

Corollary 2.5 Let fi, with i ∈ Z, be a sequence of functions satisfying

Pdfi = P ′dfi−1. (2.3)

Then {fi, fk} = {fi, fk}
′ = 0 for all i, k ∈ Z.

6



Proof. Using twice equation (2.3) and the antisymmetry of the Poisson brackets we
have

{fi, fk} = 〈dfi, Pdfk〉 = 〈dfi, P
′dfk−1〉 = −〈dfk−1, P

′dfi〉

= −〈dfk−1, Pdfi+1〉 = 〈dfi+1, Pdfk−1〉 = {fi+1, fk−1}.

Supposing k > i and iterating this procedure (k− i) times, we get {fi, fk} = {fk, fi}, so
that {fi, fk} = 0. The vanishing of {fi, fk}

′ is an easy consequence.

�

Using the same technique, we can prove

Amplification 2.6 Let {fn}n≥0 and {gn}n≥0 be two sequences of functions satisfying

Pdfi = P ′dfi−1, Pdf0 = 0; Pdgi = P ′dgi−1, Pdg0 = 0. (2.4)

Then, along with {fn, fm} = {fn, fm}
′ = {gn, gm} = {gn, gm}

′ = 0, it holds

{fn, gm} = {fn, gm}
′ = 0 ∀n,m ≥ 0.

The family of vector fields associated with a sequence of functions satisfying the recursion
relations (2.3) are customarily said to form a Lenard-Magri sequence. Those sequences
starting from the null vector field, as in Amplification 2.6, are pictorially called an-
chored Lenard-Magri sequences. Notice that anchored Lenard sequences can occur in
bihamiltonian manifold where at least one of the Poisson brackets is non-symplectic
(indeed, e.g., df0 is a non-trivial element of the kernel of P ). We can compactly express
equations (2.4) relative, say, to the sequence fi by considering the formal Laurent series
f(λ) =

∑∞
i=0 fi/λ

i and writing the equation

(P ′ − λP )df(λ) = 0. (2.5)

If, as it often happens in the applications, inside the family fi we have an element fn

satisfying P ′dfn = 0, we can form a polynomial Casimir of the pencil as

F (λ) = λnf0 + λn−1f1 + · · · + fn. (2.6)

In analogy with the definition of Casimir of a Poisson bracket, Laurent series satis-
fying (2.5) are called Casimirs of the Poisson pencil. The reader should, however, bear
in mind that while Casimir functions for a single Poisson bracket are, in a sense, unin-
teresting functions, Casimirs of a pencil of Poisson bracket compactly encode non-trivial
dynamics and constants of the motion. More precisely, anchored Lenard sequences may
give rise to families of integrable systems. Let us see how this happens in the case of a
(2n + 1)-dimensional manifold endowed with a rank-2n pencil of Poisson tensors. Let
us suppose that we have found a polynomial Casimir of the form (2.6), such that the
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(n + 1) functions f0, . . . , fn are independent. Let Sc be a generic symplectic leaf of P ,
corresponding to f0 = c. The vector fields Xfi

, with i = 1, . . . , n, are tangent to Sc, are
Hamiltonian on Sc (with respect to the symplectic form given by the restriction of P ),
and the restrictions of the functions f1, . . . , fn provide n commuting integrals for each
of them. In general, it holds [23, 24]:

Proposition 2.7 Let (M,P, P ′) be a bihamiltonian manifold of dimension d = 2n +
k, and let dim(Ker(P ′ − λP )) = k for generic values of λ. Let us suppose that
H(1)(λ), . . . , H(k)(λ) are k polynomial Casimirs of the pencil Pλ of the form

H(a)(λ) = λnaH
(a)
0 + λna−1H

(a)
1 + · · · +H(a)

na
,

such that the collection of differentials {dH(a)
j }a=1,...,k

j=0,...na
defines a (k + n)-dimensional

distribution in T ∗M . Then the vector fields defined by the anchored sequences associated
with the H(a) are integrable (in the Arnol’d-Liouville sense) on the generic symplectic
leaves of P .

2.1 Geometry of regular bihamiltonian manifolds and Darboux-
Nijenhuis coordinates

An important class of bihamiltonian manifold occurs when an element of the Poisson
pencil (which without loss of generality we will assume to be P ) is everywhere invertible,
i.e., the Poisson bracket {·, ·} associated with P is symplectic. The possibility of defining
the inverse to one of the Poisson tensors leads us to introduce a fundamental object in
the bihamiltonian theory of SoV: the Nijenhuis (or Hereditary, or Recursion) operator

N = P ′ P−1, (2.7)

together with its transpose N∗ = P−1 P ′. By definition, N (resp., N∗) is an endomor-
phism of the tangent bundle to M (resp., of the cotangent bundle). As a remarkable
consequence of the compatibility between P and P ′, the Nijenhuis torsion of N , defined
by its action on a pair of vector fields X, Y as

T (N)(X, Y ) = [NX,NY ] −N([NX, Y ] + [X,NY ] −N [X, Y ]), (2.8)

identically vanishes [33]. So, from the classical Frölicher-Nijenhuis theory, we know that
its eigenspaces are integrable distributions. Such distributions will be the building blocks
of the bihamiltonian set-up for SoV.

To explain this point, we have to make some remarks and a genericity assumption.
It can be shown that, owing to the antisymmetry of the Poisson tensors defining N , the
eigenspaces of N are pointwise even dimensional. Throughout this paper, we will assume
that, for generic points m ∈M , the operator Nm has the maximal number n = 1

2
dimM

of different eigenvalues λ1, . . . , λn, so that the dimension of the eigenspace relative to
any eigenvalue is 2. Otherwise stated, the characteristic polynomial of N is the square
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of its degree-n minimal polynomial ∆N(λ), whose roots are pairwise distinct. We will
call regular a bihamiltonian manifolds endowed with a Poisson pencil with at least one
of the elements of the Poisson pencil invertible, and such that the eigenvalues of the
associated Nijenhuis tensor are maximally distinct.

Theorem 2.8 On a regular bihamiltonian manifold there exists a class of coordinates
(yi, xi), to be called Darboux–Nijenhuis (DN) coordinates, satisfying the two properties:

(Darboux) They are canonical, that is, {xi, yj} = δij, {xi, xj} = {yi, yj} = 0.

