UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE E METODI MATEMATICI°

QUADERNI DEL DIPARTIMENTO

Department of Information Technology and Mathematical Methods

Working Paper

Series "Mathematics and Statistics"

n. 2/MS - 2009

An inequality for local unitary Theta correspondence

by

Zheng Gong, Loïc Grenié

[°] Viale Marconi. 5, I – 24044 Dalmine (BG), ITALY, Tel. +39-035-2052339; Fax. +39-035-562779

COMITATO DI REDAZIONE§ Series Information Technology (IT): Stefano Paraboschi Series Mathematics and Statistics (MS): Luca Brandolini, Ilia Negri § L'accesso alle Series è approvato dal Comitato di Redazione. I Working Papers della Collana dei Quaderni del Dipartimento di Ingegneria dell'Informazione e Metodi Matematici costituiscono un servizio atto a fornire la tempestiva

divulgazione dei risultati dell'attività di ricerca, siano essi in forma provvisoria o definitiva.

An inequality for local unitary Theta correspondence

Zheng GONG and Loïc GRENIÉ

January 22, 2009

1 Introduction, notations

This section recalls the local theta correspondence as in [Kud2] and cites some of the results of [HKS].

We fix once and for all a non archimedean local field F of residual characteristic different from 2.

The application Δ will always be a diagonal embedding, usually from G to $G \times G$ except in one point where it will be precised.

1.1 Heisenberg group

Let W be a vector space with a symplectic form $\langle .,. \rangle$ on which the group GL(W) will act on the right – accordingly, if f and g are two endomorphisms of W, we will denote $f \circ g$ the endomorphism such that $(f \circ g)(w) = g(f(w))$. We will denote, as usual,

$$Sp(W) = \{ g \in GL(W) \mid \forall (x, y) \in W^2, \langle xg, yg \rangle = \langle x, y \rangle \}$$

its isometry group.

Definition 1.1 The Heisenberg group of W if the group $H(W) = W \ltimes F$ with product

$$(w_1, t_1)(w_2, t_2) = (w_1 + w_2, t_1 + t_2 + \frac{1}{2} \langle w_1, w_2 \rangle).$$

The centre of H(W) is $\{(0,t) \mid t \in F\}$ and Sp(W) acts on H(W) via its action on W:

$$(w,t)^g = (wg,t).$$

We recall

Theorem 1.2 (Stone-von Neumann theorem) Let ψ be a non trivial unitary character of F. There exists, up to isomorphism, one smooth irreducible representation (ρ_{ψ}, S) of H(W) such that

$$\rho_{\psi}((0,t)) = \psi(t) \cdot \mathrm{id}_{S}.$$

If we fix such a representation (ρ_{ψ}, S) , for any $g \in \operatorname{Sp}(g)$, the representation $h \longmapsto \rho_{\psi}^{g}(h) = \rho_{\psi}(h^{g})$ is a representation of H(W) with the same central character, which means that it must be isomorphic to ρ_{ψ} . Hence there is an isomorphism $A(g) \in \operatorname{GL}(S)$, unique up to a scalar, such that

$$\forall h \in H, \quad A(g)^{-1} \rho_{\psi}(h) A(g) = \rho_{\psi}^{g}(h). \tag{1}$$

The group

$$Mp(W) = \{(g, A(g)) \mid \text{equation (1) holds}\}$$

is independent of the choice of ψ and is a central extension of Sp(W) by \mathbb{C}^{\times} :

$$0 \longrightarrow \mathbf{C}^{\times} \longrightarrow \operatorname{Mp}(W) \longrightarrow \operatorname{Sp}(W) \longrightarrow 1.$$

The group Mp(W) has a natural representation, called the Weil representation, ω_{ψ} on S given by

$$\omega_{\psi}: \operatorname{Mp}(W) \longrightarrow \operatorname{End}(S)$$

 $(g, A(g)) \longmapsto A(g)$

1.2 The Schrödinger model of the Weil representation

The application $(g, A(g)) \mapsto A(g)$ defines a representation of Mp(W) of which there are several models. We are interested in the so-called Schrödinger model.

Let Y be a Lagrangian of W, i.e. a maximal isotropic subspace of W and $W = X \oplus Y$ a complete polarisation of W. We consider Y as a degenerate symplectic space and see $H(Y) = Y \ltimes F$ as a maximal abelian subgroup of H(W). We consider the extension ψ_Y of the character ψ from F to H(Y) defined by $\psi_Y(y,t) = \psi(t)$. Let

$$S_Y = \operatorname{Ind}_{H(Y)}^{H(W)} \psi_Y.$$

We recall that S_Y is the space of those $f: H(W) \longrightarrow \mathbf{C}$ such that

$$\forall h_1 \in H(Y), f(h_1h) = \psi_Y(h_1)f(h)$$

and such that there exists a compact open subgroup L of W such that

$$\forall l \in L, f(h(l, 0)) = f(h).$$

We fix an isomorphism of S_Y with the space S(X) of Schwartz functions on X by

$$S_Y \longrightarrow S(X)$$

$$f \longmapsto \varphi : X \to \mathbf{C}$$

$$x \mapsto \varphi(x) = f(x, 0).$$

The group H(W) acts on S_Y by right translation while it acts on $\varphi \in S(X)$ by

$$\left(\rho(x+y,t)\varphi\right)(x_0) = \psi\left(t+\langle x_0,y\rangle + \frac{1}{2}\langle x,y\rangle\right)\varphi(x_0+x)$$

where $x + y \in W$ is such that $x \in X$ and $y \in Y$. Then (see [MVW]) $(\rho, S(X))$ is a model for the Weil representation.

We specify the operator ω_{ψ} as follows. We identify an element $w \in W$ with the row vector $(x,y) \in X \oplus Y$. An element $g \in \operatorname{Sp}(W)$ will be of the form $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a \in \operatorname{End}(X)$, $b \in \operatorname{Hom}(X,Y)$, $c \in \operatorname{Hom}(Y,X)$ and $d \in \operatorname{End}(Y)$. Let $P_Y = \{g \in \operatorname{Sp}(W) \mid c = 0\}$ be the maximal parabolic subgroup of $\operatorname{Sp}(W)$ that stabilises Y and $N_Y = \{g \in P_Y \mid d = \operatorname{id}_Y\}$ its unipotent radical. We have a Levy subgroup $M_Y = \{g \in P_Y \mid b = 0\}$ of P_Y and $P_Y = M_Y N_Y$.

We define the following natural applications:

$$m: \operatorname{GL}(X) \longrightarrow M_Y$$
 $n: \operatorname{Her}(X,Y) \longrightarrow N_Y$ $a \longmapsto m(a) = \begin{pmatrix} a & 0 \\ 0 & a^{\vee} \end{pmatrix}$ $b \longmapsto n(b) = \begin{pmatrix} \operatorname{id}_X & b \\ 0 & \operatorname{id}_Y \end{pmatrix}$

where a^{\vee} is the inverse of the dual of a and $\operatorname{Her}(X,Y)$ is the subset of those $b \in \operatorname{Hom}(X,Y)$ which are Hermitian (in both cases we identify the dual of $X \oplus Y$ with $Y \oplus X$ using $\langle ., . \rangle$).

Proposition 1.3 ([Kud2, Proposition 2.3, p8]) Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}(g)$. The operator r(g) of S(X) defined by

$$r(g)(\varphi)(x) = \int_{\mathrm{Ker}\,c^Y} \psi\left(\frac{1}{2}\langle xa, xb\rangle - \langle xb, yc\rangle + \frac{1}{2}\langle yc, yd\rangle\right) \varphi(xa + yc)\,\mathrm{d}\mu_g(y)$$

is proportional to A(g) and moreover is unitary for a unique Haar measure $d\mu_g(y)$ on $\operatorname{Ker} c \backslash Y$.

1.3 Dual reductive pairs

Definition 1.4 A dual reductive pair (G, G') in Sp(W) is a pair of subgroups of Sp(W) such that both G and G' are reductive and

$$\operatorname{Cent}_{\operatorname{Sp}(W)}(G) = G' \quad and \quad \operatorname{Cent}_{\operatorname{Sp}(W)}(G') = G.$$

If (G, G') is a dual reductive pair in Sp(W), we denote \widetilde{G} and \widetilde{G}' the pullbacks of the subgroups in Mp(W). As seen in [MVW], there exists a natural morphism

$$j: \widetilde{G} \times \widetilde{G}' \longrightarrow \operatorname{Mp}(W)$$

such that the restriction of j to $\mathbf{C}^{\times} \times \mathbf{C}^{\times}$ is the product.

We consider the pullback $(j^*(\omega_{\psi}), S)$ of ω_{ψ} to $\widetilde{G} \times \widetilde{G}'$. We note that the central character for both \widetilde{G} and \widetilde{G}' is the identity:

$$\omega_{\psi}(j(z_1,z_2)) = z_1 z_2 \cdot \mathrm{id}_S.$$

Let π be an irreducible admissible representation of \widetilde{G} such that the central character of π is the identity. Then if

$$\mathcal{N}(\pi) = \bigcap_{\lambda \in \operatorname{Hom}_{\widetilde{G}}(S,\pi)} \operatorname{Ker} \lambda$$

 $S(\pi) = S/\mathcal{N}(\pi)$ is the largest quotient of S on which \widetilde{G} acts by π . The action of \widetilde{G}' on S commutes with the action of \widetilde{G} so that \widetilde{G}' acts on $S(\pi)$ and thus $S(\pi)$ is a representation of $\widetilde{G} \times \widetilde{G}'$. There exists (see [MVW]) a smooth representation $\Theta_{\psi}(\pi)$ of G', unique up to isomorphism, such that

$$S(\pi) \simeq \pi \otimes \Theta_{\psi}(\pi).$$

The principal result is the following

Theorem 1.5 (Howe duality principle) Let F be a non archimedean local field with residual characteristic different from 2 and let π be an irreducible admissible representation of \widetilde{G} . Then

- i) If $\Theta_{\psi}(\pi) \neq 0$, then it is an admissible representation of \widetilde{G}' of finite length.
- ii) If $\Theta_{\psi}(\pi) \neq 0$, there exists a unique \widetilde{G}' -submodule $\Theta^{0}_{\psi}(\pi)$ such that the quotient

$$\theta_{\psi}(\pi) = \Theta_{\psi}(\pi)/\Theta_{\psi}^{0}(\pi)$$

is irreducible. If $\Theta_{\psi}(\pi) = 0$, we let $\theta_{\psi}(\pi) = 0$.

iii) If two irreducible admissible representations π_1 and π_2 of \widetilde{G} are such that $\theta_{\psi}(\pi_1) \simeq \theta_{\psi}(\pi_2) \neq 0$ then $\pi_1 \simeq \pi_2$.

1.4 The unitary case

Let E/F be a quadratic extension and $\epsilon_{E/F}$ the corresponding quadratic character of F^{\times} . Let V be a quadratic space of dimension m with Hermitian form

$$(.|.): V \times V \longrightarrow E$$

(linear in the second argument). We will denote

$$G(V) = \{ q \in \operatorname{GL}(V) \mid \forall v, w \in V, (qv|qw) = (v|w) \}$$

the isometry group of V.

