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Abstract— Robotics software require and provide a number
of different functionalities, which are typically encapsulated in
components that cooperate and compete in order to control the
behavior of a robot. Cooperation and competition are forms of
interaction among concurrent activities and so they have to
be coordinated. In order to achieve a good level of reusability
and flexibility the coordination and the computation (how the
component provides the service) need to be managed separately.

According to this principle we propose an innovative ap-
proach based on two frameworks that are widespread in other
domains such as the web services. We will show by means of a
use case how we have implemented the component through the
Service Component Architecture and how we have managed
the coordination by means of the Abstract State Machine.
In particular we will illustrate that is possible to change the
coordination policy without modifying the implementation of
the services provided by the component.

I. INTRODUCTION

Robots are controlled through complex software, which re-
quires and provides a number of different functionalities such
as motion planning, kinematics, perception and actuation.
According to the Component Based Software Engineering
principles [1][2], these functionalities can be encapsulated
into components. These components improve the level of
reusability and reduce the effort and the time needed to
develop applications.

The implementation of the components defines how the
functionalities are realized. This concern is called compu-
tation and is related with the data processing algorithms
required by an application [3]. Another important concern,
which is orthogonal to the computation, is the coordination.
Coordination is more concerned with the interaction of the
components [3] and so it defines when the functionalities are
used. Components can typically interact in two ways: they
cooperate with each other in order to achieve a common goal
and at the same time compete for using shared resources
such as memory, CPU and external devices (e.g. sensors
and actuators). Cooperation and competition are forms of
interactions among concurrent activities, which overlap in the
time and are interleaved with one other on a single processor.
Correct interleaving of concurrent activities can be reached
by means of coordination algorithms.

In the context of the European Project BRICS [4] we
have chosen two different frameworks in order to model and
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implement these two concerns. Regarding the computation
we have adopted the component model offered by the Service
Component Architecture project [5]. SCA is a set of specifi-
cations which describe a model for building applications and
systems using a Service-Oriented Architecture. Coordination
instead is managed by means of the Abstract State Ma-
chines (ASM) formal method. ASM is an operational (read:
executable) formalism that provides accurate yet practical
industrially viable behavioral semantics for pseudo-code on
arbitrary data structures. This specification method is tunable
to any desired level of abstraction, and besides ASMs comes
with a rigorous mathematical foundation [6], it provides rigor
without formal overkill.

In particular we adopt a service-oriented flavor of the ASM
formalism, named SCA-ASM. SCA-ASM is a formal and
executable modeling language based on the open standard
model SCA for heterogeneous service-oriented component
assembly and on the ASM formal method, which is able to
model behavioral notions of service interactions, orchestra-
tions, compensations, and the services internal behavior (see
the preliminary work [7]).

The paper illustrates by means of a case study how we
have defined a component-based system using Java and the
SCA framework and how we have coordinated it using the
Abstract State Machines.

The paper is structured as follows.

Section II presents the case study and proposes a high
level solution. Section III briefly introduces the ASM and
describes how the solution presented in section II can be
realized through ASM. Section IV illustrates a SCA imple-
mentation of the case study. Finally section V draws the
relevant conclusion.

II. THE USE CASE

We propose a simple scenario where a laser scanner offers
its services to different clients, which compete for the use of
this shared resource.

A. The problem

The scenario is defined by the following three participants,
which are illustrated in figure 1.

o A Laser Scanner, which executes scans of the environ-
ment on demand and writes the acquired values on a
data buffer. A scan is a sequence of measures executed
in a single task (for example 360 values, one for each
degree). We suppose that the Laser Scanner allows its
client to request a scan from an initial angle (start) to a
finale one (end) defined as the number of steps between
start and end.



o A 3D Perception application, which requests the mea-
sures to the Laser Scanner in order to generate a set of
meshes that describe the surface of the objects present
in the environment.

« An Obstacle Avoidance application, which requests the
measures to the Laser Scanner in order to detect the
obstacles along the robot path.

Client 1

3D Perception

Laser
Scanner

Client 2

Obstacle Avoidance

Fig. 1. The three participants

B. The requirements

The proposed scenario is subjected to the following re-
quirements:

1) The laser scan is an activity that requires an amount of
time in order to be completed. This time is not fixed,
and depends on the number of measures requested by
the client. During this time the Client could have the
need of executing other operations and so it doesn’t
have to be blocked while it waits.