(Nijenhuis) They diagonalize N , that is, N =
∑

i λi

( ∂

∂yi

⊗ dyi +
∂

∂xi

⊗ dxi

)

.

The proof of this theorem can be found in [30, 23]. Here we will sketch it and discuss its
meaning. In words, the assertion states that DN coordinates are defined by the spectral
properties of N , as follows. For all m in the open set U where the eigenvalues λi of N
(which are the same as the eigenvalues of N∗) satisfy λi 6= λj for i 6= j, the cotangent
space T ∗

mM admits the decomposition

T ∗
mM = ⊕n

i=1Dm,λi
, dim Dm,λi

= 2, (2.9)

into eigenspaces of N∗. Thanks to the vanishing of the torsion of N , each eigenspace
Dm,λi

is locally generated by differentials of pairs of independent functions (fi, gi). This
means that the pointwise decomposition (2.9) holds (in U ′ ⊂ U) as

T ∗M|U′
= ⊕n

i=1Dλi
,

where Dλi
is spanned by dfi and dgi, with N∗dfi = λidfi and N∗dgi = λidgi.

Functions whose differential belong to different summands Dλi
are in involution with

respect to the Poisson brackets defined both by P and P ′. Indeed, suppose that f1 and
f2 satisfy N∗df1 = λ1df1 and N∗df2 = λ2df2, with λ1 6= λ2. The relation N∗ = P−1P ′

implies that P ′df1 = λ1Pdf1 and P ′df2 = λ2Pdf2. So,

{f1, f2}
′ =

{

〈df1, P
′df2〉 = λ2〈df1, Pdf2〉 = λ2{f1, f2}

−〈df2, P
′df1〉 = −λ1〈df2, Pdf1〉 = λ1{f1, f2}

whence the assertion. It is equally straightforward to realize that the only non vanishing
Poisson brackets have the form

{fi, gi} = Fi(fi, gi), {fi, gi}
′ = F ′

i (fi, gi), i = 1, . . . , n.

This means that from the n pairs of functions (fi, gi) we can construct by quadratures a
set of canonical coordinates satisfying the Nijenhuis property of Theorem 2.8. Thus the
class of coordinates where to frame the bihamiltonian set-up for SoV admits a clearcut
and simple geometrical description. Admittedly, in the general case the computation
of DN coordinates requires the integration of the two-dimensional distributions Dλi

associated with the eigenvalues λi of N∗. Fortunately enough, there are instances (that
frequently occur in the applications) in which DN coordinates can be found in an easier
way.

For an analysis of Darboux-Nijenhuis coordinates within the theory of multi-hamiltonian
structure on loop algebras, see [17, 11, 25].
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2.2 On Darboux-Nijenhuis coordinates

In this subsection we will briefly discuss conditions and ‘recipes’ to algebraically find
and/or characterize sets of Darboux-Nijenhuis coordinates on regular bihamiltonian
manifolds. A very simplifying instance occurs whenever the eigenvalues λi of N (that
are, in general, functions of the point m ∈ M) are functionally independent. It holds
(see, e.g., [32]):

Proposition 2.9 Let us define Ik = 1
2k

TrNk for k = 1, . . . , n. In the open set U where
dI1 ∧ · · · ∧ dIn 6= 0 the eigenvalues λi , i = 1, . . . , n, are functionally independent, satisfy
N∗dλi = λidλi, and so may be used to construct a set of Darboux-Nijenhuis coordinates.

Proof. We express the normalized traces Ik of the Nijenhuis tensor N in terms of its
eigenvalues as kIk =

∑n

i=1 λ
k
i . Hence dIk =

∑n

i=1 λ
k−1
i dλi, that is, in matrix terms:











dI1
dI2
...
dIn











=











1 1 · · · 1
λ1 λ2 · · · λn

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n











·











dλ1

dλ2
...

dλn











(2.10)

So we have

dI1 ∧ · · · ∧ dIn =

(

∏

i6=j

(λi − λj)

)

dλ1 ∧ · · · ∧ dλn,

i.e., on the open set where the traces of the powers of the Nijenhuis tensor are functionally
independent, we have that the eigenvalues λi are different and functionally independent.

To proceed further we need to recall [33] that the normalized traces Ik of the powers
of Nijenhuis operator satisfy the recursion relation

N∗dIk = dIk+1. (2.11)

This can be proved as follows. At first one notices that (2.11) is equivalent to the relation

LNX(Ik) = LX(Ik+1) for all vector field X,

as it can be easily seen evaluating the equality (2.11) on a generic vector field X. Thanks
to the Leibniz property of the Lie derivative and the cyclicity of the trace, we see that

LNX(Ik) = Tr(LNX(N) ·Nk−1) and LX(Ik+1) = Tr(LX(N) ·Nk). (2.12)

Since the vanishing of the Nijenhuis torsion of N implies that LNX(N) = N · LX(N),
the validity of (2.11) is proved.

We now express the relations (2.11) in terms of the eigenvalues λi as










1 1 · · · 1
λ1 λ2 · · · λn

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n











·











N∗dλ1 − λ1dλ1

N∗dλ2 − λ2dλ2
...

N∗dλn − λndλn











=











0
0
...
0











. (2.13)
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Since the Vandermond matrix in the left-hand side of this equation is, by assumption,
invertible, we conclude that N∗dλi = λidλi for all i = 1, . . . , n.

�

This proposition can be rephrased saying that “half of” the DN coordinates are alge-
braically provided by the Nijenhuis tensor itself. The remaining “half” µ1, . . . , µn can
always be found by quadratures. Actually, there is a condition leading to the algebraic
solution of this problem too. To elucidate this, the following two considerations are
crucial.

