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An inequality for local unitary Theta correspondence

Zheng GONG and Löıc GRENIÉ

January 22, 2009

1 Introduction, notations

This section recalls the local theta correspondence as in [Kud2] and cites some of the results
of [HKS].

We fix once and for all a non archimedean local field F of residual characteristic different
from 2.

The application ∆ will always be a diagonal embedding, usually from G to G×G except
in one point where it will be precised.

1.1 Heisenberg group

Let W be a vector space with a symplectic form 〈., .〉 on which the group GL(W ) will act
on the right – accordingly, if f and g are two endomorphisms of W , we will denote f ◦ g
the endomorphism such that (f ◦ g)(w) = g(f(w)). We will denote, as usual,

Sp(W ) = {g ∈ GL(W ) | ∀(x, y) ∈W 2, 〈xg, yg〉 = 〈x, y〉}

its isometry group.

Definition 1.1 The Heisenberg group of W if the group H(W ) = W ⋉ F with product

(w1, t1)(w2, t2) = (w1 + w2, t1 + t2 +
1

2
〈w1, w2〉).

The centre of H(W ) is {(0, t) | t ∈ F} and Sp(W ) acts on H(W ) via its action on W :

(w, t)g = (wg, t).

We recall

Theorem 1.2 (Stone–von Neumann theorem) Let ψ be a non trivial unitary charac-
ter of F . There exists, up to isomorphism, one smooth irreducible representation (ρψ, S)
of H(W ) such that

ρψ
(
(0, t)

)
= ψ(t) · idS .
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If we fix such a representation (ρψ, S), for any g ∈ Sp(g), the representation h 7−→ ρgψ(h) =
ρψ(hg) is a representation of H(W ) with the same central character, which means that it
must be isomorphic to ρψ. Hence there is an isomorphism A(g) ∈ GL(S), unique up to a
scalar, such that

∀h ∈ H, A(g)−1ρψ(h)A(g) = ρgψ(h). (1)

The group
Mp(W ) =

{(
g, A (g)

)
| equation (1) holds

}

is independent of the choice of ψ and is a central extension of Sp(W ) by C×:

0 −→ C× −→ Mp(W ) −→ Sp(W ) −→ 1.

The group Mp(W ) has a natural representation, called the Weil representation, ωψ on S
given by

ωψ : Mp(W ) −→ End(S)(
g, A (g)

)
7−→ A(g)

1.2 The Schrödinger model of the Weil representation

The application
(
g, A (g)

)
7→ A(g) defines a representation of Mp(W ) of which there are

several models. We are interested in the so-called Schrödinger model.
Let Y be a Lagrangian of W , i.e. a maximal isotropic subspace of W and W = X ⊕ Y

a complete polarisation of W . We consider Y as a degenerate symplectic space and see
H(Y ) = Y ⋉ F as a maximal abelian subgroup of H(W ). We consider the extension ψY
of the character ψ from F to H(Y ) defined by ψY (y, t) = ψ(t). Let

SY = Ind
H(W )
H(Y ) ψY .

We recall that SY is the space of those f : H(W ) −→ C such that

∀h1 ∈ H(Y ), f(h1h) = ψY (h1)f(h)

and such that there exists a compact open subgroup L of W such that

∀l ∈ L, f
(
h(l, 0)

)
= f(h).

We fix an isomorphism of SY with the space S(X) of Schwartz functions on X by

SY −→ S(X)
f 7−→ ϕ : X → C

x 7→ ϕ(x) = f(x, 0).

The group H(W ) acts on SY by right translation while it acts on ϕ ∈ S(X) by

(
ρ(x+ y, t)ϕ)(x0) = ψ

(
t+ 〈x0, y〉+

1

2
〈x, y〉

)
ϕ(x0 + x)
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where x+ y ∈ W is such that x ∈ X and y ∈ Y . Then (see [MVW]) (ρ, S(X)) is a model
for the Weil representation.

We specify the operator ωψ as follows. We identify an element w ∈ W with the row
vector (x, y) ∈ X ⊕ Y . An element g ∈ Sp(W ) will be of the form g = ( a bc d ) with a ∈
End(X), b ∈ Hom(X,Y ), c ∈ Hom(Y,X) and d ∈ End(Y ). Let PY = {g ∈ Sp(W ) | c = 0}
be the maximal parabolic subgroup of Sp(W ) that stabilises Y and NY = {g ∈ PY | d =
idY } its unipotent radical. We have a Levy subgroup MY = {g ∈ PY | b = 0} of PY and
PY = MYNY .

We define the following natural applications:

m : GL(X) −→MY

a 7−→ m(a) = ( a 0
0 a∨ )

n : Her(X,Y ) −→ NY

b 7−→ n(b) =
(

idX b
0 idY

)

where a∨ is the inverse of the dual of a and Her(X,Y ) is the subset of those b ∈ Hom(X,Y )
which are Hermitian (in both cases we identify the dual of X ⊕Y with Y ⊕X using 〈., .〉).