2) A client could request a single scan or multiple scans
(for example 4 scans composed each one by 20 mea-
sures).

3) While the Laser Scanner is executing a scan requested
by a client A, a client B could require another scan.
These requests have to be managed according to one
of the following request management policies:

o Policy 1: Discard the scan request.
e Policy 2: Queue the scan request.

According to these requirements it is possible to imagine
at least the following three situations, in which the Laser
Scanner receives requests from its client.

The first situation is described in figure 2. The client
requests a scan to the Laser Scanner and then it waits until
the end of the scan process. When the Laser Scanner finishes
its work it returns to the client the measures. In this case the
request is synchronous.

The second situation is described in figure 3. The client
requests a scan to the Laser Scanner and then it continues
to execute its work. In this case the request has to be
asynchronous.

The third situation is described in figure 4. In this case
the Client 1 acts as in the situation two. However while
the Laser Scanner is executing the scan requested by the
Client 1, the Client 2 sends another request to the Laser
Scanner. This example highlights how different clients could

A

Fig. 2. Situation 1

Fig. 3. Situation 2

simultaneously access to the services offered by the Laser
Scanner and so the need of managing these different requests.

C. A high-level solution

The first two situations don’t require a simultaneously
access to the Laser Scanner services and so the Client and
the Laser Scanner can directly interact. Figure 5 illustrates
how the two parts interact. The Client 1 requests a scan to
the Laser Scanner, which writes each measure on a Measures
Buffer. Then, when the scan is finished:

e The Laser Scanner returns to the Client 1 the measures
— Situation 1.

o The Laser Scanner notifies the Client that it has finished
its work. After that, the client requests the measures to
the Laser Scanner — Situation 2.

The third situation instead presents a simultaneously ac-
cess to the Laser Scanner services. In this case the in-
teractions between the clients and the Laser Scanner have
to be managed by a third part: a coordinator. The Sensor
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Coordinator is in charge of forwarding the clients requests
to the Laser Scanner and so it has to manage the concurrent
access of the clients. Figure 6 illustrates how it works. It can
be summarized in the following list:

1) The Sensor Coordinator receives a request of scan from
a client.

2) According to the Sensor Coordinator policy (see
above) the new request could be discarded, queued or
forwarded to the Laser Scanner.

3) When the request is forwarded, the Laser Scanner
starts the scanning work and sends a notification to
the Sensor Coordinator (Ack) in order to inform it that
the scan has started.

4) The Laser Scanner writes each measure on the Mea-
sures Buffer until the final angle is reached.

5) The Laser Scanner sends a notification to the Sensor
Coordinator (Done) in order to inform it that the scan
is finished.

6) The Coordinator sends a notification to the client in
order to inform it that the new measures are available
on the Buffer.

7) The client accesses the Measures Buffer in order to
read the measures.

Depending on the number of scan requested the Sensor
Coordinator will forward to the Laser Scanner one or more
single scans.

Sensor Component

»/ Measures

Client 1 Buffer

Laser
Scanner

Sensor
Coordinator

Client 2

Fig. 6. High-level solution for the situation 3

The Sensor Coordinator policy can be defined by means of
the finite state machine. A first version is reported in figure 7.
It implements the request management policy 1: if a request
is received while the laser is already scanning the new request
will be discarded.

scan(from, nSteps)

"ACK"

Fig. 7. Sensor Coordinator Finite State Machine, version 1

The sates have the following meaning:

o IDLE: the Laser Scanner is idle and is ready for
a new scan. In case of a scan request the Sensor
Coordinator forwards it to the Laser Scanner. The Sen-
sor Coordinator enters this state on the initialization or
when the Laser Scanner returns a “Done” notification.

o BUSY: the laser scanner is executing the operations
needed for starting the scan. The Sensor Coordinator
enters this state when it has sent a scan request to the
Laser Scanner. If a new scan request is received the
sensor coordinator discards it.

o SCANNING: the laser is scanning and writing the
measures on the Measures Buffer. The Sensor Coor-
dinator enters this state when the scan request is sent
to the Laser Scanner and it has returned the “Ack”
notification. If a new scan request is received the sensor
coordinator discards it.