The first argument goes as follows. Let us consider the distinguished functions Ik
introduced in Proposition 2.9, and trade them for the coefficients pi of the minimal
polynomial

∆N(λ) = λn − p1λ
n−1 − p2λ

n−2 − · · · − pn

of N . The functions pk and Ik are related by the triangular Newton formulas

I1 = p1; I2 = p2 +
1

2
p2

1; I3 = p3 + p2p1 +
1

3
p3

1;

I4 = p4 + p1p3 + p2
1p2 +

1

2
p2

2 +
1

4
p4

1; I5 = p5 + . . . .
(2.14)

As a consequence of the recursion relations (2.11), it can be easily shown that the pi’s
satisfy the ‘Frobenius’ recursion relations

N∗dpi = dpi+1 + pidp1, with pn+1 ≡ 0. (2.15)

We can compactly write these relations as a single relation for the polynomial ∆N(λ);
indeed, a straightforward computation shows that they are equivalent to

N∗d∆N(λ) = λd∆N(λ) + ∆N(λ)dp1 . (2.16)

Actually, relations of this kind are very important for our purposes. Indeed, in [21] we
proved the following

Proposition 2.10 Let Φ(λ) be a smooth function defined on the manifold M , depending
on an additional parameter λ. Suppose that there exists a one-form αΦ such that

N∗dΦ(λ) = λdΦ(λ) + ∆N(λ)αΦ . (2.17)

Then, the n functions Φi obtained evaluating the “generating” function Φ(λ) for λ = λi,
with i = 1, . . . , n, are Nijenhuis functions, that is, they satisfy N∗dΦi = λidΦi.

Definition 2.11 We will call a generating function Φ(λ) satisfying equation (2.17) a
Nijenhuis functions generator.

11



Secondly, one remarks [21] that the n(n − 1)/2 equations {λi, µj} = δij can be
replaced with the requirement N∗dµj = λjdµj and the n equations

{λ1 + · · · + λn, µj} = 1, j = 1, . . . , n,

that do not involve the individual coordinates λi but only their sum
∑n

i=1 λi = I1. In

terms of the Hamiltonian vector field Y = −PdI1 =
∑

i

∂

∂µi

, the condition we are

looking for is
LY (µi) = 1. (2.18)

The relevance of Definition 2.11 in the search for DN coordinates stems from the fact
that Nijenhuis functions generators form an algebra N (M), which is closed under the
action of the vector field Y = −PdI1. In this way, knowing a set of Nijenhuis functions
generators, we can obtain further elements of the algebra N (M) by repeated applications
of the vector field Y . Clearly, in such an extended algebra, the characteristic equation

LY (Ψ(λ)) = 1 + ∆N(λ)fΨ,

corresponding to (2.18), may be easier to solve, thus yielding the missing Darboux-
Nijenhuis coordinates µi as µi = Ψ(λi). The following remark is very important in view
of the relations with algebraic integrability.

Remark 2.12 Suppose (H1, . . . , Hn) to be a separable system in the DN coordinates
constructed above. Then the separation relations (1.3) do not depend on the pair (λi, µi),
i.e., they collapse to the single relation

Φ(λ, µ;H1, . . . , Hn) = 0 . (2.19)

Indeed, µi = Ψ(λi), where the λi are the eigenvalues of N . Since the Ik are invariant
with respect to the exchange λi ↔ λj, every function globally defined on M is invariant
with respect to the exchange (λi, µi) ↔ (λj, µj). This is in particular true for the
Hamiltonians Hk, and the assertion about (2.19) follows.

In many cases, equation (2.19) defines an algebraic curve, possibly coinciding with
the spectral curve associated with a Lax matrix for the Hamiltonian system at hand.
We will see an instance of this situation in the example of Section 5. The application of
this scheme to (a particular class of) Gaudin models have been spelled out in [19, 19]

3 Separability conditions in the bihamiltonian set-

ting

As we have briefly recalled in Section 2, on a bihamiltonian manifold one is usually led
to consider bihamiltonian vector fields, that is, vector fields X admitting the twofold
Hamiltonian representation X = Pdf = P ′dg. Let us now suppose that (M,P, P ′) be

12



a regular bihamiltonian manifold of dimension 2n, and that we were able to construct,
by means of the Lenard-Magri iteration procedure, a sequence of functions H1, H2, . . .
satisfying P ′dHi = PdHi+1. Let us also suppose that the first n of them be functionally
independent. Then one easily shows that all the further Hamiltonians Hn+1, . . . are
functionally dependent from the first n. (This follows from the fact that a regular Poisson
manifold of dimension 2n cannot have more than n mutually commuting independent
functions). This means that, if we consider the Hamiltonian Hn+1, there must be a
relation of the form

ψ(H1, . . . , Hn;Hn+1) = 0, with ψHn+1
≡

∂ψ

∂Hn+1

6= 0, (3.1)

relating it with the independent Hamiltonians Hi, with i = 1, . . . , n.
Actually, the case of Hi = Ii ≡ 1

2i
TrN i is an instance of this situation. In fact,

since by the Cayley–Hamilton theorem N annihilates its minimal polynomial, we have
Nn −

∑n

i=1 piN
n−i = 0, yielding the relation

2(n+ 1)In+1 −
n
∑

i=1

2(n− i+ 1)piIn−i+1 = 0.

Differentiating equation (3.1) we see that, along with P ′dHi = PdHi+1, for i = 1, . . . , n−
1, it holds:

P ′dHn = PdHn+1 = −
1

ψHn+1

n
∑

i=1

∂ψ

∂Hi

PdHi, (3.2)

that is, the vector field Xn+1 = PdHn+1 = P ′dHn is a linear combination of the vector
fields X1 = PdH1, . . . , Xn = PdHn.

This innocent looking observation is the clue for the bihamiltonian theory of SoV.
Indeed, let {H1, H2, . . . Hn} be any integrable system on M , that is, suppose that the Hi

are mutually commuting (with respect to P ) independent functions. We can construct
an n-dimensional distribution, namely the distribution DH spanned by the n mutually
commuting vector fields Xi = PdHi. This is nothing but the very classical tangent dis-
tribution to the invariant (generalized) tori of the Liouville Arnol’d theory of integrable
systems. Since M comes equipped with a second Poisson tensor P ′, we can as well
consider the distribution D′

H generated by the Hamiltonians Hi under the action of P ′,
that is, generated by the vector fields X ′

i = P ′dHi. It holds:

Theorem 3.1 Let {H1, . . . , Hn} define, as explained above, an integrable system on
a regular bihamiltonian manifold (M,P, P ′). The Hamilton-Jacobi equations associated
with any of the Hamiltonians Hi are separable in the DN coordinates (x1, . . . , xn, y1, . . . , yn)
defined by N = P ′P−1 if and only if the distribution D′

H is contained in DH , or, equiv-
alently, if and only if the distribution DH is invariant along N .