Proposition 1.3 ([Kud2, Proposition 2.3, p8]) Let g =

(
a b
c d

)
∈ Sp(g). The op-

erator r(g) of S(X) defined by

r(g)(ϕ)(x) =

∫

Ker c\Y
ψ

(
1

2
〈xa, xb〉 − 〈xb, yc〉+

1

2
〈yc, yd〉

)
ϕ(xa+ yc) dµg(y)

is proportional to A(g) and moreover is unitary for a unique Haar measure dµg(y) on

Ker c\Y .

1.3 Dual reductive pairs

Definition 1.4 A dual reductive pair (G,G′) in Sp(W ) is a pair of subgroups of Sp(W )
such that both G and G′ are reductive and

CentSp(W )(G) = G′ and CentSp(W )(G
′) = G.

If (G,G′) is a dual reductive pair in Sp(W ), we denote G̃ and G̃′ the pullbacks of the
subgroups in Mp(W ). As seen in [MVW], there exists a natural morphism

j : G̃× G̃′ −→ Mp(W )

such that the restriction of j to C× ×C× is the product.
We consider the pullback (j∗(ωψ), S) of ωψ to G̃×G̃′. We note that the central character

for both G̃ and G̃′ is the identity:

ωψ(j(z1, z2)) = z1z2 · idS .
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Let π be an irreducible admissible representation of G̃ such that the central character
of π is the identity. Then if

N (π) =
⋂

λ∈Hom eG
(S,π)

Kerλ

S(π) = S/N (π) is the largest quotient of S on which G̃ acts by π. The action of G̃′ on S

commutes with the action of G̃ so that G̃′ acts on S(π) and thus S(π) is a representation

of G̃ × G̃′. There exists (see [MVW]) a smooth representation Θψ(π) of G′, unique up to
isomorphism, such that

S(π) ≃ π ⊗Θψ(π).

The principal result is the following

Theorem 1.5 (Howe duality principle) Let F be a non archimedean local field with
residual characteristic different from 2 and let π be an irreducible admissible representation
of G̃. Then

i) If Θψ(π) 6= 0, then it is an admissible representation of G̃′ of finite length.

ii) If Θψ(π) 6= 0, there exists a unique G̃′-submodule Θ0
ψ(π) such that the quotient

θψ(π) = Θψ(π)/Θ0
ψ(π)

is irreducible. If Θψ(π) = 0, we let θψ(π) = 0.

iii) If two irreducible admissible representations π1 and π2 of G̃ are such that θψ(π1) ≃
θψ(π2) 6= 0 then π1 ≃ π2.

1.4 The unitary case

Let E/F be a quadratic extension and ǫE/F the corresponding quadratic character of F×.
Let V be a quadratic space of dimension m with Hermitian form

(.|.) : V × V −→ E

(linear in the second argument). We will denote

G(V ) = {g ∈ GL(V ) | ∀v, w ∈ V, (gv|gw) = (v|w)}

the isometry group of V .
Let W be a quadratic space of dimension n with skew-Hermitian form

〈., .〉 : W ×W −→ E

(linear in the second argument). We will denote G(W ) its isometry group.
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Let W = RE/F (V ⊗E W ) with symplectic form

〈〈., .〉〉 : W⊗W −→ F

(v1 ⊗ w1, v2 ⊗ w2) 7−→ 〈〈v1 ⊗ w1, v2 ⊗ w2〉〉 =
1

2
TrE/F

(
(v1, v2) 〈w1, w2〉

)
.

The pair
(
G(V ), G(W )

)
is a dual reductive pair in Sp(W). We have a natural inclusion

ι : G(V )×G(W ) −→ Sp(W)
(g, h) 7−→ ι(g, h) = g ⊗ h.

For any pair of characters χ = (χm, χn) of E× such that

χn |F× = ǫnE/F , χm |F× = ǫmE/F ,

one can define a homomorphism

ι̃χ : G(V )×G(W ) −→ Mp(W)

lifting ι (the homomorphism ι̃χ does depend on χ). Since the context will usually make
clear which of χm and χn is considered, we will often use χ instead of χm or χn. Moreover
we define ιV,χ (resp. ιW,χ) the restriction of ιχ to G(V )× 1 (resp. 1×G(W )).

We will denote ωψ the Weil representation of Mp(W) and ωχ its pullback through ι̃χ.
As before, if π is an irreducible admissible representation of G(V ), we get a representation
Θχ(π, V ) of G(W ) such that

S(π) ≃ π ⊗Θχ(π, V )

and if Θχ(π, V ) 6= 0, we say that π appears in the local theta correspondence for the pair
(G(V ), G(W )). This condition depends on χm but not on χn. As above we define θπ(π, V )
to be the unique irreducible quotient of Θχ(π, V ) (or 0 if Θχ(π, V ) = 0).

Witt towers For a fixed dimension m, there are two equivalence classes of Hermitian
spaces of dimension m over E. These two classes are distinguished by their Hasse invariant

ǫ(V ) = ǫE/F
(
(−1)

m(m−1)
2 detV

)
.

We thus get two families of spaces V ±m where the sign is the sign of the Hasse invariant.
As Hermitian spaces we have V ±m+2 ≃ V ±m ⊕ V1,1, where V1,1 is an hyperbolic plane and the
direct sum is orthogonal. We thus get four so-called Witt towers

V +
2r = V +

0 ⊕ (V1,1)
r , V −2r+2 = V −2 ⊕ (V1,1)

r , V +
2r+1 = V +

1 ⊕ (V1,1)
r , V −2r+1 = V +

1 ⊕ (V1,1)
r

where V +
0 is the null vector space, V −2 is an anisotropic 2-dimensional Hermitian space and

V ±1 are one dimensional anisotropic Hermitian spaces. In each case the integer r is the
Witt index of the corresponding Hermitian space[1].