The finite state machine presented above allows a client
to request a single scan. It is possible to refine it in order
to support multiple scan requests. In this way the client will
send a single message to the Sensor Coordinator, asking it n
scans. In turn, the Sensor Coordinator will forward n single
scan requests to the Laser Scanner.

Figure 8 illustrates the new finite state machine. To be
noticed that we have changed the Sensor Coordinator policy
without modifying the functionality offered by the Laser



Scanner. Furthermore this version, as well as the first, is
able to satisfy single scan requests.

scan(from, nSteps, nScans)

"Ack"

remScans =0 remScans >0

Fig. 8. Sensor Coordinator Finite State Machine, version 2
The sates have the same meaning described above. What
changes are the transition rules:

o IDLE — BUSY: the transition is triggered when the
Sensor Coordinator receives a scan request.

o BUSY — SCANNING: the transition is triggered when
the Laser Scanner sends an “Ack” notification to the
Sensor Coordinator.

e SCANNING — BUSY: the transition is triggered when
the Laser Scanner sends a “Done” notification to the
Sensor Coordinator and the number of remaining scans
(“remScans™) is greater than 0.

o SCANNING — IDLE: the transition is triggered when
the Laser Scanner sends a “Done” notification to the
Sensor Coordinator and there are not remaining scans
to execute.

Figure 9 shows the finite state machine that implements
the policy 2: if a request is received while the laser is already
scanning the new request will be queued. Also in this case the
states and the functionalities provided by the laser scanner
are the same. What changes are the transition rules.

scan(from, nSteps , nScans)

scan(from, nSteps, nScans)

"Done" AND
remScans = 0 AND ("Done" AND remScans > 0)
pendingReq =0
("Done" AND remScans = 0
AND pendingReq > 0)

scan(from, nSteps , nScans)

Fig. 9. Sensor Coordinator Finite State Machine, version 3

The new transitions are described in the following list.

o IDLE — BUSY: the transition is triggered when the
Sensor Coordinator receives a scan request.

o« BUSY — BUSY: the transition is triggered when the
Sensor Coordinator receives a scan request. The request
is queued.

¢« BUSY — SCANNING: the transition is triggered when
the Laser Scanner sends a “Ack” notification to the
Sensor Coordinator.

o SCANNING — BUSY: the transition is triggered when

— the Laser Scanner sends a “Done” notification to
the Sensor Coordinator and the number of remain-
ing scans is greater than 0, or

— the Laser Scanner sends a “Done” notification to
the Sensor Coordinator, there are not remaining
scans to execute and the number of pending re-
quests in queue is greater then 0.

e SCANNING — SCANNING: the transition is triggered
when the Sensor Coordinator receives a scan request.
The request is queued.

o SCANNING — IDLE: the transition is triggered when
the Laser Scanner sends a “Done” notification to the
Sensor Coordinator, there are not remaining scans to
execute and there are not pending requests in queue.
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The next section will illustrate how we have modeled these
finite state machines through the ASM language.

III. THE ASM SPECIFICATION OF THE USE CASE

The Sensor Coordinator was implemented using the SCA-
ASM formalism. In the following an ASM-based (abstract)
implementation of the Sensor Coordinator is reported.

A. The Abstract State Machine method in a nutshell

Abstract State Machines (ASMs) are an extension of Finite
State Machines (FSMs) [6] where unstructured control states
are replaced by states comprising arbitrary complex data. The
states of an ASM are multi-sorted first-order structures, i.e.
domains of objects with functions and predicates (boolean
functions) defined on them. The transition relation is spec-
ified by rules describing how functions change from one
state to the next. Basically, a transition rule has the form of
guarded update if Condition then Updates where Updates
is a set of function updates of the form f(¢y,...,t,) =t
which are simultaneously executed when Condition is true.

There is a limited but powerful set of rule constructors,
reported in Table I, that allow to express simultaneous
parallel actions (par) of a single agent, either in an atomic
way, Basic ASMs, or in a structured and recursive way, Struc-
tured or Turbo ASMs, by sequential actions (seq), iterations
(iterate, while, recwhile), and submachine invoca-
tions returning values. Appropriate rule constructors also
allow non-determinism (existential quantification choose)
and unrestricted synchronous parallelism (universal quantifi-
cation forall). Furthermore, the ASM method supports a
generalization where multiple agents interact in parallel in
a synchronous/asynchronous way, Synch/Asynch Multi-agent
ASMs. In this last model, the predefined variable self is
interpreted by each agent as itself.