Proof. We will first prove the equivalence between the invariance of DH under N and
the inclusion D′

H ⊂ DH . To say that D′
H is contained in DH is tantamount to saying
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that there exists a matrix Fij, whose entries are, in general, functions defined on M ,
such that

X ′
i ≡ P ′dHi =

∑

j

FijPdHj =
∑

j

FijXj for i = 1, . . . , n. (3.3)

Writing P ′ = NP , we can translate these equalities into NXi =
∑

j FijXj for all i =
1, . . . , n.

The full proof of the fact that the invariance of DH insures separability in DN coor-
dinates can be found in [21]. It goes as follows.

At first we notice that the translation in terms of the codistribution D∗
H generated

by the differentials of the Hamiltonians Hi of the invariance condition for DH is the
invariance condition N∗D∗

H ⊂ D∗
H . This can be easily seen applying to (3.3) the operator

P−1, to get N∗dHi =
∑

j FijdHj.
Since all the Poisson brackets {Hi, Hj} vanish and M is a regular bihamiltonian

manifold, the matrix F defined by (3.3) can be shown to have simple eigenvalues, that
coincide with the eigenvalues λi of N . So there exists a matrix S satisfying SF = ΛS,
where Λ = diag(λ1, . . . , λn) If we introduce the n one-forms θi =

∑

j SijdHj, we get

N∗θi =
∑

j

SijN
∗dHj =

∑

j,k

SijFjkdHk =
∑

j,k

λiδijSjkdHk = λiθi, (3.4)

meaning that θi is an eigenvector of N∗ relative to λi. Hence there must exist functions
Fi, Gi such that

∑

j

SijdHj = Fidxi +Gidyi, (3.5)

whence the existence of a separation relation Φi(xi, yi;H1, . . . , Hn) for all i = 1, . . . , n.
The converse statement can be trivially proved.

�

We would like to stress that the separability condition of Theorem 3.1 is a tensorial one.
That is, given a regular bihamiltonian manifold (M,P, P ′) this separability criterion can
be checked in any system of coordinates, without the a priori calculation of the DN
coordinates themselves. Notice, also, that the validity of the statement does not (as it
should be!) depend on the choice of mutually commuting integrals {H1, . . . , Hn}. That
is, if we consider a “change of coordinates in the space of the actions”, that is, we trade
the Hi’s for another complete set of integrals of the motion Ki = Ki(H1, . . . , Hn), then
the separability of the new Hamiltonians Ki will hold if and only if the separability of
the original ones holds. Indeed, the dual distributions generated by the Hi’s and the
Ki’s coincide.

A second remark is important and deserves to be explicitly spelled out. Although we
have started our discussion considering the case of a family of bihamiltonian vector fields,
that is, the case of Lenard-Magri sequences, the hypotheses of Theorem 3.1 concern only
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the relations of the distributions generated respectively under the action of P and P ′

by the Hamiltonians Hi, without any mention of the fact that the generators of the
distribution be bihamiltonian vector fields. Thus, although it might seem a somewhat
odd statement, the vector fields that are separable by means of the bihamiltonian approach
are not necessarily bihamiltonian vector fields! It is also important to notice that it is
not only a matter of choice of generators. Indeed, in [35] it has been shown that the
only bihamiltonian vector fields on a regular bihamiltonian manifold turn out to be
associated with separated functions of the eigenvalues of N , i.e., functions of the form
H =

∑n

i=1 fi(λi). This means that, in such a case, the distribution DH coincides with
that generated by the distinguished functions Ii. However, this is by far a very special
example, that is, the range of applicability of the method is much wider than that, as it
has already been shown in the literature.

The separation condition of Theorem 3.1 is based on the analysis of the behaviour
of the characteristic distribution associated with an integrable system under the Nijen-
huis tensor N . An equivalent criterion, based on the analysis of the Poisson brackets
associated with the tensor P ′, can be formulated as follows.

Theorem 3.2 Let {H1, H2, . . . Hn} be an integrable system defined on a regular biham-
iltonian manifold (M,P, P ′). The Hamiltonians Hi are separable in the DN coordinates
defined by N = P ′P−1 if and only if, along with the commutation relations {Hi, Hj} = 0,
there also hold

{Hi, Hj}
′ ≡ 〈dHi, P

′dHj〉 = 0, for i, j = 1, . . . , n. (3.6)

Proof. The key formula is the relation between P, P ′ and N∗. Indeed, suppose that D∗
H

be invariant along N∗. Then:

{Hi, Hj}
′ = 〈dHi, P

′dHj〉 = 〈dHi, NPdHj〉 = 〈N∗dHi, PdHj〉

=
∑

k

Fik〈dHk, PdHj〉 =
∑

k

Fik{Hk, Hi} = 0,

which, in view of Theorem 3.1, proves the statement in one direction. Now, let us
suppose that (3.6) holds. Then, for every i, j = 1, . . . , n, we have:

0 = {Hi, Hj}
′ = 〈dHi, P

′dHj〉 = 〈dHi, NPdHj〉 = 〈N∗dHi, PdHj〉,

meaning that, for all i = 1, . . . , n, the one-form N∗dHi belongs to the annihilator (with
respect to P ) of the distribution DH . Since such an annihilator coincides with D∗

H , this
means that N∗dHi ∈ D∗

H for all i = 1, . . . , n.

�

This results lead to the following, (somewhat daring), comparison. The Liouville-Arnol’d
theorem on finite dimensional integrable Hamiltonian systems says that the geometrical
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structure underlying integrability of a Hamiltonian vector field defined on a symplectic
manifold (M,ω) is a Lagrangian foliation of M . We can rephrase the content of The-
orem 3.2 saying that the geometrical structure underlying the separability of a system
defined on a regular bihamiltonian manifold (M,P, P ′) is a bilagrangian foliation of M .