Let W be a quadratic space of dimension n with skew-Hermitian form

$$\langle .,. \rangle : W \times W \longrightarrow E$$

(linear in the second argument). We will denote G(W) its isometry group.

Let $\mathbb{W} = R_{E/F}(V \otimes_E W)$ with symplectic form

$$\langle\!\langle .,. \rangle\!\rangle : \mathbb{W} \otimes \mathbb{W} \longrightarrow F$$
$$(v_1 \otimes w_1, v_2 \otimes w_2) \longmapsto \langle\!\langle v_1 \otimes w_1, v_2 \otimes w_2 \rangle\!\rangle = \frac{1}{2} \operatorname{Tr}_{E/F} ((v_1, v_2) \langle w_1, w_2 \rangle).$$

The pair (G(V), G(W)) is a dual reductive pair in Sp(W). We have a natural inclusion

$$\iota: G(V) \times G(W) \longrightarrow \operatorname{Sp}(\mathbb{W})$$

$$(g,h) \longmapsto \iota(g,h) = g \otimes h.$$

For any pair of characters $\chi = (\chi_m, \chi_n)$ of E^{\times} such that

$$\chi_n \mid_{F^{\times}} = \epsilon_{E/F}^n, \quad \chi_m \mid_{F^{\times}} = \epsilon_{E/F}^m,$$

one can define a homomorphism

$$\tilde{\iota}_{\chi}: G(V) \times G(W) \longrightarrow \operatorname{Mp}(\mathbb{W})$$

lifting ι (the homomorphism $\tilde{\iota}_{\chi}$ does depend on χ). Since the context will usually make clear which of χ_m and χ_n is considered, we will often use χ instead of χ_m or χ_n . Moreover we define $\iota_{V,\chi}$ (resp. $\iota_{W,\chi}$) the restriction of ι_{χ} to $G(V) \times 1$ (resp. $1 \times G(W)$).

We will denote ω_{ψ} the Weil representation of Mp(W) and ω_{χ} its pullback through $\tilde{\iota}_{\chi}$. As before, if π is an irreducible admissible representation of G(V), we get a representation $\Theta_{\chi}(\pi, V)$ of G(W) such that

$$S(\pi) \simeq \pi \otimes \Theta_{\chi}(\pi, V)$$

and if $\Theta_{\chi}(\pi, V) \neq 0$, we say that π appears in the local theta correspondence for the pair (G(V), G(W)). This condition depends on χ_m but not on χ_n . As above we define $\theta_{\pi}(\pi, V)$ to be the unique irreducible quotient of $\Theta_{\chi}(\pi, V)$ (or 0 if $\Theta_{\chi}(\pi, V) = 0$).

Witt towers For a fixed dimension m, there are two equivalence classes of Hermitian spaces of dimension m over E. These two classes are distinguished by their Hasse invariant

$$\epsilon(V) = \epsilon_{E/F} \left((-1)^{\frac{m(m-1)}{2}} \det V \right).$$

We thus get two families of spaces V_m^{\pm} where the sign is the sign of the Hasse invariant. As Hermitian spaces we have $V_{m+2}^{\pm} \simeq V_m^{\pm} \oplus V_{1,1}$, where $V_{1,1}$ is an hyperbolic plane and the direct sum is orthogonal. We thus get four so-called Witt towers

$$V_{2r}^+ = V_0^+ \oplus (V_{1,1})^r$$
, $V_{2r+2}^- = V_2^- \oplus (V_{1,1})^r$, $V_{2r+1}^+ = V_1^+ \oplus (V_{1,1})^r$, $V_{2r+1}^- = V_1^+ \oplus (V_{1,1})^r$

where V_0^+ is the null vector space, V_2^- is an anisotropic 2-dimensional Hermitian space and V_1^\pm are one dimensional anisotropic Hermitian spaces. In each case the integer r is the Witt index of the corresponding Hermitian space^[1].

We have

^[1]We recall that the Witt index of a quadratic space is the dimension of a maximal totally isotropic subspace

Proposition 1.6 ([HKS],[Kud2]) Consider a Witt tower $\{V_m^{\epsilon}\}$ with $\epsilon = \pm$.

- (i) (Persistence) If $\theta_{\chi}(\pi, V_m^{\epsilon}) \neq 0$ then $\theta_{\chi}(\pi, V_{m+2}^{\epsilon}) \neq 0$.
- (ii) (Stable range) We have $\theta_{\chi}(\pi, V_m^{\epsilon}) \neq 0$ if the Weil index r_0 of V_m is such that $r_0 \geqslant n$.

We fix $m_0 \in \{0,1\}$ and a character χ of E^{\times} such that $\chi_{|F^{\times}} = \epsilon_{E/F}^{m_0}$ and we consider the two towers V_m^{\pm} with m of the parity of m_0 (if $m_0 = 0$ we disregard V_0^- which does not exist). Let $m_{\chi}^{\pm}(\pi)$ be the smallest m such that

$$\theta_{\chi}(\pi, V_m^{\pm}) \neq 0.$$

Based on several examples, we have

Conjecture 1.7 (Conservation relation, [HKS, Speculations 7.5 and 7.6], [KR, Conjecture 3.6])

$$m_{\chi}^{+}(\pi) + m_{\chi}^{-}(\pi) = 2n + 2.$$

1.5 Aim of this paper

We prove here one of the inequalities of Conjecture 1.7:

Theorem 1.8 Let π be an irreducible admissible representation of G(W), then

$$m_{\gamma}^{+}(\pi) + m_{\gamma}^{-}(\pi) \geqslant 2n + 2.$$

1.6 Degenerate principal series

Let W_+ and W_- be two copies of W with respectively the same form as W and its opposite. We keep our pair of characters $\chi = (\chi_m, \chi_n)$. We fix for the space $W_+ \oplus W_-$ the complete polarisation $X \oplus Y$ where $X = \{(w, -w) \mid w \in W\}$ and $Y = \{(w, w) \mid w \in W\} = \Delta(W)$ where Δ is the diagonal embedding of W in $W_+ \oplus W_-$. We let then

$$W_{+} = R_{E/F}(V \otimes_{E} W_{+}) \qquad W_{-} = R_{E/F}(V \otimes_{E} W_{-})$$

$$X = R_{E/F}(V \otimes_{E} X) \qquad Y = R_{E/F}(V \otimes_{E} Y).$$

and we consider the representation $\omega_{V,W_+\oplus W_-,\chi}$ of $G(V)\times G(W_+\oplus W_-)$ induced by the Weil representation of $\mathbb{W}_+\oplus\mathbb{W}_-$ on $S=S(\mathbb{X})\simeq S(V^n)$. Let $R_n(V,\chi)$ be the maximal quotient of S on which G(V) acts by the character χ_m . The space $R_n(V,\chi)$ can be seen as a representation of $G(W)\times G(W)$ via the natural embedding

$$i: G(W) \times G(W) = G(W_+) \times G(W_-) \hookrightarrow G(W_+ \oplus W_-).$$

From now on, we will denote $G = G_n = G(W)$ and $\tilde{G} = \tilde{G}_n = G(W_+ \oplus W_-)$ so that $i: G \times G \hookrightarrow \tilde{G}$.

We then have

Proposition 1.9 ([HKS, Proposition 3.1 and discussion before]) Let π be an irreducible admissible representation of G(W),

$$\Theta_{\chi}(\pi, V) \neq 0 \iff \operatorname{Hom}_{G \times G}(R_n(V, \chi), \pi \otimes (\chi_m \cdot \pi^{\vee})) \neq 0.$$

Let P_Y be the parabolic subgroup of \tilde{G} stabilising Y. We will denote M_Y its maximal Levi subgroup and N_Y its unipotent radical. Recall that M_Y and N_Y are parametrised respectively by GL(X) and Her(X,Y).

For $s \in \mathbb{C}$ and χ a character of E^{\times} , let

$$I_n(s,\chi) = \operatorname{Ind}_{P_Y}^{\tilde{G}} \chi |.|^s$$

be the degenerate principal series (the induction is unitary and the elements of $I_n(s,\chi)$ are locally constant functions $\Phi(g,s)$).

We can identify $R_n(V,\chi)$ as a subspace of some $I_n(s,\chi)$ by sending an element $\phi \in S$ to the function $g \longmapsto \omega_{\chi}(g)\phi(0)$ – here we denote $\omega_{\chi} = \omega_{\psi} \circ \tilde{\iota}_{V,\chi}$. The spaces $R_n(V_m^{\pm},\chi)$ allows us to decompose $I_n(s,\chi)$ as explained by the following proposition.

Proposition 1.10 ([KS, Theorem 1.2, p257]) Let V_m^{\pm} be an m-dimensional unitary space of dimension m and Hasse invariant \pm . Let $s_0 = \frac{m-n}{2}$ and χ a character of E^{\times} such that $\chi|_{F^{\times}} = \epsilon_{E/F}^m$.

- i) If $m \leq n$, i.e. if $s_0 \leq 0$, then the modules $R_n(V_m^{\pm}, \chi)$ are irreducible and $R_n(V_m^{+}, \chi) \oplus R_n(V_m^{-}, \chi)$ is the maximal completely reducible submodule of $I_n(s_0, \chi)$.
- ii) If m = n, i.e. if $s_0 = 0$, then $I_n(0, \chi) = R_n(V_n^+, \chi) \oplus R_n(V_n^-, \chi)$.
- iii) If n < m < 2n, i.e. if $0 < s_0 < \frac{n}{2}$, then $I_n(s_0, \chi) = R_n(V_m^+, \chi) + R_n(V_m^-, \chi)$ and $R_n(V_m^+, \chi) \cap R_n(V_m^-, \chi)$ is the unique irreducible submodule of $I_n(s_0, \chi)$.
- iv) If m = 2n, i.e. if $s_0 = \frac{n}{2}$, then $I_n(s_0, \chi) = R_n(V_{2n}^+, \chi)$, $R_n(V_{2n}^-, \chi)$ is of codimension 1 and is the unique irreducible submodule of $I_n(s_0, \chi)$.
- v) If m > 2n, i.e. if $s_0 > \frac{n}{2}$, then $I_n(s_0, \chi) = R_n(V_m^{\pm}, \chi)$ is irreducible.

In all other cases $I_n(s,\chi)$ is irreducible.