Based on [6], an ASM can be defined as the tuple:

(header, body, main rule, initialization)



Skip rule skip do nothing

Update rule ft1,...,tp) =t update the value of f at t1,...,t, to ¢

Block rule par R; ... R, endpar rules Ry ... R, are executed in parallel

Seq rule seq R ... R, endseq rules R; ... R, are executed in sequence without exposing intermediate updates
Conditional rule it ¢ then R; else R endif if ¢ is true, then execute rule R , otherwise Ro fires

Iterate rule while ¢ do R execute rule R until ¢ is true

Forall rule forall x with ¢ do R

execute R in parallel for each x satisfying ¢

Choose rule choose = with ¢ do R(x)

choose an x satisfying ¢ and then execute R

Macro call rule Rlz1,...,%5]

call rule R with parameters z1,...,Zn

Let rule letz =tin R

assign the value of ¢ to = and then execute R

TABLE I
ASM RULE CONSTRUCTORS

The header contains the name of the ASM and its signa-
ture', namely all domain, function and predicate declarations.

Function are classified as derived functions, i.e. those
coming with a specification or computation mechanism given
in terms of other functions, and basic functions which can
be static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or
updates). Dynamic functions are further classified into: mon-
itored (only read, as events provided by the environment),
controlled (read and write), shared (read and write by an
agent and by the environment or by another agent) and output
(only write) functions.

The body of an ASM consists of (static) domain and
(static/derived) function definitions according to domain and
function declarations in the signature of the ASM. It also
contains declarations (definitions) of transition rules. The
body may also contain definitions of invariants to assume
over domains and functions of the ASM.

The (unique) main rule is a transition rule and represents
the starting point of the machine program (i.e. it calls all the
other ASM transition rules defined in the body). The main
rule is closed (i.e. it does not have parameters) and since
there are no free global variables in the rule declarations of
an ASM, the notion of a move does not depend on variable
assignment, but on the machine state.

The initialization of an ASM is a characterization of the
initial states. An initial state defines initial values for domains
and functions declared in the ASM signature.

Executing an ASM means executing its main rule starting
from a specified initial state. A computation of an ASM M
is a finite or infinite sequence Sy, S, ..., Sy, ... of states
of M, where Sy is an initial state and each S, is obtained
from S,, by firing simultaneously all of the transition rules
which are enabled in .S,,.

A lightweight notion of module is also supported. An
ASM module is an ASM (header, body) without a main rule,
without a characterization of the set of initial states, and the
body may have no rule declarations. A module is written as
an ASM with the keyword asm replaced by the keyword
module.

An open framework, the ASMETA tool set [8], based on
the Eclipse/EMF modeling platform and developed around

Umport and export clauses can be also specified for modularization.

the ASM Metamodel, is also available for editing, exchang-
ing, simulating, testing, and model checking models.

B. The ASM-SCA formalism

In addition to the ASM rule constructors, other commands
capturing service behavioral aspects have been provided
(see [7], [9] for more details) and formalized in terms of
ASMs concepts as further actions offered by the SCA-ASM
language, including constructs to express the control flow
of component’s tasks, as well as primitive for services or-
chestration and interaction. Some of these actions correspond
to predefined ASM rules whose AsmetalL implementation is
provided in terms of an external library, named Common-
Behavior, to be imported as part of a SCA-ASM module.
In particular, external services are invoked in a synchronous
and asynchronous manner through the following interaction
(or communication) primitives:

o wsend[Ink,R,snd]: Sends data “snd” without blocking
to the partner link “/nk” in reference to the service
operation “R” (no acknowledgment is expected).

o wreceive[lnk,R,rcv]: Receives data in the location “rcv”
from the partner link “/nk” in reference to the service
operation “R; it blocks until data are received. No
acknowledgment is expected.

e wsendreceive[lnk,R,snd,rcv]. In reference to the service
operation “R, some data “snd are sent to the partner
link “Ink, then the action waits for data to be sent
back, which are stored in the receive location “rcv; no
acknowledgment is expected for send and receive.

o wreplay[Ink,R,snd] Returns some data “snd” to the
partner link “Ink”, as response of a previous “R” request
received from the same partner link; no acknowledg-
ment is expected.