We end our presentation of the bihamiltonian set-up for SoV with the following re-
mark. Theorem 3.1 concerns only the existence of the separation relations. In principle,
one could try to find these relations in concrete examples by actually diagonalizing the
matrix F , and explicitly finding and integrating the relations (3.5). However, there is
a very simple tensorial criterion which can be used to determine the functional form of
the separation relations Φi(xi, yi;H1, . . . , Hn), whose proof can be found in [21].

Proposition 3.3 Let {H1, . . . , Hn} be an integrable system defined on a regular bihamil-
tonian manifold, which is separable in the Darboux-Nijenhuis coordinates associated with
N = P−1P ′. Consider the matrix Fij fulfilling the relations (3.3). Then the separation
relations are affine in the Hamiltonians Hi, that is, of the form

Φi(xi, yi;H1, . . . , Hn) =
∑

j

Sij(xi, yi)Hj + Ui(xi, yi), (3.7)

if and only if the matrix F satisfies the relation N∗dFij =
∑

k FikdFkj.

The matrix S on (3.7) can be shown to be a suitably normalized matrix of eigenvectors of
the matrix F . Its characteristic property is that, as expressed in the equation, the entries
Sij of the i–th row depend only on the pair (xi, yi) of Darboux-Nijenhuis coordinates.
For this reason it can be called a Stäckel matrix.

4 Transversal distributions and separation relations

A very natural source of integrable systems fulfilling the separability conditions given in
Theorems 3.1 and 3.2 is described in [21]. In this short section we recall this construction,
and we comment on the resulting separation relations, with a particular emphasis on
the relations with algebraic integrability.

Suppose that the hypotheses of Proposition 2.7 hold, and that there exists a k-
dimensional foliation Z on M , spanned by the vector fields Z1,. . . ,Zk, with the following
properties:

1. It is transversal to the symplectic foliation of P ; more precisely, the vector fields
Za are normalized in such a way that Za(H

(b)
0 ) = δb

a;

2. The Za are symmetries of P :
LZa

(P ) = 0 ;

3. There exist vector fields Y b
a such that

LZa
P ′ =

∑

b

Y b
a ∧ Zb .
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It turns out that the Za commute, and that Y b
a = P d(Za(H

(b)
1 )). But the important

point is that any symplectic leaf S of P can be seen as a quotient space and inherits
a (quotient) bi-Hamiltonian structure from M . Moreover, the reduction of P coincides
with the symplectic form of S, and therefore S is a regular bihamiltonian manifold (if
the eigenvalues of the associated Nijenhuis tensor are maximally distinct).

Now, it can be shown that the integrable system described in Proposition 2.7 is
separable in the DN coordinates on S. As far as the Stäckel separability is concerned, a
necessary and sufficient condition is that Zb(Zc(H

(a)
j )) = 0 on S, for all a, b, c = 1, . . . , k

and for all j = 1, . . . , na.
The search for DN coordinates is made easier by the fact that the determinant of

the matrix

G(λ) =







Z1(H
(1)(λ)) · · · Zk(H(1)(λ))
...

...
Z1(H

(k)(λ)) · · · Zk(H(k)(λ))






(4.1)

coincides on S with the minimal polynomial of the recursion operator N . Thus the
coordinates λi are the solutions of G(λ) = 0. To find the µi, one can use the results of
Subsection 2.2 and the following proposition, whose proof is given in [22].

Proposition 4.1 In the above setting, let us consider a generating function Γ(λ, µ) of
the Casimirs H(a)(λ) of the Poisson pencil, and let us suppose that Γ(λ, µ) = 0 defines a
smooth algebraic curve. Suppose that f is a Z-invariant root of the minimal polynomial
of N , i.e.,

N∗df = fdf, and Zi(f) = 0, i = 1, . . . , k, (4.2)

and suppose that Γ(µ, f) = 0 defines generic point(s) of the affine curve Γ(λ, µ) = 0.
Then, any solution g of the equation Γ(g, f) = 0 which is invariant as well under Z
satisfies N∗dg = fdg.

5 Example: a generalized Toda Lattice

In this final section we will apply the general scheme outlined in the previous sections
to a specific model, with the aim of showing how the recipes discussed so far from a
theoretical standpoint can be concretely applied. We will study a generalization of the
four site Toda lattice, to be termed Toda4

3 model. This system is a member of a family
introduced in [28] as reductions of the discrete KP hierarchy. It can be described as
follows. We consider on M = C

12, endowed with global coordinates {bi, ai, ci}i=1,2,3,4,
the Hamiltonian

HGT =
1

2
(b21 + b22 + b23 + b24) − (a1 + a2 + a3 + a4), (5.1)
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and the linear Poisson tensor given by the matrix

P =





0 A1 C1

−AT

1
C2 0

−CT

1
0 0



 where A1 =













−a1 0 0 a4

a1 −a2 0 0

0 a2 −a3 0

0 0 a3 −a4













, (5.2)

C1 =













−c1 0 c3 0

0 −c2 0 c4

c1 0 −c3 0

0 c2 0 −c4













, C2 =













0 −c1 0 c4

c1 0 −c2 0

0 c2 0 −c3

−c4 0 c3 0













,

and we denoted by 0 the 4 × 4 matrix with vanishing entries. Using (here and in the
sequel) the cyclic identifications ai+4 = ai, bi+4 = bi, and ci+4 = ci, the Hamiltonian
vector field XHGT

= PdHGT can be written as




ḃi
ȧi

ċi



 =





ai−1 − ai

ai(bi+1 − bi) + ci−1 − ci
ci(bi−2 − bi)



 , i = 1, . . . , 4. (5.3)

The expert reader surely noticed that HGT coincides with the Hamiltonian of the periodic
four-site Toda lattice, written in the Flaschka coordinates bi = pi, ai = exp(qi − qi+1).
Indeed, on the hyperplane MT ≃ C

8 defined by ci = 0 for i = 1, . . . , 4, the vector field
XHGT

defines the periodic Toda flow.