To understand better the decompositions above we begin with the Bruhat decomposition of \tilde{G} :

$$\tilde{G} = \coprod_{j=0}^{n} P_Y \omega_j P_Y, \quad \text{with } \omega_j = \begin{pmatrix} I_{n-j} & 0 & 0 & 0 \\ 0 & 0 & 0 & I_j \\ 0 & 0 & I_{n-j} & 0 \\ 0 & -I_j & 0 & 0 \end{pmatrix}$$

and let us introduce, as in [Kud2, p19] and [Rao] the application

$$x: \tilde{G} \longrightarrow E^{\times}/N_{E/F}E^{\times}$$
$$p_1\omega_j^{-1}p_2 \longmapsto \det(p_1p_2|_Y) \mod N_{E/F}E^{\times}$$

Whenever $\chi|_{F^{\times}} = 1$ we can introduce the character $\chi_{\tilde{G}}$ of \tilde{G}

$$\chi_{\tilde{G}}(g) = \chi(x(g)).$$

We extend the definition of R_n as follows:

$$R_n(V_0^+,\chi) = R_n(0,\chi) = \mathbf{C} \cdot \chi_{\tilde{G}}$$

and $R_n(V_0^+, \chi)$ is a submodule of dimension 1 of $I_n(-\frac{n}{2}, \chi)$ (we are, at least formally, in the case i) of Proposition 1.10). As a last step, we define the intertwining operators

$$M_n(s,\chi):I_n(s,\chi)\longrightarrow I_n(-s,\chi)$$

by the integral

$$M_n(s,\chi)(\Phi) = \int_{N_Y} \Phi(w_n u g, s) du = \int_{\text{Her}(X,Y)} \Phi(w_n n(b)g, s) db,$$

which is convergent for Re $s > \frac{n}{2}$ and by meromorphic continuation for $s \in \mathbb{C}$. The Haar measure db is chosen self-dual with respect to the Fourier transform

$$\hat{\phi}(y) = \int \phi(b)\psi(\text{Tr}(by)) \,db.$$

We normalise $M_n(s,\chi)$ using

$$a(s,\chi) = \prod_{j=0}^{n-1} L_F \left(2s + j - (n-1), \chi \epsilon_{E/F}^j \right)$$

and then $M_n^*(s,\chi) = \frac{1}{a(s,\chi)} M_n(s,\chi)$ is holomorphic and non zero (see [KS, Proposition 3.2]).

Proposition 1.11 ([KS]) Let V_m^{\pm} be the m-dimensional unitary space of dimension m and Hasse invariant \pm . Let $s_0 = \frac{m-n}{2}$ and χ a character of E^{\times} such that $\chi|_{F^{\times}} = \epsilon_{E/F}^m$.

- i) If m = 0, i.e. if $s_0 = -\frac{n}{2}$, then $\operatorname{Ker}(M_n^*(-\frac{n}{2},\chi)) = R_n(V_0^+,\chi)$ and $\operatorname{Im}(M_n^*(-\frac{n}{2},\chi)) = R_n(V_{2n}^-,\chi)$.
- ii) If $1 \leq m < n$, i.e. if $-\frac{n}{2} < s_0 < 0$, then $\operatorname{Ker}(M_n^*(s_0, \chi)) = R_n(V_m^+, \chi) \oplus R_n(V_m^-, \chi)$ and $\operatorname{Im}(M_n^*(s_0, \chi)) = R_n(V_{2n-m}^+, \chi) \cap R_n(V_{2n-m}^-, \chi)$.
- iii) If $n \leq m < 2n$, i.e. if $0 \leq s_0 < \frac{n}{2}$, then $\operatorname{Ker}(M_n^*(s_0, \chi)) = R_n(V_m^+, \chi) \cap R_n(V_m^-, \chi)$, $M_n^*(s_0, \chi)(R_n(V_m^{\pm}, \chi)) = R_n(V_{2n-m}^{\pm}, \chi)$ thus we have $\operatorname{Im}(M_n^*(s_0, \chi)) = R_n(V_{2n-m}^+, \chi) \oplus R_n(V_{2n-m}^-, \chi)$.
- iv) If m = 2n, i.e. if $s_0 = \frac{n}{2}$, then $\operatorname{Ker}(M_n^*(\frac{n}{2},\chi)) = R_n(V_{2n}^-,\chi)$ and $\operatorname{Im}(M_n^*(\frac{n}{2},\chi)) = M_n^*(\frac{n}{2},\chi)(R_n(V_{2n}^+),\chi) = R_n(V_0^+,\chi)$.

1.7 Local Zeta integral

The last element that we will use is the local Zeta integral of a representation. We fix π an irreducible admissible representation of G(W).

Definition 1.12 A matrix coefficient of π will be a linear combinations of functions of the form

$$\phi(g) = \langle \pi(g)\xi, \xi^{\vee} \rangle$$

where ξ and ξ^{\vee} are vectors of the space of respectively π and π^{\vee} .

Moreover if ξ_{\circ} and ξ_{\circ}^{\vee} are preassigned spherical vectors of π and π^{\vee} , we let

$$\phi^{\circ}(g) = \langle \pi(g)\xi_{\circ}, \xi_{\circ}^{\vee} \rangle.$$

We parametrise the space of matrix coefficients with the space of $\pi \otimes \pi^{\vee}$ through the obvious projection. If $s \in \mathbb{C}$ with Re s large enough, $\xi \in \pi$, $\xi^{\vee} \in \pi^{\vee}$, $\Phi \in I_n(s, \chi)$, let

$$Z(s, \chi, \pi, \xi \otimes \xi^{\vee}, \Phi) = \int_{G} \langle \pi(g)\xi, \xi^{\vee} \rangle \Phi(i(g, I_n), s) \, \mathrm{d}g$$

and extend it linearly to the space of matrix coefficients of π . We fix a maximal compact subgroup K of \tilde{G} (for instance, one can fix a basis of $W_+ \oplus W_-$, see \tilde{G} as a subgroup of $\mathrm{GL}(2n,E)$ and take $K = \tilde{G} \cap \mathrm{GL}(2n,\mathcal{O}_E)$).

Definition 1.13 A standard section Φ is an application from \mathbf{C} to the set of function from \tilde{G} to \mathbf{C} such that $\forall s \in \mathbf{C}$, $\Phi(g,s) = \Phi(s)(g) \in I_n(s,\chi)$ and, moreover, $\Phi(s)|_K$ is independent of s.

It is rather obvious that any element $\Phi(g,s) \in I_n(s,\chi)$ can be inserted in a (unique) standard section. The Zeta integral above defines, for Re s sufficiently large, an intertwining operator

$$Z(s, \chi, \pi) \in \operatorname{Hom}_{G \times G} (I_n(s, \chi), \pi \otimes (\chi \cdot \pi^{\vee}))$$

If Φ is a standard section, this operator can be meromorphically extended for all $s \in \mathbf{C}$ to an operator

$$Z^*(s,\chi,\pi) \in \operatorname{Hom}_{G\times G}(I_n(s,\chi),\pi\otimes(\chi\cdot\pi^\vee)).$$

2 Our results

2.1 Decomposition of the degenerate principal series

Let $\Omega(W_+ \oplus W_-)$ be the Grassmannian of the Lagrangians of $W_+ \oplus W_-$. We can identify

$$P_Y \backslash G(W_+ \oplus W_-) \simeq \Omega(W_+ \oplus W_-)$$

using the map $P_Y \cdot g \longmapsto Yg$. There is a right action of $i(G(W) \times G(W))$ on $\Omega(W_+ \oplus W_-)$ which orbits are parametrised by the elements of the decomposition

$$G(W_+ \oplus W_-) = \prod_{r=0}^{r_0} P_Y \delta_r i(G(W) \times G(W))$$

where r_0 is the Witt index of W. The aforementioned orbits are of the form

$$\Omega_r = P_Y \backslash P_Y \delta_r i(G(W) \times G(W)).$$

The orbit Ω_r is made of the Lagrangians Z such that $\dim Z \cap W_+ = \dim Z \cap W_- = r$. The only open orbit is that of Y, which is Ω_0 , while the only closed one is that of Ω_{r_0} and the closure of the orbit Ω_r is

$$\overline{\Omega}_r = \coprod_{j \geqslant r} \Omega_j.$$

We consider the filtration

$$I_n(s,\chi) = I_n^{(r_0)}(s,\chi) \supset \cdots \supset I_n^{(1)}(s,\chi) \supset I_n^{(0)}(s,\chi),$$

where

$$I_n^{(r)}(s,\chi) = \{ \Phi \in I_n(s,\chi) | \Phi |_{\overline{\Omega}_{r+1}} = 0 \}.$$

Let

$$Q_n^{(r)}(s,\chi) = I_n^{(r)}(s,\chi)/I_n^{(r-1)}(s,\chi)$$

be the successive quotients of the filtration. All $I_n^{(r)}(s,\chi)$ and $Q_n^{(r)}(s,\chi)$ are $G\times G$ -stable. Let T_W be the Witt tower containing W. For any $W'\in T_W$ of dimension $n'=n-2r\leqslant n$, let $G_{n'}=G(W')$. We identify W' with a subspace of W isomorphic to W'. There is a Witt decomposition

$$W = U' \oplus W' \oplus U$$

where U and U' are dual isotropic subspaces of dimension r. Let P_r be the parabolic subgroup of G stabilising U. The Levi subgroup of P_r is isomorphic to $GL(U) \times G_{n'}$ so that, if we denote M_r its Levi component and N_r its unipotent radical, we have isomorphisms

$$M_r \simeq \operatorname{GL}(U) \times G_{n'}$$
 (2)
 $P_r \simeq (\operatorname{GL}(U) \times G_{n'}) \ltimes N_r.$

Note in particular for r = 0 that $U = U' = \{0\}$, W' = W and $P_0 = G_n = G$. Let

$$\operatorname{St}_r = i^{-1}(\delta_r^{-1} P_Y \delta_r \cap i(G \times G))$$

be the stabiliser of $P_Y \delta_r$ in $i^{-1}(P_Y) \backslash G \times G$.

Lemma 2.1 For a convenient choice of δ_r (specified in Equation (3) below), we have

$$\operatorname{St}_r = (\operatorname{GL}(U) \times \operatorname{GL}(U) \times \Delta(G_{n'})) \ltimes (N_r \times N_r) \subset P_r \times P_r.$$

Moreover

$$Q_n^{(r)}(s,\chi) \simeq \operatorname{Ind}_{P_r \times P_r}^{G \times G} \left(\chi |.|^{s + \frac{r}{2}} \otimes \chi |.|^{s + \frac{r}{2}} \otimes \left(S(G_{n'}) \cdot (\mathbf{1} \otimes \chi) \right) \right)$$

where the action of $G_{n'} \times G_{n'}$ on the space $S(G_{n'}) \cdot (\mathbf{1} \otimes \chi)$ is given by $(g_1, g_2)\varphi(g) = \chi(\det g_2)\varphi(g_2^{-1}gg_1)$.

PROOF: We let $G' = G_{n'}$.

Recall the Witt decomposition

$$W = U' \oplus W' \oplus U$$

and consider the Lagrangian

$$Z = U \times \{0\} \oplus \Delta(W') \oplus \{0\} \times U$$

in $W_+ \oplus W_-$. Since the action of \tilde{G} on $\Omega(W_+ \oplus W_-)$ is transitive, there exists $\delta_r \in \tilde{G}$ such that $Z = Y \delta_r$. Since any linear map from Y to Z can be extended to an element of \tilde{G} , we can furthermore require that

$$\forall v \in U', \delta_r|_{\Delta(U')}(v, v) = (0, vd) \in \{0\} \times U$$

$$\delta_r|_{\Delta(W')} = \mathrm{id}_{\Delta(W')}$$

$$\forall u \in U, \delta_r|_{\Delta(U)}(u, u) = (u, 0) \in U \times \{0\}$$

$$(3)$$

where $d: U' \longrightarrow U$ is an isomorphism. Note in particular that $\delta_0 = \mathrm{id}_G$. Following [Kud2, Proof of Proposition 2.1, p68], we find that there is a bijection between the orbit Ω_r of Z and the set

$$\{(Z_+, Z_-, \lambda)\}$$

where Z_{\pm} is an isotropic subspace of W_{\pm} of dimension r and

$$\lambda: Z_+^{\perp}/Z_+ \longrightarrow Z_-^{\perp}/Z_-$$

is an isometry^[2]. The action of $(g_+, g_-) \in G \times G$ on this set is given by

$$(g_+, g_-)(Z_+, Z_-, \lambda) = (Z_+g_+, Z_-g_-, g_+^{-1} \circ \lambda \circ g_-).$$

she stabiliser of (Z_+, Z_-, λ) is

$$\{(g_+, g_-) \in G \times G \mid g_{\pm} \text{ stabilises } Z_{\pm} \text{ and } g_+^{-1} \circ \lambda \circ g_- = \lambda\}.$$

^[2] in [Kud2] it is an anti-isometry but, since W_- has the opposite of the form of W_+ , here λ is an isometry.