These communication primitives rely on a dynamic do-
main Message that represents message instances managed
by an abstract message passing mechanism, abstracting,
therefore, from the SCA notion of binding. We assume only
that components communicate over links according to the
semantics of the communication commands reported above
and a message encapsulates information about the partner
link and the referenced service name and data transferred. A
data binding mechanism also guarantees a matching between
ASM data types and Java data types, including structured
data.
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C. The Sensor Coordinator Abstract State Machine - Policy s
1 »

The following listings report the ASM implementation of Z'
the Sensor Coordinator FSM depicted in figure 8 (request 2
management policy 1). To this purpose, the AsmetaL. textual
notation to write ASM models within the ASMETA tool-set 2
is used. Two grammatical conventions must be recalled: a
variable identifier starts with an initial $; a rule identifier
begins with “r_".

Listing 1 shows the first lines of the ASM implementation.
The import clauses include the ASM modules of the provided
service interfaces (in our case SensorCoordinating and Even-
tObserving) and required interfaces (in our case the Laser-
Scanning interface) of the component, annotated, respec-
tively, with “@Provided” and “@Required”. The “@Main-
Service” annotation when importing the SensorCoordinating
interface denotes the main service (read: main component’s
agent) that is responsible for initializing the component’s
state (in the predefined “r_init” rule) and, eventually, for the
start-up of the other agents by assigning programs to them.
The signature of the machine contains declarations for:

o References (shared functions annotated with @Refer-
ence), which are abstract access endpoints to services.

o Back references to requester agents (shared functions
annotated with @ Backref).

e Declarations of the following ASM domains and func-
tions, which are used by the component for internal
computation only.

The enumeration domain “State” defines the possi-
ble states of the ASM shown in section II-C.

The variable “ctl_state” stores the current control
state of the ASM. !

parameters of the “request” function.
The variable “from™ is used to store the start

The variable “steps” is used to store the number
of measures that compose a scan request received

from a client. 0

The variable “remScans” is used to store the num-
ber of scans that are requested by a client.

The variable “event” is used to store the input
parameter of the “update” function.

module SensorCoordinator
import STDL/StandardLibrary
import STDL/CommonBehavior

//@MainService

import SensorCoordinating
//@Provided

import EventObserving
//@Required

import LaserScanning
export

signature:

//@Reference

shared laserScanning : Agent —> LaserScanning
//@Backref

shared clientSensorCoordinating : Agent —> Agent

//@Backref
shared clientEventObserving : Agent —> Agent

enum domain State = {IDLE | BUSY | SCANNING}

/Mnternal properties

controlled ctl_state : Agent —> State

controlled paramScan : Agent —> Prod(Integer,Integer,Integer)
controlled from: Agent —> Integer

controlled steps : Agent —> Integer

controlled remScans : Agent —> Integer

controlled event : Agent —> String

Listing 1.
The body of the ASM, which starts with the key-
word “definitions:” includes definitions of services (ASM
transition rules annotated with @Service) “r_request” and
“r_update”, the definition of the main transition rule
“r_SensorCoordinator” (that takes by convention the same
name of the component’s module) and the transition rule
with the predefined name “r_init” that is in turn invoked in
the initialization rule of the container composite to initialize
the internal state (controlled functions). Another utility rule,
named “r_acceptRequest’, has been introduced for modu-
larization purposes and to advance the control state of the
machine according to the arriving service requests properly.
Listing 2 reports the body of the “r_request” rule. It is
in charge of requesting a scan to the laser scanner. When
the rule is called, it executes the following operations in a
parallel way:
1) Sets the state of the ASM to BUSY.
2) Stores the parameters of the requested scan in the
”, “steps” and “remScans”.

The ASM implementation header

variables “from”,
Calls the function “scan”, which is provided by the
service Laser Scanning.