Proposition 5.1 The Hamiltonian vector field XHGT
admits the Lax representation

L̇(ν) = [L(ν),Φ], where

L(ν) =













b1 −ν c3
ν2

a4

ν

a1

ν
b2 −ν c4

ν2

c1
ν2

a2

ν
b3 −ν

−ν c2
ν2

a3

ν
b4













, Φ =













0 0 c3
ν2

a4

ν

a1

ν
0 0 c4

ν2

c1
ν2

a2

ν
0 0

0 c2
ν2

a3

ν
0













. (5.4)

The bihamiltonian aspects of this system have been discussed in [36] (see also [10]). In
particular, it has been noticed that on M there exists a second Hamiltonian structure
for the vector field XHGT

. Namely, one considers the bivector P ′ having the following
form:

P ′ =





A2 B1 C3

−BT

1
A3 C4

−CT

3
−CT

4
A4



 , where C3 =













−b1c1 0 b1c3 0

0 −b2c2 0 b2c4

c1b3 0 −b3c3 0

0 c2b4 0 −b4c4













, (5.5)
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A2 =













0 a1 0 −a4

−a1 0 a2 0

0 −a2 0 a3

a4 0 −a3 0













, B1 =













−b1a1 c1 −c3 b1a4

b2a1 −b2a2 c2 −c4

−c1 b3a2 −b3a3 c3

c4 −c2 b4a3 −b4a4













,

A3 =













0 −b2c1 − a1a2 0 b1c4 + a1a4

b2c1 + a1a2 0 −b3c2 − a2a3 0

0 b3c2 + a2a3 0 −b4c3 − a3a4

−b1c4 − a1a4 0 b4c3 + a3a4 0













,

C4 =













−a1c1 −a1c2 a1c3 a1c4

c1a2 −a2c2 −a2c3 a2c4

c1a3 c2a3 −a3c3 −a3c4

−c1a4 c2a4 c3a4 −a4c4













, A4 =













0 −c1c2 0 c1c4

c1c2 0 −c2c3 0

0 c2c3 0 −c3c4

−c1c4 0 c3c4 0













.

It can be easily checked that XHGT
= P ′d(−

∑4
i=1 bi). More in general, we have the

following

Proposition 5.2 The pencil P ′ − λP is a pencil of Poisson brackets. The rank of the
generic element of the pencil is eight. The characteristic polynomial Det

(

λ1−L(ν)
)

can
be expanded as:

Det
(

λ1 − L(ν)
)

= λ4 − ν4 +H(λ) + (K(λ) − λ2J1)/ν
4 + J2/ν

8. (5.6)

The functions J1 and J2 are common Casimirs of P and P ′. The polynomials H(λ) and
K(λ) are Casimirs of the pencil Pλ = P ′ − λP . They have the form

H(λ) = λ3H0 − λ2H1 + λH2 −H3, K(λ) = K0λ+K1. (5.7)

Explicitly, J1 = c1c3 + c2c4 and J2 = c1c2c3c4, while the coefficients of H(λ) and K(λ)
are given by:

H0 =
4
∑

i=1

bi, H1 =
4
∑

i>j=1

bibj +
4
∑

i=1

ai, H2 =
4
∑

i=1

(

ci + bi(ai+1 + a1+2) + bibi+1bi+2

)

H3 =
4
∑

i=1

bici+1 + a1a3 + a2a4 + cubic and quartic terms;

K0 =
4
∑

i=1

(bici−1ci+1 − ciai−1ai+2), K1 =
4
∑

i=1

aici+1ci+2 + quartic terms

One can show via a direct computation that the eight functionsH0, H1, H2, H3, K0, K1, J1, J2

are functionally independent and, thanks to the fact that they fill in Lenard sequences,
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are mutually in involution. The kernel of P is generated (at generic points m ∈ M)
by the differentials of the four functions H0, K0, J1, J2. Hence, on the 8-dimensional
manifold Sκ defined by the equations H0 = κ1, K0 = κ2, J1 = κ3, J2 = κ4, that is, the
generic symplectic leaf of P , the vector field XHGT

is completely integrable. To realize
this we simply have to notice that HGT can be expressed as 1

2
H2

0 − H1, and apply the
properties of anchored Lenard-Magri sequences collected in Proposition 2.7

5.1 Separation of Variables

We will now show how to apply the ideas and recipes of the bihamiltonian set-up for SoV
to the Toda4

3 model introduced above. The first problem to deal with is that the Poisson
tensor P ′ does not restrict to Sκ, but must be projected according to the procedure
outlined in Section 4. This can be rephrased as follows, by means of a kind of Dirac
reduction process (see [11, 20, 21, 34] for details and the geometric background).

We consider the vector fields Z1 = −
∂

∂b4
and Z2 =

∂

∂a4

, and we notice that the

matrix

G =

(

LZ1
(H0) LZ2

(H0)
LZ1

(K0) LZ2
(K0)

)

=

(

1 0

−c1c3 −c1a3 − a1c2

)

is invertible. Then we form the bivector

R =
2
∑

i,j=1

(

G−1
)

ij
Zi ∧X

j
1 , where X1

1 = P ′dH0 and X2
1 = P ′dK0. (5.8)

Lemma 5.3 The modified bivector Q = P ′ − R defines a Poisson bracket, compatible
with P ; moreover, Q restricts to Sκ.

Proof. The proof of the fact that Qλ = Q − λP is a Poisson pencil follows (see, e.g.,
[20]), from the equalities

LZ1
P = 0, LZ1

P ′ = Y 1
1 ∧ Z1 − c3

∂

∂a3

∧ Z2

LZ2
P = (

∂

∂b1
−

∂

∂a1

) ∧ Z2, LZ2
P ′ = (b4

∂

∂a4

+
∂

∂b1
) ∧ Z1 + Y 2

2 ∧ Z2,

(5.9)

where

Y 1
1 = a3

∂

∂a3

− a4
∂

∂a4

+ c2
∂

∂c2
− c4

∂

∂c4

Y 2
2 = b4

∂

∂b4
− b1

∂

∂b1
− a3

∂

∂a3

− a4
∂

∂a4

− c1
∂

∂c1
+ c2

∂

∂c2
+ c3

∂

∂c3
− c4

∂

∂c4
,

as well as from the fact that

QdH0 = QdK0 = QdJ1 = QdJ2 = 0. (5.10)
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To show that (5.9) holds true is simply a matter of an explicit computation, while (5.10)
follows from the definition of Q. In fact, the last two equations hold since J1 and J2 are
Casimirs of P ′ invariant under Z1 and Z2. For, e.g., H0 one computes

QdH0 = P ′dH0 −RdH0 = X1
1 −

2
∑

i,j=1

(

G−1
)

ij
LZj

(H0) ·X
i
1

= X1
1 −

2
∑

i,j=1

(

G−1
)

ij
Gj1 ·X

i
1 = X1

1 −
∑

i

δi1 ·X
i
1 = 0,

where the second equality follows from the fact that all the functions Hi, Kα, Jα are in
involution with respect to P .