We have

[1]We recall that the Witt index of a quadratic space is the dimension of a maximal totally isotropic
subspace
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Proposition 1.6 ([HKS],[Kud2]) Consider a Witt tower {V ǫ
m} with ǫ = ±.

(i) (Persistence) If θχ(π, V
ǫ
m) 6= 0 then θχ(π, V

ǫ
m+2) 6= 0.

(ii) (Stable range) We have θχ(π, V
ǫ
m) 6= 0 if the Weil index r0 of Vm is such that r0 > n.

We fix m0 ∈ {0, 1} and a character χ of E× such that χ|F× = ǫm0
E/F

and we consider the two

towers V ±m with m of the parity of m0 (if m0 = 0 we disregard V −0 which does not exist).
Let m±

χ (π) be the smallest m such that

θχ(π, V
±
m ) 6= 0.

Based on several examples, we have

Conjecture 1.7 (Conservation relation, [HKS, Speculations 7.5 and 7.6], [KR,
Conjecture 3.6])

m+
χ (π) +m−

χ (π) = 2n+ 2.

1.5 Aim of this paper

We prove here one of the inequalities of Conjecture 1.7:

Theorem 1.8 Let π be an irreducible admissible representation of G(W ), then

m+
χ (π) +m−

χ (π) > 2n+ 2.

1.6 Degenerate principal series

Let W+ and W− be two copies of W with respectively the same form as W and its opposite.
We keep our pair of characters χ = (χm, χn). We fix for the space W+ ⊕W− the complete
polarisation X ⊕ Y where X = {(w,−w) | w ∈ W} and Y = {(w,w) | w ∈ W} = ∆(W )
where ∆ is the diagonal embedding of W in W+ ⊕W−. We let then

W+ = RE/F (V ⊗E W+) W− = RE/F (V ⊗E W−)

X = RE/F (V ⊗E X) Y = RE/F (V ⊗E Y ).

and we consider the representation ωV,W+⊕W−,χ of G(V ) × G(W+ ⊕W−) induced by the
Weil representation of W+ ⊕W− on S = S(X) ≃ S(V n). Let Rn(V, χ) be the maximal
quotient of S on which G(V ) acts by the character χm. The space Rn(V, χ) can be seen as
a representation of G(W )×G(W ) via the natural embedding

i : G(W )×G(W ) = G(W+)×G(W−) →֒ G(W+ ⊕W−).

From now on, we will denote G = Gn = G(W ) and G̃ = G̃n = G(W+ ⊕W−) so that
i : G×G →֒ G̃.

We then have

6



Proposition 1.9 ([HKS, Proposition 3.1 and discussion before]) Let π be an irre-
ducible admissible representation of G(W ),

Θχ(π, V ) 6= 0 ⇐⇒ HomG×G(Rn(V, χ), π ⊗ (χm · π
∨)) 6= 0.

Let PY be the parabolic subgroup of G̃ stabilising Y . We will denote MY its maximal
Levi subgroup and NY its unipotent radical. Recall that MY and NY are parametrised
respectively by GL(X) and Her(X,Y ).

For s ∈ C and χ a character of E×, let

In(s, χ) = IndG̃PY
χ| . |s

be the degenerate principal series (the induction is unitary and the elements of In(s, χ) are
locally constant functions Φ(g, s)).

We can identify Rn(V, χ) as a subspace of some In(s, χ) by sending an element φ ∈ S
to the function g 7−→ ωχ(g)φ(0) – here we denote ωχ = ωψ ◦ ι̃V,χ. The spaces Rn(V

±
m , χ)

allows us to decompose In(s, χ) as explained by the following proposition.

Proposition 1.10 ([KS, Theorem 1.2, p257]) Let V ±m be an m-dimensional unitary
space of dimension m and Hasse invariant ±. Let s0 = m−n

2
and χ a character of E×

such that χ|F× = ǫmE/F .

i) If m 6 n, i.e. if s0 6 0, then the modules Rn(V
±
m , χ) are irreducible and Rn(V

+
m , χ)⊕

Rn(V
−
m , χ) is the maximal completely reducible submodule of In(s0, χ).

ii) If m = n, i.e. if s0 = 0, then In(0, χ) = Rn(V
+
n , χ)⊕Rn(V

−
n , χ).

iii) If n < m < 2n, i.e. if 0 < s0 <
n
2
, then In(s0, χ) = Rn(V

+
m , χ) + Rn(V

−
m , χ) and

Rn(V
+
m , χ) ∩Rn(V

−
m , χ) is the unique irreducible submodule of In(s0, χ).

iv) If m = 2n, i.e. if s0 = n
2
, then In(s0, χ) = Rn(V

+
2n, χ), Rn(V

−
2n, χ) is of codimension 1

and is the unique irreducible submodule of In(s0, χ).

v) If m > 2n, i.e. if s0 >
n
2
, then In(s0, χ) = Rn(V

±
m , χ) is irreducible.