3)

The variable “paramScan” is used to store the input |

4
5
position of a scan request received from a client. ¢
)
8
9

definitions: //definitions of named ASM transition rules
//@Service
rule r_request($a in Agent,$from in Integer,$steps in Integer,
$nScans in Integer)=
par
ctl_state($a) := BUSY
from($a) := $from
steps($a) ;= $steps
remScans($a) := $nScans — 1
r_wsend[laserScanning($a), r_scan(Agent,Integer,Integer)”,($ from,
Ssteps)]
endpar

Listing 2. The “r_request” rule

Listing 3 reports the body of the “r_update” rule. It is in
charge of receiving the notification from the laser scanner
and updating the control state of the ASM. When the rule is
called, it executes the following operations:

1) If the current control state is BUSY and the notification

is an “Ack”: the rule sets the control state to SCAN-
NING.
If the current control state is SCANNING and the
notification is a “Done” and the number of remaining
scans is greater than 0, the rule executes the following
operations in a parallel way:

« Sets the control state to BUSY.

o Decrements the number of remaining scans.

o Calls the function “scan”, which is provided by

the service Laser Scanning.

2)




3) If the current control state is SCANNING and the
notification is a “Done” and there are not remaining
scans to do: the rule sets the control state to IDLE.

R

© ® 9 o

//@Service
rule r_update($a in Agent, $Sevent in String) =
if (ctl_state($a)=BUSY and S$event="Ack”)
then ctl_state($a) := SCANNING
else if (ct1_state($a)=SCANNING and $event="Done” and remScans(
$a)>0)
//continue with next scan
then par
ctl_state($a) := BUSY
remScans($a) := remScans(Sa)—1
r_wsend[laserScanning($a), r_scan(Agent,Integer,Integer)”,(from($a),
steps($a))l
endpar
else if (ct1l_state($a)=SCANNING and $event="Done” and remScans(
$a)=0)
then ctl_state($a) := IDLE
endif endif endif

LR W —

Listing 3. The “r.update” rule

Listing 4 reports the body of the “r_acceptRequest”’ rule.
It is in charge of processing the request received from the
clients of the coordinator and so it receives as input a
string, which contains the request. When the rule is called,
it sequentially executes the following operations:

1) If the client has requested a new scan(r_request):

a) It removes the request from the requests stack
(operation “r_wreceive”) and stores the input pa-
rameters in the variable “paramScan’.

b) If the parameters are defined (condition “isDef”)
the rule calls the rule “r_request” (see above)

2) If the Laser Scanner has sent a notification (r_update):

a) It removes the request from the requests stack
(operation “r_wreceive) and stores the input pa-
rameter in the variable “event”.

b) If the parameter is defined the rule calls the rule
“r_update” (see above).

The rule is implemented in such a way that all the scan
requests received while the scanner is already scanning are
discarded (that’s what the policy 1 defines).

rule r_acceptRequest ($a in Agent, $r in String) =
if (ctl_state($a)=IDLE and $r="r_request(Agent,Integer,Integer,Integer)”)

then seq
/Mfirst scan
r_wreceive[clientSensorCoordinating($a), rrequest(Agent,

Integer,Integer,Integer)”,paramScan($a)]
if (isDef(paramScan(sa)))
then
r_request[$a,first(paramScan($a)),second(paramScan(sa)),
third(paramScan($a))]

endif
endseq
else if (not ctl_state($a)=IDLE and $r="r.update(Agent,String)”)
then seq
r_wreceive[clientEventObserving($a), r_update(Agent,String)”,
event($a)]

if (isDef(event($a)))
then r_update[self,event($a)]
endif
endseq
endif endif

Listing 4. The “r.acceptRequest” rule

Listing 5 reports the body of the “r_SensorCoordinator”
rule. It is the main rule of the agent and is called every
times a client requests a service offered by the Sensor
Coordinator. This rule simply forwards the request to the
“r_acceptRequest”’ rule (see above).

R

//Main agent's program
rule r_SensorCoordinator =
let($r = nextRequest(self)) //Select the next request(if any)
in if isDef(Sr)
then r_acceptRequest[self,$r] /Handle the request $r
endif
endlet

Listing 5. The “r_SensorCoordinator” rule

Listing 6 reports the body of the “r_inif” rule. It is called
in order to initialize the agent. This rule simply sets the
status of the agent to READY, the control state to IDLE and
initializes the scan parameters to 0.

2

- N

//Rule invoked for the startup of the components main agent
rule r_init($a in SensorCoordinating) = //to initialize the components
state
par
status($a) := READY
ctl_state($a) := IDLE
from(sa) :=0
steps($a) =0
remScans($a) =0
endpar

1
2
3

Listing 6. The "r_init” rule
D. The Sensor Coordinator Abstract State Machine - Policy
2

In this section we illustrate how the abstract state machine
presented above can be modified in order to implements the
request management policy 2 (figure 9).