In our situation and with our choice of δ_r , we have $Z_+ = Z_- = U$, $Z_+^{\perp}/Z_+ = W'$ and $\lambda = \mathrm{id}_{W'}$. Hence, denoting $\mathrm{pr}_{W'}$ the projection on W' parallel to $U' \oplus U$,

$$\operatorname{St}_{r} = \left\{ (g_{+}, g_{-}) \in P_{r} \times P_{r} \middle| g_{+} \middle|_{W'+U} \circ \operatorname{pr}_{W'} = g_{-} \middle|_{W'+U} \circ \operatorname{pr}_{W'} \right\}$$
$$= (\operatorname{GL}(U) \times \operatorname{GL}(U) \times \Delta(G')) \ltimes (N_{r} \times N_{r})$$

For further reference, an element of P_r has the form

$$\left(\begin{array}{ccc}
a & b & c \\
0 & e & b^* \\
0 & 0 & a^{\vee}
\end{array}\right)$$

where b^* depends on b, a and e and where c satisfies an equation depending on a, b and e. We thus have

$$g_{\pm} = \begin{pmatrix} a_{\pm} & b_{\pm} & c_{\pm} \\ 0 & e_{\pm} & b_{\pm}^* \\ 0 & 0 & a_{+}^{\vee} \end{pmatrix} \tag{4}$$

and the condition $g_+|_{W'+U} \circ \operatorname{pr}_{W'} = g_-|_{W'+U} \circ \operatorname{pr}_{W'}$ is simply $e_+ = e_-$.

The description of the stabiliser allows us to describe the induced representations. If $\tilde{g} \in \operatorname{St}_r$, then $p(\tilde{g}) = \delta_r i(\tilde{g}) \delta_r^{-1} = n \cdot m(a_r(\tilde{g})) \in P_Y$. Let $\xi_{s,r}$ be the character of St_r defined by $\xi_{s,r}(\tilde{g}) = \chi(a_r(\tilde{g})) |\det a_r(\tilde{g})|^{s+\frac{r}{2}}$. Consider the morphism of $G \times G$ -modules

$$Q_n^{(r)}(s,\chi) \longrightarrow \operatorname{Ind}_{\operatorname{St}_r}^{G \times G}(\xi_{s,r})$$

$$\overline{f} \longmapsto \phi_{\overline{f}}(g_1, g_2) = \int_{N'} f(\delta_r n(u) i(g_1, g_2)) \, \mathrm{d}u$$

where $f \in I_n^{(r)}(s,\chi)$ is a representative of \overline{f} . This morphism is an isomorphism (see [HKS, Equation (4.9), p963]). Let $\tilde{g} = (g_+, g_-)$ be an element of St_r decomposed as in (4). Then $\det(a_r(\tilde{g})) = \det a_+ \det a_- \det e_+$ (where we recall that $e_+ = e_-$). Since $e_+ \in G'$, $|\det e_+| = 1$ hence

$$Q_n^{(r)}(s,\chi) \simeq \operatorname{Ind}_{\operatorname{St}_r}^{G\times G}(\chi|.|^{s+\frac{r}{2}} \otimes \chi|.|^{s+\frac{r}{2}} \otimes \chi)$$

$$\simeq \operatorname{Ind}_{P_r \times P_r}^{G\times G} \left(\operatorname{Ind}_{\operatorname{St}_r}^{P_r \times P_r}(\chi|.|^{s+\frac{r}{2}} \otimes \chi|.|^{s+\frac{r}{2}} \otimes \chi) \right)$$

The induction from St_r to $P_r \times P_r$ is an induction from $\Delta(G')$ to $G' \times G'$. Moreover, if $f \in \operatorname{Ind}_{\Delta(G')}^{G' \times G'} \chi$ then $f(h_1, h_2) = \chi(h_2) f(h_2^{-1} h_1, 1)$. Hence

$$\operatorname{Ind}_{\Delta(G')}^{G' \times G'} \chi \simeq S(G') \cdot (\mathbf{1} \otimes \chi)$$

where the action of $G' \times G'$ on $S(G') \cdot (\mathbf{1} \otimes \chi)$ is given by

$$\rho(g_1, g_2)\varphi(g) = \chi(\det g_2)\varphi(g_2^{-1}gg_1).$$

Hence

$$\operatorname{Ind}_{\operatorname{St}_r}^{P_r \times P_r}(\chi|.|^{s+\frac{r}{2}} \otimes \chi|.|^{s+\frac{r}{2}} \otimes \chi) \simeq \chi|.|^{s+\frac{r}{2}} \otimes \chi|.|^{s+\frac{r}{2}} \otimes \operatorname{Ind}_{\Delta(G')}^{G' \times G'} \chi$$
$$\simeq \chi|.|^{s+\frac{r}{2}} \otimes \chi|.|^{s+\frac{r}{2}} \otimes (S(G') \cdot (\mathbf{1} \otimes \chi)).$$

The result follows. \Box

2.2 Simplicity of poles

We prove in our case the result of [KR, section 5]. We follow the same method. We denote χ_0 the trivial character of F^{\times} .

Proposition 2.2 Let $\mathfrak{z}_s \in \mathcal{H}(G/\!/K) \otimes \mathbf{C}[q^s, q^{-s}]$ be the element defined by

$$\mathfrak{z}_s = \prod_{i=1}^{r_0} (1 - q^{-s - \frac{1}{2}} t_i) (1 - q^{-s - \frac{1}{2}} t_i^{-1}).$$

For an unramified representation π of G, let $\pi(\mathfrak{z}_s)$ be the scalar by which \mathfrak{z}_s acts on the unramified vector in π . Then for all matrix coefficients ϕ of π and all standard sections $\Phi(s) \in I_n(s)$, the function

$$\pi(\mathfrak{z}_s) \cdot Z(s, \chi_0, \pi, \phi, \Phi)$$

is an entire function of s.

PROOF: We divide the proof in several steps.

Step 1. By linearity of Z, we can limit ourselves to the case where ϕ is of the form

$$\phi(g) = \langle \pi(g)\pi(g_1)\xi_{\circ}, \pi^{\vee}(g_2)\xi_{\circ}^{\vee} \rangle$$

where ξ_{\circ} and ξ_{\circ}^{\vee} are spherical vectors in π and π^{\vee} and $g_1, g_2 \in G$. We then have

$$Z(s, \chi_0, \pi, \phi, \Phi) = \int_G \langle \pi(g)\pi(g_1)\xi_0, \pi^{\vee}(g_2)\xi_0^{\vee} \rangle \Phi_s(i(g, I_n)) \, \mathrm{d}g$$

$$= \int_G \langle \pi(g)\xi_0, \xi_0^{\vee} \rangle \Phi_s(i(g_2gg_1^{-1}, I_n)) \, \mathrm{d}g$$

$$= |\det g_2|^{s+r_0-\frac{1}{2}} \int_G \phi^{\circ}(g)\Phi_s(i(g, I_n)i(g_1^{-1}, g_2^{-1})) \, \mathrm{d}g$$
(5)

since $|\det g_2| = 1$ and ϕ° is bi-K invariant, for all $k_1, k_2 \in K$,

$$= \int_{G} \phi^{\circ}(g) \Phi_{s}(i(k_{2}^{-1}gk_{1}, I_{n})i(g_{1}^{-1}, g_{2}^{-1})) dg$$

$$= \int_{G} \phi^{\circ}(g) \Phi_{s}(i(g, I_{n})i(k_{1}, k_{2})i(g_{1}^{-1}, g_{2}^{-1})) dg$$

and thus

$$= \int_{G} \phi^{\circ}(g) \Psi_{s}(i(g, I_{n})) \, \mathrm{d}g$$

where, for any $h \in H = G_{2n}$,

$$\Psi_s(h) := \int_{K \times K} \Phi_s(hi(k_1, k_2)i(g_1^{-1}, g_2^{-1})) \, \mathrm{d}k_1 \, \mathrm{d}k_2. \tag{6}$$

Note that Ψ_s is $K \times K$ -invariant section of $I_n(s)$ which is not necessarily standard.

Step 2. We consider in the algebra

$$\mathcal{A} = \mathbf{C}[X, X^{-1}] \otimes \mathcal{H}(G /\!/ K) \simeq \mathbf{C}[X, X^{-1}] \otimes \mathbf{C}[t_1, \dots, t_n]^{W_G},$$

where $\mathcal{H}(G//K)$ is the K-spherical Hecke algebra of G, the element

$$\mathfrak{z} = \prod_{i=1}^{r_0} (1 - Xq^{-\frac{1}{2}}t_i)(1 - Xq^{-\frac{1}{2}}t_i^{-1}).$$

We let $G \times G$ act on $I_n(s)$ through i, extend the action to $\mathcal{H}(G//K) \times \mathcal{H}(G//K)$ and let any $\phi \in \mathcal{H}(G//K)$ act as $(\phi, 1) \in \mathcal{H}(G//K) \times \mathcal{H}(G//K)$. We let \mathcal{A} act on the space $I_n(s)^{K \times 1}$ of $K \times 1$ -fixed vectors of $I_n(s)$ by the aforementioned action of $\mathcal{H}(G//K)$ and X acts by multiplication by q^{-s} . Note that action of $1 \times G$ commutes with the action of \mathcal{A} .

Proposition 2.3 For any standard section Φ_s with associated section Ψ_s defined by (6), we have

$$\Psi_s * \mathfrak{z} \in I_n^{(0)}(s)^{K \times K}$$
.