In all other cases In(s, χ) is irreducible.

To understand better the decompositions above we begin with the Bruhat decomposi-
tion of G̃:

G̃ =
n∐

j=0

PY ωjPY , with ωj =




In−j 0 0 0
0 0 0 Ij
0 0 In−j 0
0 −Ij 0 0




and let us introduce, as in [Kud2, p19] and [Rao] the application

x : G̃ −→E×/NE/FE
×

p1ω
−1
j p2 7−→ det(p1p2|Y ) mod NE/FE

×

7



Whenever χ|F× = 1 we can introduce the character χG̃ of G̃

χG̃(g) = χ(x(g)).

We extend the definition of Rn as follows:

Rn(V
+
0 , χ) = Rn(0, χ) = C · χG̃

and Rn(V
+
0 , χ) is a submodule of dimension 1 o f In(−

n
2
, χ) (we are, at least formally, in

the case i) of Proposition 1.10). As a last step, we define the intertwining operators

Mn(s, χ) : In(s, χ) −→ In(−s, χ)

by the integral

Mn(s, χ)(Φ) =

∫

NY

Φ(wnug, s) du =

∫

Her(X,Y )

Φ(wnn(b)g, s) db,

which is convergent for Re s > n
2

and by meromorphic continuation for s ∈ C. The Haar
measure db is chosen self-dual with respect to the Fourier transform

φ̂(y) =

∫
φ(b)ψ(Tr(by)) db.

We normalise Mn(s, χ) using

a(s, χ) =
n−1∏

j=0

LF

(
2s+ j − (n− 1), χǫjE/F

)

and then M∗
n(s, χ) = 1

a(s,χ)
Mn(s, χ) is holomorphic and non zero (see [KS, Proposition

3.2]).

Proposition 1.11 ([KS]) Let V ±m be the m-dimensional unitary space of dimension m
and Hasse invariant ±. Let s0 = m−n

2
and χ a character of E× such that χ|F× = ǫmE/F .

i) If m = 0, i.e. if s0 = −n
2
, then Ker(M∗

n(−
n
2
, χ)) = Rn(V

+
0 , χ) and Im(M∗

n(−
n
2
, χ)) =

Rn(V
−
2n, χ).

ii) If 1 6 m < n, i.e. if −n
2
< s0 < 0, then Ker(M∗

n(s0, χ)) = Rn(V
+
m , χ) ⊕ Rn(V

−
m , χ)

and Im(M∗
n(s0, χ)) = Rn(V

+
2n−m, χ) ∩Rn(V

−
2n−m, χ).

iii) If n 6 m < 2n, i.e. if 0 6 s0 <
n
2
, then Ker(M∗

n(s0, χ)) = Rn(V
+
m , χ) ∩ Rn(V

−
m , χ),

M∗
n(s0, χ)(Rn(V

±
m , χ)) = Rn(V

±
2n−m, χ) thus we have Im(M∗

n(s0, χ)) = Rn(V
+
2n−m, χ)⊕

Rn(V
−
2n−m, χ).

iv) If m = 2n, i.e. if s0 = n
2
, then Ker(M∗

n(
n
2
, χ)) = Rn(V

−
2n, χ) and Im(M∗

n(
n
2
, χ)) =

M∗
n(

n
2
, χ)(Rn(V

+
2n), χ) = Rn(V

+
0 , χ).

8



1.7 Local Zeta integral

The last element that we will use is the local Zeta integral of a representation. We fix π
an irreducible admissible representation of G(W ).

Definition 1.12 A matrix coefficient of π will be a linear combinations of functions of
the form

φ(g) = 〈π(g)ξ, ξ∨〉

where ξ and ξ∨ are vectors of the space of respectively π and π∨.
Moreover if ξ◦ and ξ∨◦ are preassigned spherical vectors of π and π∨, we let

φ◦(g) = 〈π(g)ξ◦, ξ
∨
◦ 〉.

We parametrise the space of matrix coefficients with the space of π ⊗ π∨ through the
obvious projection. If s ∈ C with Re s large enough, ξ ∈ π, ξ∨ ∈ π∨, Φ ∈ In(s, χ), let

Z(s, χ, π, ξ ⊗ ξ∨,Φ) =

∫

G

〈π(g)ξ, ξ∨〉Φ(i(g, In), s) dg

and extend it linearly to the space of matrix coefficients of π. We fix a maximal compact
subgroup K of G̃ (for instance, one can fix a basis of W+ ⊕W−, see G̃ as a subgroup of
GL(2n,E) and take K = G̃ ∩GL(2n,OE)).

Definition 1.13 A standard section Φ is an application from C to the set of function
from G̃ to C such that ∀s ∈ C, Φ(g, s) = Φ(s)(g) ∈ In(s, χ) and, moreover, Φ(s)|K is
independent of s.

It is rather obvious that any element Φ(g, s) ∈ In(s, χ) can be inserted in a (unique)
standard section. The Zeta integral above defines, for Re s sufficiently large, an intertwining
operator

Z(s, χ, π) ∈ HomG×G

(
In(s, χ), π ⊗ (χ · π∨)

)

If Φ is a standard section, this operator can be meromorphically extended for all s ∈ C to
an operator

Z∗(s, χ, π) ∈ HomG×G

(
In(s, χ), π ⊗ (χ · π∨)

)
.