Listing 7 shows the new implementation of the rule
“r_acceptRequest”’. The lines 1-15 are the same of the previ-
ous implementation. A third “if”” condition was added (lines
16-20) in order to manage the requests received while the
control state is different from IDLE. In fact, when the control
state is not /DLE and the request received is a scan request,
the rule sequentially executes the following operation:

« It removes the request from the requests stack (operation
“r_wreceive”) and stores the input parameters in the
variable “paramScan”.

e It puts the parameters in a queue called “pendingRe-
quests” (operation “append”). This queue is defined in
the header of the state machine and is the equivalent
of an array which stores triplets of integers (the three
parameters of a scan request).

All what is needed to queuing the scan requests stays in
this rule. Indeed, as mentioned above, this is the rule that
implements the request management policy. The changes in
the rule “r_update” are instead necessary in order to manage
the requests queue.

rule r_acceptRequest ($r in String) =
if (ctl_state(self)=IDLE and $r="r.request(Agent,Integer,Integer,Integer)”)
then seq //first scan




r_wreceive[clientSensorCoordinating(self), rrequest(Agent,
Integer,Integer,Integer)”,paramScan(self)]
if (isDef(paramScan(self))) //direct service invocation
then r_request[self,first(paramScan(self)),second(
paramScan(self)),third(paramScan(self))]

endif
endseq
else if (not ctl_state(self)=IDLE and $r="r_update(Agent,String)”)
then seq

r_wreceive[clientSensorCoordinating(self), r-update(Agent,
String)”,event(self)]
if (isDef(event(self)))
then r_update[self,event(self)]

endif
endseq
else if (not ctl_state($a)=IDLE and $r="r_request(Agent Integer,Integer,
Integer)”)

then seq //first scan
r_wreceive[clientSensorCoordinating($a), rrequest(Agent,
Integer,Integer,Integer)”,paramScan($a)l
append(pendingRequests($a), (first(paramScan($a)),second(
paramScan($a)),third(paramScan($a)))
endseq

endif endif endif

Listing 7. The “r-acceptRequest” rule - Policy 2

Listing 8 illustrates how the implementation of the

“r_update” rule was changed. The lines 1-10 are the same
of the previous implementation. The third “if” condition
was modified and split in two new conditions by adding a
control on the number of pending requests. The following
list describes the lines 11-20

1) If the current control state is SCANNING and the
notification is a “Done” and there are not remaining
scans to do and the number of pending requests is
greater than O: the rule sequentially

a) removes the first request from the queue,
b) calls the rule “r_request” by passing the parame-
ters retrieved from the queue.

2) If the current control state is SCANNING and the
notification is a “Done” and there are not remaining
scans to do and there are not pending requests: the
rules sets the control state to IDLE
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rule r_update($a in Agent, $event in String) =

if (ct1_state($a)=BUSY and Sevent="Ack”)
then ctl_state($a) := SCANNING
else if (ct1_state($a)=SCANNING and $event="Done” and remScans(
$a)>0)
//continue with next scan
then par
ctl_state($a) := BUSY
remScans($a) = remScans($a)—1
r_wsend[laserScanning($a), ’r_scan(Agent,Integer,Integer)”,(from($a),
steps($a))]
endpar
else if (ct1_state($a)=SCANNING and $event="Done” and remScans(
$a)=0 and lenght(pendingRequests($a))>0)
then let($tmp=first(pendingRequests($a))) in

seq
pendingRequests($a) ;= excluding(pendingRequests($a),
Stmp)
r_request[($a),first($tmp),second($tmp),third($tmp)]
endseq
endlet

else if (ct1_state($a)=SCANNING and $event="Done” and remScans(
$a)=0 and length(pendingRequests($a))=0)
then ctl_state($a) := IDLE
endif endif endif endif

Listing 8. The “r_update” rule - Policy 2

IV. THE USE CASE IMPLEMENTATION

The scenario presented above was implemented in SCA
and ASM. Figure 10 illustrates the SCA Sensor Composite,
which represents the sensor component defined in figure 6.
The clients are not present in this diagram, but they can
interact with the Sensor Coordinator and with the Measures
Buffer through the Services offered by the composite. In par-
ticular a client could request a scan by means of the service
“Sensor Coordinating” and could access the Measures Buffer
by means of the service “Measures Buffer Reading”.

o Component 1: Measures Buffer

— Provided Services:

* Measure Buffer Writing: it is used for writing a
measure on the buffer.