PROOF: We want to show the the image of $\Psi_s * \mathfrak{z}$ in each $Q_n^{(r)}(s) = Q_n^{(r)}(s, \chi_0)$ is 0 for $0 < r \le r_0$. We will, as an illustration, do the first step separately in the case of a split Hermitian space (in particular $n = 2r_0$). Consider the projection induced by restriction to the closed orbit:

$$\operatorname{pr}_{r_0}: I_n(s) = I_n^{(r_0)}(s) \longrightarrow Q_n^{(r_0)}(s) \simeq \operatorname{Ind}_{P_{r_0}}^G(|.|^{s+\frac{r_0}{2}}) \otimes \operatorname{Ind}_{P_{r_0}}^G(|.|^{s+\frac{r_0}{2}})$$

$$\Phi_s \longmapsto ((g_1, g_2) \mapsto \Phi_s(i(g_1, g_2))).$$

We have

$$\operatorname{pr}_{r_0}(\Psi_s * \mathfrak{z}) = \operatorname{pr}_{r_0}(\Psi_s) * \mathfrak{z}$$

if we let \mathfrak{z} act only on the first term of the tensor product on the right side. On the other hand, we have

$$\operatorname{Ind}_{P_{r_0}}^G(|.|^{s+\frac{r_0}{2}}) \subset \operatorname{Ind}_B^G(\lambda)$$

where B is the standard Borel subgroup of G and λ is the unramified principal series representation with Satake parameter^[3]

$$(q^{s+r_0-\frac{1}{2}}, q^{s+r_0-\frac{3}{2}}, \dots, q^{s+\frac{1}{2}}).$$

The element \mathfrak{z} acts on the K-fixed vector of this representation by the scalar

$$\prod_{i=1}^{r_0} (1 - q^{-s - \frac{1}{2}} q^{s + r_0 + \frac{1}{2} - i}) (1 - q^{-s - \frac{1}{2}} q^{-s - r_0 - \frac{1}{2} + i}) = 0.$$

This means that $\operatorname{pr}_{r_0}(\Psi_s * \mathfrak{z}) = 0$ i.e. that $\Psi_s * \mathfrak{z} \in I_n^{(r_0 - 1)}(s)$.

^[3] A vérifier

More generally, if we restrict the orbit of a section to Ω_r , we obtain a map

$$\operatorname{pr}_r: I_n(s) \longrightarrow \operatorname{Ind}_{P_r \times P_r}^{G \times G} \left(|.|^{s+\frac{r}{2}} \otimes |.|^{s+\frac{r}{2}} \otimes C(G_{n-2r}) \right) =: B_r(s)$$

where $C(G_{n-2r})$ is the space of smooth functions on G_{n-2r} . There is a non-degenerate pairing between $Q_n^{(r)}(s)$ and $B_r(-s-r)$ given by

$$\langle f_1, f_2 \rangle = \int_{P_n \times P_n \setminus G \times G} \langle f_1(g_1, g_2), f_2(g_1, g_2) \rangle_{G_{n-r}} \, \mathrm{d}\mu(g_1) \mathrm{d}\mu(g_2),$$

where the internal pairing is the integration over G_{n-r} and the external integral is the invariant functional for functions which transform on the left according to the square of the modulus character. A straightforward density argument shows that $\phi \in Q_n^{(r)}(s)$ is 0 if and only if it pairs to zero against all elements of the subspace $Q_n^{(r)}(-s-r) \subset B_r(-s-r)$. In addition if $\phi \in Q_n^{(r)}(s)^{K \times K}$ we can limit ourselves to elements of $Q_n^{(r)}(-s-r)^{K \times K}$. Let $f_s \in Q_n^{(r)}(-s-r)^{K \times K}$ and $\mathfrak{z}_s = \mathfrak{z}|_{X=g^{-s}}$. We have

$$\langle \operatorname{pr}_r(\Psi_s * \mathfrak{z}), f_2 \rangle = \langle \operatorname{pr}_r(\Psi_s) * \mathfrak{z}_s, f_s \rangle = \langle \operatorname{pr}_r(\Psi_s), f_s * \mathfrak{z}_s^{\vee} \rangle.$$

Lemma 2.4 For any $f_s \in Q_n^{(r)}(-s-r)^{K\times K}$ we have

$$f_s * \mathfrak{z}_s^{\vee} = 0.$$

PROOF: Since f_s is element of a parabolic induction and fixed by a maximal compact, it is determined by its value at the identity element I_n . It is not difficult to see that $f_s(I_n) \in S(G)^{K_{n-r} \times K_{n-r}}$ where $K_{n-r} = G_{n-r} \cap K$. Let τ be an irreducible admissible representation of G_{n-r} . The action of $S(G_{n-r})$ on τ determines a $G_{n-r} \times G_{n-r}$ -equivariant map

$$\mu_{\tau}: S(G_{n-r}) \longrightarrow \operatorname{Hom}^{\operatorname{smooth}}(\tau, \tau) \simeq \tau^{\vee} \otimes \tau$$

where $\operatorname{Hom^{smooth}}$ is the space of vector-space homomorphisms fixed by a compact open subgroup of $G_{n-r} \times G_{n-r}$. The two factors of $G_{n-r} \times G_{n-r}$ act respectively by pre- and post-multiplication on the elements of $\operatorname{Hom^{smooth}}(\tau,\tau)$ so that each has finite dimensional image. A function $\phi \in S(G_{n-r})^{K_{n-r} \times K_{n-r}}$ is nonzero if and only if there exists an irreducible admissible representation τ such that $\tau(\phi) \neq 0$, i.e. such that $\mu_{\tau}(\phi) \neq 0$.

Consider $f_s * \mathfrak{z}_s^{\vee}$. Let τ be, as above, an irreducible admissible representation of G_{n-r} . The map μ_{τ} induces

$$\operatorname{Ind}(\mu_{\tau}): \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G} \left(|.|^{-s - \frac{r}{2}} \otimes |.|^{-s - \frac{r}{2}} \otimes S(G_{n-r}) \right) \longrightarrow \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G} \left(|.|^{-s - \frac{r}{2}} \otimes |.|^{-s - \frac{r}{2}} \otimes \tau^{\vee} \otimes \tau \right)$$

which verifies $\operatorname{Ind}(\mu_{\tau})(f_s)(I_n) = \mu_{\tau}(f_s(I_n))$. The latter induced representation is isomorphic to

$$\operatorname{Ind}_{P_r}^G(|.|^{-s-\frac{r}{2}}\otimes\tau^\vee)\otimes\operatorname{Ind}_{P_r}^G(|.|^{-s-\frac{r}{2}}\otimes\tau)$$

which can be embedded in

$$\operatorname{Ind}_B^G \lambda_1 \otimes \operatorname{Ind}_B^G \lambda_2$$

where the Satake parameters^[4] are

$$\lambda_1 = (q^{-s-\frac{1}{2}}, q^{-s-\frac{3}{2}}, \dots, q^{-s+\frac{1}{2}-r}, q^{-\nu_1}, \dots, q^{-\nu_{n-r}})$$

$$\lambda_2 = (q^{-s-\frac{1}{2}}, q^{-s-\frac{3}{2}}, \dots, q^{-s+\frac{1}{2}-r}, q^{\nu_1}, \dots, q^{\nu_{n-r}})$$

(where $(q^{\nu_1}, \ldots, q^{\nu_{n-r}})$ is the Satake parameter of τ). The operator \mathfrak{z}_s^{\vee} acts on the unique line of $K \times K$ -invariant vectors of this representation by the scalar

$$\prod_{i=1}^{r} (1 - q^{-s} q^{-\frac{1}{2}} q^{s - \frac{1}{2} + i}) (1 - q^{-s} q^{-\frac{1}{2}} q^{-s + \frac{1}{2} - i}) \cdot (\text{factor}) = 0.$$

But $\operatorname{Ind}(\mu_{\tau})(f_s)$ is a $K \times K$ -invariant vector in this representation so that $\operatorname{Ind}(\mu_{\tau})(f_s) * \mathfrak{z}_s = 0$ and

$$\mu_{\tau}(f_s * \mathfrak{z}_s^{\vee}(I_n)) = \operatorname{Ind}(\mu_{\tau})(f_s * \mathfrak{z}_s^{\vee})(I_n)$$
$$= (\operatorname{Ind}(\mu_{\tau})(f_s * \mathfrak{z}_s^{\vee}))(I_n)$$
$$= 0.$$

Since this is true for all τ , we have $f_s * \mathfrak{z}_s^{\vee}(I_n) = 0$ and thus $f_s * \mathfrak{z}_s^{\vee} = 0$. \square Lemma 2.4 We have $\operatorname{pr}_r(\Psi_s * \mathfrak{z}) = 0$ for all r > 0, which means that the support of $\Psi_s * \mathfrak{z}$ is included in Ω_0 , which concludes the proof. \square Proposition 2.3

Step 3. Consider the isomorphism

$$\operatorname{pr}_0: I_n(s) \longrightarrow Q_n^{(0)}(G) \simeq S(G).$$

Proposition 2.3 shows that, for a fixed s, we have $\operatorname{pr}_0(\Psi_s * \mathfrak{z}) \in S(G)^{K \times K}$. Its support could vary with s. The following proposition shows that the support of $\operatorname{pr}_0(\Psi_s * \mathfrak{z})$ is bounded uniformly in s.

Lemma 2.5

$$\operatorname{pr}_0(\Psi_s * \mathfrak{z}) \in \mathbf{C}[q^s, q^{-s}] \otimes S(G)^{K \times K} = \mathbf{C}[q^s, q^{-s}] \otimes \mathcal{H}(G /\!/ K).$$

PROOF: Using the Cartan decomposition, write

$$\operatorname{pr}_0(\Psi_s * \mathfrak{z}) = \sum_{\lambda \in \Lambda} c_{\lambda}(s) L_{\lambda},$$

where L_{λ} is the characteristic function of the double coset $Kg_{\lambda}K$ and Λ is the usual semigroup.

^[4] A vérifier

Lemma 2.6

$$c_{\lambda}(s) \in \mathbf{C}[q^s, q^{-s}]$$

and thus is an entire function of s.

PROOF: We have

$$c_{\lambda}(s) \cdot ||L_{\lambda}||^{2} = \int_{G} (\Psi_{s} * \mathfrak{z})(i(g, I_{n})) \cdot L_{\lambda}(g) \, \mathrm{d}g. \tag{7}$$

The integral on the right is a (finite) linear combination, with coefficients in $\mathbf{C}[q^s, q^{-s}]$ of integrals of the form

$$\int_{G} \int_{G} (\Psi_{s} * \mathfrak{z})(i(g, I_{n})i(g_{0}, I_{n})) \cdot L_{\mu}(g_{0}) \, \mathrm{d}g_{0} \cdot L_{\lambda}(g) \, \mathrm{d}g
= \int_{G} \int_{G} (\Psi_{s} * \mathfrak{z})(i(g_{0}, I_{n})) \cdot L_{\mu}(g^{-1}g_{0}) \cdot L_{\lambda}(g) \, \mathrm{d}g_{0} \mathrm{d}g
= \int_{G} \int_{G} (\Psi_{s} * \mathfrak{z})(i(g_{0}, I_{n})) \cdot \varphi(g_{0}) \, \mathrm{d}g_{0}$$
(8)

where φ is a function depending on λ and μ . Since this function is a (finite) linear combination of characteristic functions of cosets gK, the integral is the last line of (8) is a (finite) linear combination with coefficients in $\mathbf{C}[q^s, q^{-s}]$ of integrals of the form

$$\int_{K} \int_{K \times K} \Phi_{s} \left(i(gk, I_{n}) i(k_{1}, k_{2}) i(g_{1}^{-1}, g_{2}^{-1}) \right) dk_{1} dk_{2} dk.$$

But Φ_s is standard, hence it is right-invariant under a fixed compact open subgroup H, uniformly in s. This means that the set of g necessary to obtain the full integral (7) is finite and fixed. The elements g_1 and g_2 are fixed by the matrix coefficient ϕ we are considering and thus the integral (7) is a (finite) linear combination of $q^{\ell s}$ with $\ell \in \mathbf{Z}$.