2 Our results

2.1 Decomposition of the degenerate principal series

Let Ω(W+ ⊕W−) be the Grassmannian of the Lagrangians of W+ ⊕W−. We can identify

PY\G(W+ ⊕W−) ≃ Ω(W+ ⊕W−)

9



using the map PY · g 7−→ Y g. There is a right action of i(G(W )×G(W )) on Ω(W+ ⊕W−)
which orbits are parametrised by the elements of the decomposition

G(W+ ⊕W−) =

r0∐

r=0

PY δri(G(W )×G(W ))

where r0 is the Witt index of W . The aforementioned orbits are of the form

Ωr =PY\PY δri(G(W )×G(W )).

The orbit Ωr is made of the Lagrangians Z such that dimZ ∩W+ = dimZ ∩W− = r. The
only open orbit is that of Y , which is Ω0, while the only closed one is that of Ωr0 and the
closure of the orbit Ωr is

Ωr =
∐

j>r

Ωj.

We consider the filtration

In(s, χ) = I(r0)
n (s, χ) ⊃ · · · ⊃ I(1)

n (s, χ) ⊃ I(0)
n (s, χ),

where
I(r)
n (s, χ) = {Φ ∈ In(s, χ)|Φ|Ωr+1

= 0}.

Let
Q(r)
n (s, χ) = I(r)

n (s, χ)/I(r−1)
n (s, χ)

be the successive quotients of the filtration. All I
(r)
n (s, χ) and Q

(r)
n (s, χ) are G×G-stable.

Let TW be the Witt tower containingW . For anyW ′ ∈ TW of dimension n′ = n−2r 6 n,
let Gn′ = G(W ′). We identify W ′ with a subspace of W isomorphic to W ′. There is a Witt
decomposition

W = U ′ ⊕W ′ ⊕ U

where U and U ′ are dual isotropic subspaces of dimension r. Let Pr be the parabolic
subgroup of G stabilising U . The Levi subgroup of Pr is isomorphic to GL(U)×Gn′ so that,
if we denote Mr its Levi component and Nr its unipotent radical, we have isomorphisms

Mr ≃ GL(U)×Gn′ (2)

Pr ≃ (GL(U)×Gn′) ⋉Nr.

Note in particular for r = 0 that U = U ′ = {0}, W ′ = W and P0 = Gn = G.
Let

Str = i−1(δ−1
r PY δr ∩ i(G×G))

be the stabiliser of PY δr in i−1(PY )\G×G.
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Lemma 2.1 For a convenient choice of δr (specified in Equation (3) below), we have

Str = (GL(U)×GL(U)×∆(Gn′)) ⋉ (Nr ×Nr) ⊂ Pr × Pr.

Moreover

Q(r)
n (s, χ) ≃ IndG×GPr×Pr

(
χ| . |s+

r
2 ⊗ χ| . |s+

r
2 ⊗

(
S(Gn′) · (1⊗ χ)

))

where the action of Gn′ × Gn′ on the space S(Gn′) · (1 ⊗ χ) is given by (g1, g2)ϕ(g) =
χ(det g2)ϕ(g−1

2 gg1).

Proof: We let G′ = Gn′ .
Recall the Witt decomposition

W = U ′ ⊕W ′ ⊕ U

and consider the Lagrangian

Z = U × {0} ⊕∆(W ′)⊕ {0} × U

in W+⊕W−. Since the action of G̃ on Ω(W+ ⊕W−) is transitive, there exists δr ∈ G̃ such
that Z = Y δr. Since any linear map from Y to Z can be extended to an element of G̃, we
can furthermore require that

∀v ∈ U ′, δr|∆(U ′)(v, v) = (0, vd) ∈ {0} × U
δr|∆(W ′) = id∆(W ′)

∀u ∈ U, δr|∆(U)(u, u) = (u, 0) ∈ U × {0}
(3)

where d : U ′ −→ U is an isomorphism. Note in particular that δ0 = idG. Following [Kud2,
Proof of Proposition 2.1, p68], we find that there is a bijection between the orbit Ωr of Z
and the set

{(Z+, Z−, λ)}

where Z± is an isotropic subspace of W± of dimension r and

λ :Z ⊥
+/Z+ −→Z ⊥

−/Z−

is an isometry[2]. The action of (g+, g−) ∈ G×G on this set is given by

(g+, g−)(Z+, Z−, λ) = (Z+g+, Z−g−, g
−1
+ ◦ λ ◦ g−).

she stabiliser of (Z+, Z−, λ) is

{(g+, g−) ∈ G×G | g± stabilises Z± and g−1
+ ◦ λ ◦ g− = λ}.