�

Thanks to the above lemma, the generic symplectic leaf Sκ is endowed with the structure
of a regular bihamiltonian manifold. We know from Section 4 that the non trivial
Hamiltonians H1, H2, H3, K1 (more precisely, the restriction to Sκ of these Hamiltonians)
satisfy the hypothesis of Theorem 3.1 with respect to the (restriction to Sκ) of the pencil
Q− λP . This fact can be directly shown as follows:

QdHi = P ′dHi −
2
∑

i,j=1

(

G−1
)

ij
(Zi ∧X

j
1)(dHi) = PdHi+1 −

2
∑

i,j=1

(

G−1
)

ij
LZi

(Hi)X
j
1

(where we understand H4 = 0) and

QdK2 = P ′dK1 −
2
∑

i,j=1

(

G−1
)

ij
(Zi ∧X

j
1)(dK2) =

2
∑

i,j=1

(

G−1
)

ij
LZi

(dK1)X
j
1

So we proved that, for generic values κi, with i = 1, . . . , 4, of the Casimirs, the system
obtained by restriction of the Toda4

3 flows on Sκ is separable in the DN coordinates
associated with the restriction to Sκ of the pencil Q− λP . To finish our job we finally
have to:
a) explicitly compute the DN coordinates;
b) find the separation relations.

To solve the first problem, we will use the tools briefly described in Subsection 2.2.
We rely on a result of [21], as well as on explicit computations, to state the following
proposition, whose first part has been already discussed in Section 4.

Proposition 5.4 Let us consider the matrix

G(λ) =

(

LZ1
H(λ) LZ2

H(λ)
LZ1

K(λ) LZ2
K(λ)

)

. (5.11)
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The roots of the degree-4 polynomial Det(G(λ)) are the roots of the minimal polynomial
∆(λ) = λ4 −

∑4
i=1 piλ

4−i of the Nijenhuis tensor N = P−1Q associated with the regu-
lar Poisson pencil Qλ. The coefficients pi are functionally independent on the generic
symplectic leaf Sκ. Furthermore, the ratios

ρ(λ) = −G22/G12, σ(λ) = −G21/G11

are Nijenhuis function generators.

Thus, one half of the Darboux-Nijenhuis coordinates will be given by the roots of
Det(G(λ)). To find the remaining half we consider the vector field Y = −Pdp1, whose
role has been discussed in Subsection 2.2. Since an explicit computations shows that
LY log(ρ(λ)) = 1, we can state the following

Proposition 5.5 A set of Darboux-Nijenhuis coordinates for the restriction to the generic
symplectic leaf Sκ of the Toda4

3 flows are given by the four roots λi of Det(G(λ)) and by
the values µi of the function log(ρ(λ)) for λ = λi, where

ρ(λ) =
(−c1a3 − a1c2)λ+ c2a1b3 − a1a2a3 + c1b2a3 + c1c2

c1c3λ+ a1a2c3 − c1b2c3
.

(We assume that c3 6= 0 and c1λi + a1a2 − b2c1 6= 0 for all i = 1, . . . , 4.)

To find the separation relations, we notice that the pairs (λi, ρ(λi)) are common
solutions to the system

{

ρG11 + G21 = 0

ρG12 + G22 = 0
(5.12)

since the rank of G(λi) is equal to 1. Then we reconsider the Lax matrix (5.4), and we
compute the Lie derivatives of the matrix L(λ, ν) = λ1 − L(ν) along the vector fields
Zi:

LZ1
(L(λ, ν)) =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1













, LZ2
(L(λ, ν)) =













0 0 0 −ν−1

0 0 0 0

0 0 0 0

0 0 0 0













.

Since
LZa

[Det(L(λ, ν))] = Tr [LZa
(L(λ, ν))L(λ, ν)∨)] , a = 1, 2,

L(λ, ν)∨ being the classical adjoint to L(λ, ν) = λ1 − L(ν), it follows from Proposition
5.2 and the definition (5.11) of G(λ) that the solutions of the system (5.12) are related
to those of the system

{

[L(λ, ν)∨]44 = 0

[L(λ, ν)∨]41 = 0

via ρ = ν4. Now we can state
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Proposition 5.6 The separation relations connecting pairs of Darboux-Nijenhuis coor-
dinates (λi, µi), the Hamiltonians H1, H2, H3, K2, and the Casimirs H0, K1, K2, J0 are,
on the generic symplectic leaf Sκ, given by the evaluation of the characteristic polynomial
Det(L(λ, ν)) in λ = λi and ν = νi = exp(µi

4
).

Proof. We know that the pairs (λi, νi) solve system (5.1), and we have to show that they
satisfy Det(L(λi, νi)) = 0. This can be done with the following adaptation of Sklyanin’s
technique, concerning the poles of the (normalized) Baker-Akhiezer function. Let us
consider the 5 × 4 matrix Mi obtained by putting the vector (0, 0, 0, 1) on the top of
L(λi, νi). As we have assumed at the end of Proposition 5.5, the 3× 3 matrix extracted
from Mi by removing the 3rd column and the 2nd and the 4th rows, is invertible. Since
the system (5.1) is satisfied, the rank of Mi is 3, and therefore Det(L(λi, νi)) vanishes.

�

We notice that, a posteriori, the separation coordinates for the Toda4
3 system fall

in the class described in, e.g., [40, 1, 13, 41, 2, 29]. Namely, the DN coordinates that
separate the Toda4

3 system are algebro-geometrical Darboux coordinates associated with
the spectral curve (5.6), and fulfill the so-called Sklyanin’s ‘magic recipe’. This is a quite
general fact, as discussed in Section 4 (see also [42] and Remark 2.12).