Let then Λ_1 be the set of $\lambda \in \Lambda$ such that $c_{\lambda} \neq 0$ and for $\lambda \in \Lambda$ let

$$D_{\lambda} = \{ s \in \mathbf{C} : c_{\lambda}(s) = 0 \}.$$

If $\lambda \in \Lambda_1$ then D_{λ} is a numerable subset of \mathbf{C} . Hence $\bigcup_{\lambda \in \Lambda_1} D_{\lambda}$ is numerable and thus different from \mathbf{C} . Let $s_0 \in \mathbf{C}$ be such that $\forall \lambda \in \Lambda_1, c_{\lambda}(s_0) \neq 0$. Since

$$\operatorname{pr}_{0}(\Psi_{s_{0}} * \mathfrak{z}) = \sum_{\lambda \in \Lambda_{1}} c_{\lambda}(s_{0}) \cdot L_{\lambda}$$

has compact support, Λ_1 is finite and thus for all $s \in \mathbb{C}$, $\operatorname{pr}_0(\Psi_s * \mathfrak{z})$ has support in $\bigcup_{\lambda \in \Lambda_1} L_{\lambda}$.

Step 4. Returning to the Zeta integral in (5), we define

$$Z^*(s,\chi_0,\pi,\phi,\Phi) = \int_G \phi^{\circ}(g)(\Psi_s * \mathfrak{z})(i(g,I_n)) \,\mathrm{d}g.$$

This integral is equal to the scalar by which $\operatorname{pr}_0(\Psi_s * \mathfrak{z})$ acts on ξ_\circ and is thus an entire function of s because it is an element of $\mathbf{C}[q^s,q^{-s}]$. On the other hand, if $\operatorname{Re}(s)$ is large enough we can unfold

$$Z^*(s, \chi_0, \pi, \phi, \Phi) = \pi(\mathfrak{z}_s) \int_G \phi^{\circ}(g) \Psi_s(i(g, I_n)) \, \mathrm{d}g$$
$$= \pi(\mathfrak{z}_s) Z(s, \chi_0, \pi, \phi, \Phi).$$

where $\pi(\mathfrak{z}_s)$ is the scalar by which $\mathfrak{z}_s = \mathfrak{z}\big|_{X=q^{-s}}$ acts on the spherical vector of π . Since $Z^*(s,\chi_0,\pi,\phi,\Phi)$ is an entire function of s, this completes the proof. \square Proposition 2.2

2.3 The conjecture holds for the trivial representation in the even dimensional tower

Definition 2.7 ([HKS, Definition 4.6, p963]) For $s_0 \in \mathbb{C}$, χ a character and π and irreducible admissible representation of G, we say that π occurs in the boundary at the point $s = s_0$ if

$$\operatorname{Hom}_{G\times G}(Q_n^{(r)}(s_0,\chi),\pi\otimes(\chi\cdot\pi^\vee))\neq 0$$

for some r > 0.

Proposition 2.8 Let $\pi = \mathbf{1}$ the trivial representation of G, ϖ_E an uniformiser of E and $q_E = |\varpi_E|$. We will denote $X^u(E^{\times})$ the set of unramified characters of E^{\times} . Let

$$X(\mathbf{1}) = \left\{ (s, \chi) \in \mathbf{C} \times X^u(E^\times) \middle| \chi(\varpi_E) = (-1)^k, s = \frac{n}{2} - r - \frac{ki\pi}{\log q_E}, 1 \leqslant r \leqslant r_0 \right\}$$

with $1 \leqslant r \leqslant r_0$ and $k \in \mathbf{Z}$.

Then 1 appears in the boundary at s if and only if $(s, \chi) \in X(1)$. Moreover if $(s_0, \chi) \notin X(1)$, for any standard section Φ the operator $Z(s, \chi, 1)$ is holomorphic at $s = s_0$ and

$$\operatorname{Hom}_{G\times G}(I_n(s_0,\chi),\mathbf{1}\otimes\chi)=\mathbf{C}\cdot Z(s,\chi,\mathbf{1}).$$

PROOF: We know from Lemma 2.1 that

$$\operatorname{Hom}_{G\times G}(Q_n^{(r)}(s,\chi),\mathbf{1}\otimes\chi) = \operatorname{Hom}_{G\times G}\left(\operatorname{Ind}_{P_r\times P_r}^{G\times G}\left(\chi|.|^{s+\frac{r}{2}}\otimes\chi|.|^{s+\frac{r}{2}}\otimes\left(S(G')\cdot(\mathbf{1}\otimes\chi)\right)\right),$$

$$\mathbf{1}\otimes\chi\right)$$

$$\simeq \operatorname{Hom}_{G\times G} \left(\mathbf{1} \otimes \chi^{-1}, \operatorname{Ind}_{P_r \times P_r}^{G\times G} \left(\chi^{-1} | . |^{-s-\frac{r}{2}} \otimes \chi^{-1} | . |^{-s-\frac{r}{2}} \otimes \left(\operatorname{C}^{\infty}(G') \cdot (\mathbf{1} \otimes \chi^{-1}) \right) \right) \right)$$

$$\simeq \operatorname{Hom}_{M_r \times M_r} \left(\mathbf{1} \otimes \chi^{-1}, \right.$$

$$\left. \chi^{-1} \right| \cdot \left| {}^{-s - \frac{r}{2} + \frac{n-r}{2}} \otimes \chi^{-1} \right| \cdot \left| {}^{-s - \frac{r}{2} + \frac{n-r}{2}} \otimes \left(\operatorname{C}^{\infty} (G') \cdot (\mathbf{1} \otimes \chi^{-1}) \right) \right)$$

because the Jacquet module for $\mathbf{1} \otimes \chi^{-1}$ is $\mathbf{1} \otimes \chi^{-1}$ (as a representation of M_r)

$$\simeq \operatorname{Hom}_{\operatorname{GL}(U)\times\operatorname{GL}(U)}(1\otimes\chi^{-2},\chi^{-1}|.|^{-s+\frac{n}{2}-r}\otimes\chi^{-1}|.|^{-s+\frac{n}{2}-r})$$

because if g corresponds to (a, g') in Equation (2) then $\det g = \det a \overline{\det a^{-1}} \det g'$ so that $\chi(\det g) = \chi(\det a)^2 \chi(\det g')$ and because $\dim \operatorname{Hom}_{G' \times G'}(\mathbf{1} \otimes \chi^{-1}, \operatorname{C}^{\infty}(G') \cdot (\mathbf{1} \otimes \chi^{-1})) = 1$ (see [HKS, end of section 4, p964] for general π).

It follows that π occurs in the boundary at s if and only if χ is unramified, $\chi(\varpi_E) = (-1)^k$ and $(s - \frac{n}{2} + r) \log q_E + ki\pi = 0$, as required.

Suppose $(s_0, \chi) \notin X(1)$, i.e. that 1 does not appear in the boundary. Let k be the maximum order of the pole of the Z integral in $s = s_0$ (as Φ varies). Thus

$$Z(s,\chi,\mathbf{1},\Phi) = \frac{\tau_{-k}(s,\chi,\mathbf{1},\Phi)}{(s-s_0)^k} + \dots + \tau_0(s,\chi,\mathbf{1},\Phi) + \dots$$

where the τ_i are holomorphic functions of s in a neighbourhood of s_0 and τ_{-k} is non-zero. The leading term τ_{-k} is itself an intertwining operator. If we had k > 0, that is, if the Z integral had a pole in $s = s_0$, the restriction of τ_{-k} to $I_n^{(0)}(s_0, \chi)$ would be zero because the Z integral is convergent on

$$I_n^{(0)}(s_0,\chi) = Q_n^{(0)}(s,\chi) = \simeq S(G) \cdot (\mathbf{1} \otimes \chi)$$

thus convergent for every standard section $\Phi(s)$ such that $\Phi \in I_n^{(0)}(s,\chi)$. This means that we would have a non-zero intertwining operator in $\operatorname{Hom}_{G\times G}(Q_n^{(r)}(s,\chi),\mathbf{1}\otimes\chi)$ for some r>0, which is impossible by hypothesis. Thus $k\geqslant 0$, i.e. the integral is entire for any $\Phi\in I_n(s_0,\chi)$. Moreover, $Z(s_0,\chi,\mathbf{1})$ is a non-zero intertwining operator between $I_n^{(0)}(s_0,\chi)$ and $\mathbf{1}\otimes\chi$, which means that $\operatorname{Hom}_{G\times G}(I_n^{(0)}(s_0,\chi),\mathbf{1}\otimes\chi)$ is non zero and thus has dimension 1 and that $Z(s_0,\chi,\mathbf{1})$ is its basis.

Let $\lambda \in \operatorname{Hom}_{G\times G}(I_n(s_0,\chi),\mathbf{1}\otimes\chi)$. Its restriction $\bar{\lambda}$ to $I_n^{(0)}(s_0,\chi)$ is a multiple of $Z(s_0,\chi,\mathbf{1})$. Since **1** is supposed not to appear in the boundary, if $\lambda \neq 0$, then $\bar{\lambda} \neq 0$, i.e. $\bar{\lambda} = cZ(s_0,\chi,\mathbf{1})$ for some $c\neq 0$. Since $\lambda - cZ(s_0,\chi,\mathbf{1})$ is zero on $I_n^{(0)}(s_0,\chi)$, it must be zero everywhere, i.e. $\lambda = cZ(s_0,\chi,\mathbf{1})$.

Theorem 2.9 Let m be an even integer and χ_0 the trivial character of E^{\times} , then

$$\forall m \leqslant 2n, \quad \operatorname{Hom}_{G \times G}(R_n(V_m^-, \chi_0), \mathbf{1}) = 0,$$

so that by (ii) of Proposition 1.6

$$\operatorname{Hom}_{G\times G}(R_n(V_{2n+2}^-,\chi_0),\mathbf{1})\neq 0$$

and thus $m_{\chi_0}^-(1) = 2n + 2$. Since $m_{\chi_0}^+(1) = 0$, we have

$$m_{\chi_0}^+(\mathbf{1}) + m_{\chi_0}^-(\mathbf{1}) = 2n + 2.$$

PROOF: By (i) of Proposition 1.6, it suffices to prove that

$$\operatorname{Hom}_{G\times G}(R_n(V_{2n}^-,\chi_0),\mathbf{1})=0.$$

From Proposition 2.8 we know that

$$\operatorname{Hom}_{G\times G}\left(I_n\left(-\frac{n}{2},\chi_0\right),\mathbf{1}\right)$$

is non zero and generated by

$$Z\left(-\frac{n}{2},\chi_0,\mathbf{1}\right)$$

which is holomorphic at $-\frac{n}{2}$. The element of $I_n(-\frac{n}{2},\chi_0)$ equal to 1 on K is $\chi_{0,\tilde{G}}$. As seen in [Li, Theorem 3.1, p186] and [LR, Proposition 3, p333] we have

$$Z\left(-\frac{n}{2}, \chi_0, \mathbf{1}, \phi^{\circ}, \chi_{0,\tilde{G}}\right) \neq 0$$

and thus $Z(-\frac{n}{2},\chi_0,\mathbf{1})(\chi_{0,\tilde{G}})\neq 0$. Let

$$\phi \in \operatorname{Hom}_{G \times G}(R_n(V_{2n}^-, \chi_0), \mathbf{1})$$

and

$$\tilde{\phi} = \phi \circ M_n^* \left(-\frac{n}{2}, \chi_0 \right) \in \operatorname{Hom}_{G \times G} \left(I_n \left(-\frac{n}{2}, \chi_0 \right), \mathbf{1} \right).$$

We have $\chi_{0,\tilde{G}} \in R_n(V_0^+, \chi_{0,\tilde{G}}) = \ker M_n^*(-\frac{n}{2}, \chi_0)$ so that $\tilde{\phi}(\chi_{0,\tilde{G}}) = 0$. This means that $\tilde{\phi} = 0$ because it is a multiple of $Z(-\frac{n}{2}, \chi_0, \mathbf{1})$. We know from Proposition 1.11 that the application

$$M_n^*\left(-\frac{n}{2},\chi_0\right):I_n\left(-\frac{n}{2},\chi_0\right)\longrightarrow R_n(V_{2n}^-,\chi_0)$$

is surjective so that $\phi = 0$.