[2]in [Kud2] it is an anti-isometry but, since W− has the opposite of the form of W+, here λ is an isometry.
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In our situation and with our choice of δr, we have Z+ = Z− = U , Z ⊥
+/Z+ = W ′ and

λ = idW ′ . Hence, denoting prW ′ the projection on W ′ parallel to U ′ ⊕ U ,

Str =
{

(g+, g−) ∈ Pr × Pr

∣∣∣g+|W ′+U ◦ prW ′ = g−|W ′+U ◦ prW ′

}

= (GL(U)×GL(U)×∆(G′)) ⋉ (Nr ×Nr)

For further reference, an element of Pr has the form



a b c
0 e b∗

0 0 a∨




where b∗ depends on b, a and e and where c satisfies an equation depending on a, b and e.
We thus have

g± =




a± b± c±
0 e± b∗±
0 0 a∨±


 (4)

and the condition g+|W ′+U ◦ prW ′ = g−|W ′+U ◦ prW ′ is simply e+ = e−.
The description of the stabiliser allows us to describe the induced representations. If

g̃ ∈ Str, then p(g̃) = δri(g̃)δ
−1
r = n ·m(ar(g̃)) ∈ PY . Let ξs,r be the character of Str defined

by ξs,r(g̃) = χ(ar(g̃))| det ar(g̃)|
s+ r

2 . Consider the morphism of G×G-modules

Q
(r)
n (s, χ) −→ IndG×GStr

(ξs,r)

f 7−→ φf (g1, g2) =
∫
N ′r
f(δrn(u)i(g1, g2)) du

where f ∈ I(r)
n (s, χ) is a representative of f . This morphism is an isomorphism (see [HKS,

Equation (4.9), p963]). Let g̃ = (g+, g−) be an element of Str decomposed as in (4).
Then det(ar(g̃)) = det a+ det a− det e+ (where we recall that e+ = e−). Since e+ ∈ G′,
| det e+| = 1 hence

Q(r)
n (s, χ) ≃ IndG×GStr

(χ| . |s+
r
2 ⊗ χ| . |s+

r
2 ⊗ χ)

≃ IndG×GPr×Pr

(
IndPr×Pr

Str
(χ| . |s+

r
2 ⊗ χ| . |s+

r
2 ⊗ χ)

)

The induction from Str to Pr × Pr is an induction from ∆(G′) to G′ × G′. Moreover, if
f ∈ IndG

′×G′

∆(G′) χ then f(h1, h2) = χ(h2)f(h−1
2 h1, 1). Hence

IndG
′×G′

∆(G′) χ ≃ S(G′) · (1⊗ χ)

where the action of G′ ×G′ on S(G′) · (1⊗ χ) is given by

ρ(g1, g2)ϕ(g) = χ(det g2)ϕ(g−1
2 gg1).

Hence

IndPr×Pr

Str
(χ| . |s+

r
2 ⊗ χ| . |s+

r
2 ⊗ χ) ≃ χ| . |s+

r
2 ⊗ χ| . |s+

r
2 ⊗ IndG

′×G′

∆(G′) χ

≃ χ| . |s+
r
2 ⊗ χ| . |s+

r
2 ⊗

(
S(G′) · (1⊗ χ)

)
.

The result follows. �
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2.2 Simplicity of poles

We prove in our case the result of [KR, section 5]. We follow the same method. We denote
χ0 the trivial character of F×.

Proposition 2.2 Let zs ∈ H(G//K)⊗C[qs, q−s] be the element defined by

zs =

r0∏

i=1

(1− q−s−
1
2 ti)(1− q−s−

1
2 t−1
i ).

For an unramified representation π of G, let π(zs) be the scalar by which zs acts on the
unramified vector in π. Then for all matrix coefficients φ of π and all standard sections
Φ(s) ∈ In(s), the function

π(zs) · Z(s, χ0, π, φ,Φ)

is an entire function of s.

Proof: We divide the proof in several steps.

Step 1. By linearity of Z, we can limit ourselves to the case where φ is of the form

φ(g) = 〈π(g)π(g1)ξ◦, π
∨(g2)ξ

∨
◦ 〉

where ξ◦ and ξ∨◦ are spherical vectors in π and π∨ and g1, g2 ∈ G. We then have

Z(s, χ0, π, φ,Φ) =

∫

G

〈π(g)π(g1)ξ◦, π
∨(g2)ξ

∨
◦ 〉Φs(i(g, In)) dg (5)

=

∫

G

〈π(g)ξ◦, ξ
∨
◦ 〉Φs(i(g2gg

−1
1 , In)) dg

= | det g2|
s+r0−

1
2

∫

G

φ◦(g)Φs(i(g, In)i(g
−1
1 , g−1

2 )) dg

since | det g2| = 1 and φ◦ is bi-K invariant, for all k1, k2 ∈ K,

=

∫

G

φ◦(g)Φs(i(k
−1
2 gk1, In)i(g

−1
1 , g−1

2 )) dg

=

∫

G

φ◦(g)Φs(i(g, In)i(k1, k2)i(g
−1
1 , g−1

2 )) dg

and thus

=

∫

G

φ◦(g)Ψs(i(g, In)) dg

where, for any h ∈ H = G2n,

Ψs(h) :=

∫

K×K

Φs(hi(k1, k2)i(g
−1
1 , g−1

2 )) dk1dk2. (6)

Note that Ψs is K ×K-invariant section of In(s) which is not necessarily standard.
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Step 2. We consider in the algebra

A = C[X,X−1]⊗H(G//K) ≃ C[X,X−1]⊗C[t1, . . . , tn]
WG ,

where H(G//K) is the K-spherical Hecke algebra of G, the element

z =

r0∏

i=1

(1−Xq−
1
2 ti)(1−Xq−

1
2 t−1
i ).