As a final remark, in connection with the discussion on the relation between the bi-
hamiltonian property of an integrable vector field and the separability of the associated
HJ equations of Section 3, we notice that the Hamiltonians H1, H2, H3, K2 are func-
tionally independent from the coefficients of the minimal polynomial of the Nijenhuis
tensor obtained from Q − λP . So, this is a further instance of a system which is not
bihamiltonian on a regular manifold, but turns out to be separable via the bihamiltonian
method of SoV.

5.2 A remarkable subsystem: the open Toda4
3 system

In this last subsection we will discuss a remarkable reduction of the periodic Toda4
3

system (even though less interesting from the point of view of algebraic integrability),
leading to the corresponding generalization of the open (or non-periodic) one. In the
manifold M ≃ C

12 we consider the nine-dimensional submanifold M0 defined by the
equations

a4 = c3 = c4 = 0. (5.13)

One can easily verify that the restriction X0
HGT

to M0 of the vector field XHGT
is tangent

to M0. Also, the tensor P can be restricted to M0; indeed, the expression of its restriction
P0 with respect to the natural coordinates {b1, . . . , b4, a1, . . . , a3, c1, c2} of M0 is obtained
from (5.2) simply by removing the 9th, 11th, 12th rows and columns. Moreover, one
can check that X0

HGT
= P0dHGT,0, with

HGT,0 =
1

2
(b21 + b22 + b23 + b24) − (a1 + a2 + a3), (5.14)
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and recognize that this function is the Hamiltonian of the open Toda lattice. Also, a
Lax pair for X0

HGT
is

L0 =













b1 −ν 0 0

a1

ν
b2 −ν 0

c1
ν2

a2

ν
b3 −ν

−ν c2
ν2

a3

ν
b4













, Φ0 =













0 0 0 0

a1

ν
0 0 0

c1
ν2

a2

ν
0 0

0 c2
ν2

a3

ν
0













. (5.15)

It should be clear from the form of the Lax pair that the system associated to the vector
field X0

HGT
is an extension of the standard open Toda lattice towards the so-called full

open Toda lattice, which is a system describing a flow on the lower Borel subgroup of
sl(N). The integrability of the full (open) Toda lattice was established in [12] (see, also,
[15]). The idea was to complement the integrals of the motion coming from the Lax
representation with additional integrals obtained by means of the ‘chopping method’,
within the group–theoretical point of view.

The need to supply the standard results of the Lax theory with further methods
should be clear from the following considerations. The only Casimir function of P0 is
h0 =

∑4
i=1 bi. Hence, its symplectic leaves Sξ ⊂M0 are the eight-dimensional manifolds

defined by h0 = ξ, and X0
HGT

can be seen as a Hamiltonian system with four degrees of
freedom. The characteristic polynomial of the matrix L0 is

Det(λ1 − L0(ν)) = −ν4 + λ4 − h0λ
3 + h1λ

2 − h2λ+ h3, (5.16)

that is, it provides us with only three non trivial Hamiltonians,

h1 =
4
∑

i>j=1

bibj +
3
∑

i=1

ai, h2 =
4
∑

i>j>k=1

bibjbk +
3
∑

i=1

ai(bi+2 + bi+3) + c1 + c2

h3 = b1a2b4 + a1b3b4 + b1b2a3 + b1c2 + a1a3 + c1b4 + b1b2b3b4.

(5.17)

We will now show how the tools we previously introduced can be used to geometrically
prove the complete integrability of such a system and, moreover, yield the existence of an
additional integral of the motion. The main property is that, along with P , the tensor Q
restricts to M0. This can be proven as follows: one checks by direct inspection that this
is true for P ′; then the assertion follows from the fact that the vector field X2

1 = P ′dK0

vanishes on M0, while Z1 and X1
1 , which coincides with XGT , are tangent to M0.

Furthermore, we add two observations. The first one concerns the restriction G0 to
M0 of the matrix G. It has the form

G0 =

[

G0
11 λ2 − (b2 + b3)λ+ b2b3 + a2

0 − (c1a3 + a1c2)λ− a1a2a3 + c1c2 + c1b2a3 + a1c2b3

]

(5.18)

and therefore its determinant (that is, the minimal polynomial of the Nijenhuis tensor N0

induced by the pencil Q0−λP0 on Sξ) factors as G0
11G

0
22, where G0

11 = λ3−π1λ
2−π2λ−π3
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is a degree-three polynomial. The second observation consists in the fact that the three
surviving Hamiltonians h1, h2, h3 given by (5.17) satisfy the conditions:

Q0dhi =
3
∑

j=1

F 0
ijP0dhi, with F 0

ij =





π1 1 0
π2 0 1
π3 0 0



 . (5.19)

We notice that the functions π1, π2, π3, and the root

λ4 =
−a1a2a3 + c1c2 + a1c2b3 + c1b2a3

c1a3 + a1c2
(5.20)

of G0
22 are still functionally independent and hence (generically) different on Sξ.

Lemma 5.7 Let σ be any function satisfying Q0dσ = λ4P0dσ. Under the above hypothe-
ses, the brackets {σ, hi}P0

and {σ, hi}Q0
vanish.

Proof. Evaluating both sides of Q0dσ = λ4P0dσ on the differentials (dh1, dh2, dh3), and
switching the action of the Poisson tensors on the dhi’s, we get

〈dσ,Q0dhi〉 = λ4〈dσ, P0dhi〉, i = 1, 2, 3.

Inserting (5.19) we get the equation
∑3

j=1

(

F 0
ij − λ4δij

)

〈dσ, P0dhj〉 = 0. Since λ4 is not

an eigenvalue of F 0
ij, the lemma is proved.

�

So a fourth integral of the motion, that commutes with the Hamiltonian H0
GT of the

open Toda4
3 lattice, is given indeed by the distinguished root λ4 of equation (5.20); this

constructively proves the integrability of the system.
Finally, we notice that this method proves the existence of a fifth integral of the

motion. Indeed, we know that, along with λ4, there must exist another independent
function µ4, satisfying the hypotheses of Lemma 5.7 and functionally independent of λ4

and of the hi’s. In such a comparatively low dimensional case, such a function can be
explicitly found to be

µ4 =
c2 (a1b2c1 − a2a1

2 − c1
2 − c1b3a1)

c1 (c1a3 + a1c2) (λ4
3 − π1λ4

2 − π2λ4 − π3)
.
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