2.4 Half of the conjecture

Theorem 2.10 Let π be an irreducible admissible representation of G(W), then

$$m_{\chi}^{+}(\pi) + m_{\chi}^{-}(\pi) \geqslant 2n + 2.$$

PROOF: Fix $m_0 \in \{0, 1\}$, a character χ of E^{\times} such that $\chi|_{F^{\times}} = \epsilon_{E/F}^{m_0}$ and suppose we have two Hermitian spaces V_a^+ and V_b^- such that

$$\theta_\chi(\pi, V_a^+) \neq 0 \quad \text{and} \quad \theta_\chi(\pi, V_b^-) \neq 0,$$

with dim $V_a^+ = a$, dim $V_b^- = b$, a and b of the parity of m_0 , $\epsilon(V_a^+) = 1$ and $\epsilon(V_b^-) = -1$. Let $V_{b,-}^-$ be the same space as V_b^- with opposite form and

$$\mathbb{W}_a = V_a^+ \otimes W, \quad \mathbb{W}_b = V_b^- \otimes W, \quad \mathbb{W}_{b,-} = V_{b,-}^- \otimes W.$$

We denote $\omega_{a,\chi}$ (resp. $\omega_{b,\chi}$, $\omega_{b,-,\chi}$) the representations of G induced by the representations $\omega_{a,\psi}$ (resp. $\omega_{b,\psi}$, $\omega_{b,-,\psi}$) of Mp(\mathbb{W}_a) (resp. Mp(\mathbb{W}_b), Mp($\mathbb{W}_{b,-}$)). By hypothesis on V_a^+ and V_b^- we have two non-zero (and thus surjective) elements

$$\lambda \in \operatorname{Hom}_G(\omega_{a,\chi}, \pi), \quad \mu \in \operatorname{Hom}_G(\omega_{b,\chi}, \pi).$$

Let $g_0 \in GL_F(W)$ be an F-automorphism of W which is conjugate-linear as an Emorphism. Then $Ad(g_0)$ is a MVW involution on G. Conjugating μ and π by $Ad(g_0)$ we get a non-zero morphism

$$\mu^{\vee} \in \operatorname{Hom}_{G}(\omega_{h_{\vee}}^{\vee}, \pi^{\vee})$$

and thus a surjective

$$\nu_0 = \lambda \otimes \mu^{\vee} \in \operatorname{Hom}_{G \times G}(\omega_{a,\chi} \otimes \omega_{b,\chi}^{\vee}, \pi \otimes \pi^{\vee}).$$

Composing ν_0 with Δ and projecting on the trivial subquotient produces a non-zero element

$$\nu \in \operatorname{Hom}_G(\omega_{a,\chi} \otimes \omega_{b,\chi}^{\vee}, \mathbf{1}).$$

We have

$$\omega_{b,\psi}^{\vee} \simeq \omega_{b,\overline{\psi}} \simeq \omega_{b,-,\psi}.^{[5]}$$

On the other hand we can identify $Mp(\mathbb{W}_b)$ and $Mp(\mathbb{W}_{b,-})$ in which case we get

Lemma 2.11

$$\tilde{\iota}_{b,\chi} \simeq \tilde{\iota}_{b,-,\chi^{-1}}.$$

Where we added a subscript to $\tilde{\iota}$ to remember which Hermitian space is involved.

PROOF: The space V_b^- can be decomposed as an orthogonal direct sum of a split space and zero, one or two anisotropic lines. Since the splitting $\tilde{\iota}$ is additive, we consider separately the split and the anisotropic case.

We first consider the case in which V_b^- is split. We will need some additional notations (see [HKS, n.10, p950]). For any additive character η of F and $a \in F$ we will let η_a be the character such that $\eta_a(x) = \eta(ax)$, $\gamma_F(\eta) \in \mu_8$ the Weil index of the quadratic character $x \longmapsto \eta(x^2)$ and $\gamma_F(a, \eta) = \frac{\gamma_F(\eta_a)}{\gamma_F(\eta)}$. Recall that (see [HKS, n.11, p950])

$$\gamma_F(ab,\eta) = (a,b)_F \gamma_F(a,\eta) \gamma_F(b,\eta).$$

Let η be the character such that $\eta(x) = \psi(\frac{1}{2}x)$ (i.e. $\eta = \psi_{\frac{1}{2}}$). For $g \in G$, we denote j(g) the integer such that $i(g, I_n) \in P_Y \delta_{j(g)} i(G \times G)$. Since V_b^- is split we have (see [HKS, 1.15, p953]),

$$\tilde{\iota}_{b,\chi}(g) = (\iota_b(g), \beta_{V_b^-,\chi}(g))$$

with

$$\beta_{V_h^-,\chi}(g) = \chi(x(g))\gamma_F(\eta \circ RV)^{-j(g)}$$

^[5] The first isomorphism because $\omega_{b,\psi}$ is unitary, the second because of the definition of r(g) in 1.3

where and

$$\gamma_F(\eta \circ RV) = (\Delta, \det V_b^-)_F \gamma_F(-\Delta, \eta)^b \gamma_F(-1, \eta)^{-b}.^{[6]}$$

Let

$$\varphi: \operatorname{Sp}(\mathbb{W}_b) \times \mathbf{C}^1 \simeq \operatorname{Mp}(\mathbb{W}_b) \longrightarrow \operatorname{Sp}(\mathbb{W}_{b,-}) \times \mathbf{C}^1 \simeq \operatorname{Mp}(\mathbb{W}_{b,-})$$

$$(g, z) \longmapsto (g, \overline{z})$$

be the identification. Then $\overline{\chi(x(g))} = \chi^{-1}(x(g))$ and

$$\overline{\gamma_F(-\Delta,\eta)\gamma_F(-1,\eta)^{-1}} = \overline{\left(\frac{\gamma_F(\eta_{-\Delta})}{\gamma_F(\eta_{-1})}\right)} = \frac{\gamma_F(\eta_{\Delta})}{\gamma_F(\eta_1)} = \gamma_F(\Delta,\eta)\gamma_F(1,\eta)^{-1}$$
$$= (\Delta,-1)_F\gamma_F(-\Delta,\eta)(-1,-1)_F\gamma_F(-1,\eta)^{-1}$$
$$= (\Delta,-1)_F\gamma_F(-\Delta,\eta)\gamma_F(-1,\eta)^{-1}$$

thus, since $\det V_{b,-}^- = (-1)^b \det V_b^-$, we have $\overline{\beta_{V_b^-,\chi}(g)} = \beta_{V_{b,-}^-,\chi^{-1}}(g)$ and

$$\varphi \circ \tilde{\iota}_{b,\chi} = \tilde{\iota}_{b,-,\chi^{-1}}$$

as claimed.

We now consider the case in which V_b^- is an anisotropic line. We identify V_b^- with E and if $(x,y) \in E^2$, we have $\langle x,y \rangle = \mathbf{a}\overline{x}y$ for some $\mathbf{a} \in F$. If $g \in G(V_b^-) = E^1$, we decompose $g = x + \delta y$ (with $x, y \in F$) and we have (see [Kud1, Proposition 4.8, p396])

$$\beta_{V_b^-,\chi}(g) = \chi(\delta(g-1))\gamma_F(2\mathbf{a}y(x-1),\eta)\gamma_F(\eta)(\Delta, -2y(1-x))_F$$

= $\chi(\delta(g-1))\gamma_F(\eta_{2\mathbf{a}y(x-1)})(\Delta, -2y(1-x))_F$

and

$$\beta_{V_{b,-},\chi}(g) = \chi(\delta(g-1))\gamma_F(\eta_{-2\mathbf{a}y(x-1)})(\Delta, -2y(1-x))_F.$$

It is immediate that $\overline{\beta_{V_{b,-}^-,\chi^{-1}}(g)}=\beta_{V_b^-,\chi}(g)$ and

$$\varphi \circ \tilde{\iota}_{b,\chi} = \tilde{\iota}_{b,-,\chi^{-1}}$$

as claimed. \Box

Let

$$V_{a,b,-} = V_a^+ \oplus V_{b,-}^-, \quad \mathbb{W}_{a,b,-} = \mathbb{W}_a \oplus \mathbb{W}_{b,-}$$

and, as before χ_0 the trivial character of E^{\times} . We denote, as above, $\omega_{a,b,-,\chi_0}$ the representation of G induced by the Weil representation $\omega_{a,b,-,\psi}$. Let

$$\tilde{i}: \mathrm{Mp}(\mathbb{W}_a) \times \mathrm{Mp}(\mathbb{W}_{b,-}) \longrightarrow \mathrm{Mp}(\mathbb{W}_{a,b,-})$$

^[6] for this single proof, $\Delta \in F^{\times}$ is the square of an element $\delta \in E^{\times} - F^{\times}$ which is used to identify the Hermitian and skew-Hermitian spaces

be the natural map whose restriction to \mathbb{C}^1 is the product. Then^[7]

$$\tilde{i}^*\omega_{a,b,-,\psi}=\omega_{a,\psi}\otimes\omega_{b,-,\psi}.$$

According to [HKS, Lemma 5.2, p964],

$$\tilde{\iota}_{a,b,-,\chi_0} = \tilde{i} \circ (\tilde{\iota}_{a,\chi} \times \tilde{\iota}_{b,-,\chi^{-1}}) \circ \Delta : G \longrightarrow \operatorname{Mp}(\mathbb{W}_{a,b,-}).$$

Thus as a representation of G we have

$$\omega_{a,\chi} \otimes \omega_{b,-,\chi^{-1}} \simeq \omega_{a,b,-,\chi_0}$$

We thus have a non-zero element

$$\nu \in \operatorname{Hom}_G(\omega_{a,\chi} \otimes \omega_{b,\chi}^{\vee}, \mathbf{1}) \simeq \operatorname{Hom}_G(\omega_{a,b,-,\chi_0}, \mathbf{1}).$$

We have dim $V_{a,b,-}=a+b$ even. Let us compute $\epsilon(V_{a,b,-})$:

$$\epsilon(V_{a,b,-}) = (-1)^{\frac{(a+b)(a+b-1)}{2}} \det V_{a,b,-}
= (-1)^{\frac{a(a-1)+ab+ba+b(b-1)}{2}} \det V_a^+ \det V_{b,-}^-
= (-1)^{\frac{a(a-1)+b(b-1)}{2}+ab} \det V_a^+ (-1)^b \det V_b^-
= (-1)^{ab+b} (-1)^{\frac{a(a-1)}{2}} \det V_a^+ (-1)^{\frac{b(b-1)}{2}} \det V_b^-
= (-1)^{ab+b} \epsilon(V_a^+) \epsilon(V_b^-).$$

Since both ab and b have the parity of m_0 we have $\epsilon(V_{a,b,-}) = \epsilon(V_a^+)\epsilon(V_b^-) = -1$. Thus, according to Theorem 2.9

$$a+b \geqslant 2n+2$$

as needed. \Box

2.5 Criterion

Definition 2.12 For a given $m \in \{0, ..., 2n\}$, let m' = 2n - m. The space $V_{m'}^{\pm}$ is said to be complementary to V_m^{\pm} (the space V_{2n}^{-} has no complementary).