We let G × G act on In(s) through i, extend the action to H(G//K) × H(G//K) and
let any φ ∈ H(G//K) act as (φ, 1) ∈ H(G//K)×H(G//K). We let A act on the space
In(s)

K×1 of K × 1-fixed vectors of In(s) by the aforementioned action of H(G//K) and X
acts by multiplication by q−s. Note that action of 1×G commutes with the action of A.

Proposition 2.3 For any standard section Φs with associated section Ψs defined by (6),
we have

Ψs ∗ z ∈ I(0)
n (s)K×K .

Proof: We want to show the the image of Ψs ∗ z in each Q
(r)
n (s) = Q

(r)
n (s, χ0) is 0 for

0 < r 6 r0. We will, as an illustration, do the first step separately in the case of a split
Hermitian space (in particular n = 2r0). Consider the projection induced by restriction to
the closed orbit:

prr0 : In(s) = I
(r0)
n (s) −→ Q

(r0)
n (s) ≃ IndGPr0

(
| . |s+

r0
2

)
⊗ IndGPr0

(
| . |s+

r0
2

)

Φs 7−→
(
(g1, g2) 7→ Φs(i(g1, g2))

)
.

We have
prr0(Ψs ∗ z) = prr0(Ψs) ∗ z

if we let z act only on the first term of the tensor product on the right side. On the other
hand, we have

IndGPr0

(
| . |s+

r0
2

)
⊂ IndGB(λ)

where B is the standard Borel subgroup of G and λ is the unramified principal series
representation with Satake parameter[3]

(qs+r0−
1
2 , qs+r0−

3
2 , . . . , qs+

1
2 ).

The element z acts on the K-fixed vector of this representation by the scalar

r0∏

i=1

(1− q−s−
1
2 qs+r0+

1
2
−i)(1− q−s−

1
2 q−s−r0−

1
2
+i) = 0.

This means that prr0(Ψs ∗ z) = 0 i.e. that Ψs ∗ z ∈ I(r0−1)
n (s).

[3]A vérifier
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More generally, if we restrict the orbit of a section to Ωr, we obtain a map

prr : In(s) −→ IndG×GPr×Pr

(
| . |s+

r
2 ⊗ | . |s+

r
2 ⊗ C(Gn−2r)

)
=: Br(s)

where C(Gn−2r) is the space of smooth functions on Gn−2r. There is a non-degenerate

pairing between Q
(r)
n (s) and Br(−s− r) given by

〈
f1, f2

〉
=

∫

Pr×Pr\G×G
〈f1(g1, g2), f2(g1, g2)〉Gn−r

dµ(g1)dµ(g2),

where the internal pairing is the integration over Gn−r and the external integral is the
invariant functional for functions which transform on the left according to the square of
the modulus character. A straightforward density argument shows that φ ∈ Q(r)

n (s) is 0 if

and only if it pairs to zero against all elements of the subspace Q
(r)
n (−s− r) ⊂ Br(−s− r).

In addition if φ ∈ Q(r)
n (s)K×K we can limit ourselves to elements of Q

(r)
n (−s− r)K×K . Let

fs ∈ Q
(r)
n (−s− r)K×K and zs = z

∣∣
X=q−s . We have

〈prr(Ψs ∗ z), f2〉 = 〈prr(Ψs) ∗ zs, fs〉 = 〈prr(Ψs), fs ∗ z
∨
s 〉.

Lemma 2.4 For any fs ∈ Q
(r)
n (−s− r)K×K we have

fs ∗ z
∨
s = 0.

Proof: Since fs is element of a parabolic induction and fixed by a maximal compact,
it is determined by its value at the identity element In. It is not difficult to see that
fs(In) ∈ S(G)Kn−r×Kn−r where Kn−r = Gn−r ∩ K. Let τ be an irreducible admissible
representation of Gn−r. The action of S(Gn−r) on τ determines a Gn−r×Gn−r-equivariant
map

µτ : S(Gn−r) −→ Homsmooth(τ, τ) ≃ τ∨ ⊗ τ

where Homsmooth is the space of vector-space homomorphisms fixed by a compact open
subgroup of Gn−r × Gn−r. The two factors of Gn−r × Gn−r act respectively by pre- and
post-multiplication on the elements of Homsmooth(τ, τ) so that each has finite dimensional
image. A function φ ∈ S(Gn−r)

Kn−r×Kn−r is nonzero if and only if there exists an irreducible
admissible representation τ such that τ(φ) 6= 0, i.e. such that µτ (φ) 6= 0.

Consider fs ∗ z
∨
s . Let τ be, as above, an irreducible admissible representation of Gn−r.