* Measure Buffer Reading: it is used for reading
a measure from the buffer.

o Component 2: Laser Scanner

— Provided Service:

* Laser Scanning: it is used for starting a scan. The
scan operation provided by the service requires
two parameters: from and numOfSteps.

— Required Service:

* Measure Buffer Writing.

o Component 3: Sensor Coordinator

— Provided Services:

* Sensor Coordinating: it is used in order to re-
quest a number of scans. The scan operation pro-
vided by the service requires three parameters:
from, numOfSteps, and numOfScans.

+x Event Observing: it is used in order to notify
the coordinator when the scan process starts and
when it finishes.

— Required Service:

* Laser Scanning.

A. The component interfaces and the data structures

The interfaces of the services and the used data structures
are reported in the listing 9. To be noticed that the interfaces
of the Sensor Coordinator are defined both in Java and ASM.
We have the necessity of define this component interface
also in Java because in this way the Java interpreter can
recognize them and so we can call the Sensor Coordinator
services from a component implemented in Java without
syntax errors.

public interface MeasuresBufferReading {

public LaserScan getScan();

}

public interface MeasuresBufferWriting {

public void writeMeasure(LaserMeasure measure);

public interface LaserScanning {

@param from: point from which the laser starts the scan
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Fig. 10. The Sensor Composite

% @param numOfSteps: number of steps of the scan =/
@OneWay
public void scan(int from, int numOfSteps);

}

public interface SensorCoordinating {

/‘
« @param from: point from which the laser starts the scan
« @param numOfSteps: number of steps of the scan
% @param numOfScans: number of scans required s/
@OneWay
public void request(int from, int numOfSteps, int numOfScans);

}

Listing 9. The Java interfaces of the components

In order to manage the notification received from the
Laser Scanner the Sensor Coordinator also implements the
interface reported in the listing 10. So far it is used as a
Service in order to simulate a callback, because the callbacks
are not yet supported in the SCA-ASM Eclipse plugin. It will
be used as a SCA Callback as soon as this further feature
will be implemented and supported.

public interface EventObserving {

[
# @param event: it describe the type of event.

« For the laser scanner valid values are ”Ack” and “"Done”
#/

ublic void update(String event);

Listing 10. The Java EventObserving interface

The ASM definitions of the sensor coordinators provided
interfaces are reported in the listing 11 using the Asmetal
notation. They are ASM modules containing only declara-
tions of business agent types, declared in terms of subdo-
mains of the predefined ASM Agent domain, and of business

functions, declared as parameterized ASM out functions.

//@Remotable

module SensorCoordinating
import STDL/StandardLibrary
import STDL/CommonBehavior
export

signature:

/I the domain defines the type of this agent

domain SensorCoordinating subsetof Agent

// out is a function that implements the provided service

out request: Prod(Agent,Integer,Integer,Integer) —> Rule
definitions:

//@Remotable

module EventObserving
import STDL/StandardLibrary
import STDL/CommonBehavior
export

signature:

domain EventObserving subsetof Agent
out update: Prod(Agent,String) —> Rule
definitions:

Listing 11. ASM definition of the Sensor Coordinating interface

V. CONCLUSIONS

In this paper we have presented a case study regarding
the coordination in the context of a robotics application. The
case study was developed by using SCA and ASM and has
demonstrated that the use of these frameworks, which are
widespread in other domains, is feasible also in the robotics
field.

The use of two different frameworks for modeling two
different concerns (SCA for computation and ASM for
coordination) improves the level of flexibility and reusability.




Thanks to this orthogonal separation, we were able to im-
plement two different policies without modifying the imple-
mentation of the services offered by the Laser Scanner. In the
same way it is possible to modify the implementation of the
Laser Scanner services without modifying the coordination
state machine.

Moreover ASM allows automatic validation and verifica-
tion of the correctness and reliability of single components
taken in isolation. It also consents runtime monitoring of the
components and self-adaptation.

These positive features, the results demonstrated through
our case study, the level of maturity of these frameworks
and their significant spread in other domains such as the web
services, support and advocate our thesis according to which
the integration of SCA and ASM promises good results also
in the robotics field.
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