Remark 2.13 If V_m^{\pm} and $V_{m'}^{\pm}$ are complementary, then $s'_0 = \frac{m'-n}{2} = \frac{2n-m-n}{2} = \frac{n-m}{2} = -s_0$.

We give the composition series for $I_n(s_0, \chi)$ in each case where it is reducible, with indication of the action of the operators $M^*(s_0, \chi)$. Implicitely we have m' = 2n - m. All these

^[7] Is it relevant?

results are taken from [KS].

$$\begin{array}{cccc}
0 & \subset & R_n(V_0^+, \chi) & \subset & I(-\frac{n}{2}, \chi) \\
\parallel & & \parallel & & \parallel \\
R_n(V_0^-, \chi) & & M^*(\frac{n}{2}, \chi)(R_n(V_{2n}^+, \chi)) &== M^*(\frac{n}{2}, \chi)(I(\frac{n}{2}, \chi)) \\
\parallel & & \parallel & & \parallel \\
M^*(\frac{n}{2}, \chi)(R_n(V_{2n}^+, \chi)) & & \operatorname{Ker} M^*(-\frac{n}{2}, \chi) & m = 0, \ s_0 = -\frac{n}{2}
\end{array}$$

$$M^{*}(-s_{0},\chi)(R_{n}(V_{m'}^{+},\chi))$$

$$\parallel R_{n}(V_{m}^{+},\chi) \subset \square$$

$$0 \subset R_{n}(V_{m}^{+},\chi) \oplus R_{n}(V_{m}^{-},\chi) \subset I_{n}(s_{0},\chi)$$

$$\parallel R_{n}(V_{m}^{-},\chi) \qquad \text{Ker } M^{*}(s_{0},\chi)$$

$$\parallel M^{*}(-s_{0},\chi)(R_{n}(V_{m'}^{-},\chi)) \qquad 1 \leq m < n, -\frac{n}{2} < s_{0} < 0$$

In each case an inclusion sign means that the quotient is non-zero and irreducible. Note that V_0^- does not exist, but we define the space $R_n(V_0^-, \chi)$ as the null space in $R_n(V_0^+, \chi)$.

Theorem 2.14 Fix $m_0 \in \{0,1\}$ and a character χ of E^{\times} such that $\chi|_{F^{\times}} = \epsilon_{E/F}^{m_0}$. Suppose that

$$\dim \operatorname{Hom}_{G\times G}(I_n(s_0,\chi),\pi\otimes (\chi\cdot \pi^{\vee}))=1$$

for all s_0 in

$$\begin{cases}
\left\{-\frac{n}{2}, 1 - \frac{n}{2}, \dots, \frac{n}{2} - 1, \frac{n}{2}\right\} & \text{if } m_0 = 0 \\
\left\{\frac{1-n}{2}, \frac{3-n}{2}, \dots, \frac{n-3}{2}, \frac{n-1}{2}\right\} & \text{if } m_0 = 1,
\end{cases}$$

i.e. for all $s_0 \in \frac{m_0}{2} + \mathbf{Z}$ such that $|s_0| \leq \frac{n}{2}$. Then

$$m_{\chi}^{+}(\pi) + m_{\chi}^{-}(\pi) = 2n + 2.$$

PROOF: Fix $m_0 \in \{0, 1\}$ and a character χ of E^{\times} such that $\chi|_{F^{\times}} = \epsilon_{E/F}^{m_0}$. For $0 \leq m' \leq 2n$, we put m = 2n - m' and recall that $s_0 = \frac{m-n}{2}$.

The case $m_{\chi}^{+}(\pi) = 0$ is immediate because it implies $\pi = \mathbf{1}$ and Theorem 2.9 says that $m_{\chi}^{-}(\pi) = 2n + 2$.

If $s_0 \ge 0$ we have $I_n(s_0, \chi) = R_n(V_m^+, \chi) + R_n(V_m^-, \chi)$ and thus, thanks to the hypothesis of the theorem, at least one of

$$\operatorname{Hom}_{G\times G}(R_n(V_m^{\pm},\chi),\pi\otimes(\chi\cdot\pi^{\vee}))$$

is non zero. This in turn means, thanks to Proposition 1.9, that

$$\min(m_{\chi}^+(\pi), m_{\chi}^-(\pi)) \leqslant n + 1$$

(the bound is n+1 and not n in case m and n have opposite parity). If $s_0 > \frac{n}{2}$ then $I_n(s_0,\chi)$ is irreducible and thus

$$R_n(V_m^{\pm}, \chi) = I_n(s_0, \chi).$$

By the persistence principle (see Proposition 1.6, point i) since we have $m>2n>\min(m_\chi^+(\pi),m_\chi^-(\pi))$, one and thus both

$$\operatorname{Hom}_{G\times G}(R_n(V_m^{\pm},\chi),\pi\otimes(\chi\cdot\pi^{\vee}))\neq 0.$$

This means $\max(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi)) \leq 2n + 2 - m_0$.

Let $\epsilon = \pm$ be such that $m_{\chi}^{\epsilon}(\pi) = \min(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi))$. We let m' be $m_{\chi}^{\epsilon}(\pi)$ (and choose m and s_0 accordingly). As observed above, the case m' = 0 has already been proven. If m' = 1, then from Theorem 2.10 we have $m_{\chi}^{-\epsilon}(\pi) \geq 2n + 1$ and thus, thanks to the preceding bound, $m_{\chi}^{-\epsilon}(\pi) = 2n + 1$ (observe that if m' = 1 then $m_0 = 1$).

We now suppose $2 \le m' \le n$, i.e. $0 \le s_0 \le \frac{n}{2} - 1$. By Theorem 2.10 we thus have $m_{\chi}^{-\epsilon}(\pi) \ge 2n + 2 - m' \ge n + 2$. Since m' is the minimum of $m_{\chi}^{\pm}(\pi)$, we have

$$\operatorname{Hom}_{G\times G}(R_n(V_{m'-2}^+,\chi)\oplus R_n(V_{m'-2}^-,\chi),\pi\otimes(\chi\cdot\pi^\vee))=0$$
(9)

(here $R_n(V_0^-, \chi) = 0$ as defined above). This means that any element of $\operatorname{Hom}_{G \times G}(I_n(-s_0 - s_0))$ $(1,\chi),\pi\otimes(\chi\cdot\pi^{\vee})$) factors through

$$I_n(-s_0-1,\chi)/R_n(V_m^+,\chi) \oplus R_n(V_m^-,\chi) \simeq \text{Im } M^*(-s_0-1,\chi)$$

and thus

$$\dim \operatorname{Hom}_{G\times G}(\operatorname{Im} M^*(-s_0-1,\chi),\pi\otimes(\chi\cdot\pi^\vee))=1.$$

On the other hand, let

$$\mu \in \operatorname{Hom}_{G \times G}(I_n(s_0 + 1, \chi), \pi \otimes (\chi \cdot \pi^{\vee}))$$

with $\mu \neq 0$. We know from (9) that

$$\mu \circ M^*(s_0 + 1, \chi) = 0$$

hence μ must be non-zero on Ker $M^*(s_0 + 1, \chi) = \text{Im } M^*(-s_0 - 1, \chi)$. Since $s_0 + 1 > 0$, the space Im $M^*(-s_0-1,\chi)$ is a non-zero submodule of $R_n(V_{m+2}^{-\epsilon})$ and thus

$$\mu\big|_{R_n(V_{m+2}^{-\epsilon})} \neq 0,$$

hence

$$m_{\chi}^{-\epsilon}(\pi) \leqslant m + 2 = 2n + 2 - m'.$$

We thus have $m_{\chi}^{+}(\pi) + m_{\chi}^{-}(\pi) = 2n + 2$ as claimed. The only remaining case is m' = n + 1. We thus have m = n - 1 and $s_0 = -\frac{1}{2}$. The proof is similar to the preceding one. If

$$\mu \in \operatorname{Hom}_{G \times G} \left(I_n \left(\frac{1}{2}, \chi \right), \pi \otimes (\chi \cdot \pi^{\vee}) \right)$$

is non-zero, then its composition with $M^*(\frac{1}{2},\chi)$ is zero, this means that the restriction of Ker $M^*(\frac{1}{2},\chi)$ must be non-zero. Hence, for the same reason as above, $m_{\chi}^+(\pi) = m_{\chi}^-(\pi) =$ n+1.

References

- [HKS] Michael Harris, Stephen S. Kudla, and William J. Sweet. Theta dichotomy for unitary groups. J. Amer. Math. Soc., 9(4):941–1004, 1996.
- [KR] Stephen S. Kudla and Stephen Rallis. On first occurrence in the local theta correspondence. In Automorphic representations, L-functions and applications: progress and prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pages 273–308. de Gruyter, Berlin, 2005.

- [KS] Stephen S. Kudla and W. Jay Sweet, Jr. Degenerate principal series representations for U(n, n). Israel J. Math., **98**:253–306, 1997.
- [Kud1] Stephen S. Kudla. Splitting metaplectic covers of dual reductive pairs. *Israel Journal of Mathematics*, 87:361–401, 1994.
- [Kud2] Stephen S. Kudla. Notes on the local theta correspondence. Available on Kudla's home page, http://www.math.utoronto.ca/ssk/castle.pdf, 1996.
- [Li] Jian-Shu Li. Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math., 428:177–217, 1992.
- [LR] Erez M. Lapid and Stephen Rallis. On the local factors of representations of classical groups. In *Automorphic representations*, *L-functions and applications*: progress and prospects, volume 11 of *Ohio State Univ. Math. Res. Inst. Publ.*, pages 309–359. de Gruyter, Berlin, 2005.
- [MVW] Colette Moeglin, Marie-France Vigneras, and Jean-Loup Waldspurger. Correspondence de Howe sur un corps p-adique, volume 1291 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
- [Rao] R. Rao. On some explicit formulas in the theory of the Weil representation. *Pacific J. Math.*, **157**:335–371, 1993.