The map µτ induces

Ind(µτ ) : IndG×GPr×Pr

(
| . |−s−

r
2 ⊗| . |−s−

r
2 ⊗S(Gn−r)

)
−→ IndG×GPr×Pr

(
| . |−s−

r
2 ⊗| . |−s−

r
2 ⊗ τ∨⊗ τ

)

which verifies Ind(µτ )(fs)(In) = µτ (fs(In)). The latter induced representation is isomor-
phic to

IndGPr

(
| . |−s−

r
2 ⊗ τ∨

)
⊗ IndGPr

(
| . |−s−

r
2 ⊗ τ

)
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which can be embedded in
IndGB λ1 ⊗ IndGB λ2

where the Satake parameters[4] are

λ1 = (q−s−
1
2 , q−s−

3
2 , . . . , q−s+

1
2
−r, q−ν1 , . . . , q−νn−r)

λ2 = (q−s−
1
2 , q−s−

3
2 , . . . , q−s+

1
2
−r, qν1 , . . . , qνn−r)

(where (qν1 , . . . , qνn−r) is the Satake parameter of τ). The operator z
∨
s acts on the unique

line of K ×K-invariant vectors of this representation by the scalar

r∏

i=1

(1− q−sq−
1
2 qs−

1
2
+i)(1− q−sq−

1
2 q−s+

1
2
−i) · (factor) = 0.

But Ind(µτ )(fs) is aK×K-invariant vector in this representation so that Ind(µτ )(fs)∗zs = 0
and

µτ (fs ∗ z
∨
s (In)) = Ind(µτ )(fs ∗ z

∨
s )(In)

= (Ind(µτ )(fs ∗ z
∨
s ))(In)

= 0.

Since this is true for all τ , we have fs ∗ z
∨
s (In) = 0 and thus fs ∗ z

∨
s = 0. � Lemma 2.4

We have prr(Ψs ∗ z) = 0 for all r > 0, which means that the support of Ψs ∗ z is included
in Ω0, which concludes the proof. � Proposition 2.3

Step 3. Consider the isomorphism

pr0 : In(s) −→ Q(0)
n (G) ≃ S(G).

Proposition 2.3 shows that, for a fixed s, we have pr0(Ψs∗z) ∈ S(G)K×K . Its support could
vary with s. The following proposition shows that the support of pr0(Ψs ∗ z) is bounded
uniformly in s.

Lemma 2.5

pr0(Ψs ∗ z) ∈ C[qs, q−s]⊗ S(G)K×K = C[qs, q−s]⊗H(G//K).

Proof: Using the Cartan decomposition, write

pr0(Ψs ∗ z) =
∑

λ∈Λ

cλ(s)Lλ,

where Lλ is the characteristic function of the double coset KgλK and Λ is the usual
semigroup.

[4]A vérifier
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Lemma 2.6
cλ(s) ∈ C[qs, q−s]

and thus is an entire function of s.

Proof: We have

cλ(s) · ‖Lλ‖
2 =

∫

G

(Ψs ∗ z)(i(g, In)) · Lλ(g) dg. (7)

The integral on the right is a (finite) linear combination, with coefficients in C[qs, q−s] of
integrals of the form

∫

G

∫

G

(Ψs ∗ z)(i(g, In)i(g0, In)) · Lµ(g0) dg0 · Lλ(g) dg (8)

=

∫

G

∫

G

(Ψs ∗ z)(i(g0, In)) · Lµ(g
−1g0) · Lλ(g) dg0dg

=

∫

G

∫

G

(Ψs ∗ z)(i(g0, In)) · ϕ(g0) dg0

where ϕ is a function depending on λ and µ. Since this function is a (finite) linear com-
bination of characteristic functions of cosets gK, the integral is the last line of (8) is a
(finite) linear combination with coefficients in C[qs, q−s] of integrals of the form

∫

K

∫

K×K

Φs

(
i(gk, In)i(k1, k2)i(g

−1
1 , g−1

2 )
)
dk1dk2dk.

But Φs is standard, hence it is right-invariant under a fixed compact open subgroup H,
uniformly in s. This means that the set of g necessary to obtain the full integral (7) is finite
and fixed. The elements g1 and g2 are fixed by the matrix coefficient φ we are considering
and thus the integral (7) is a (finite) linear combination of qℓs with ℓ ∈ Z. �

Let then Λ1 be the set of λ ∈ Λ such that cλ 6= 0 and for λ ∈ Λ let

Dλ = {s ∈ C : cλ(s) = 0}.

If λ ∈ Λ1 then Dλ is a numerable subset of C. Hence
⋃
λ∈Λ1

Dλ is numerable and thus
different from C. Let s0 ∈ C be such that ∀λ ∈ Λ1, cλ(s0) 6= 0. Since

pr0(Ψs0 ∗ z) =
∑

λ∈Λ1

cλ(s0) · Lλ

has compact support, Λ1 is finite and thus for all s ∈ C, pr0(Ψs ∗ z) has support in
∪λ∈Λ1Lλ. � Lemma 2.5
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Step 4. Returning to the Zeta integral in (5), we define

Z∗(s, χ0, π, φ,Φ) =

∫

G

φ◦(g)(Ψs ∗ z)(i(g, In)) dg.

This integral is equal to the scalar by which pr0(Ψs ∗ z) acts on ξ◦ and is thus an entire
function of s because it is an element of C[qs, q−s]. On the other hand, if Re(s) is large
enough we can unfold

Z∗(s, χ0, π, φ,Φ) = π(zs)

∫

G

φ◦(g)Ψs(i(g, In)) dg

= π(zs)Z(s, χ0, π, φ,Φ).

where π(zs) is the scalar by which zs = z
∣∣
X=q−s acts on the spherical vector of π. Since

Z∗(s, χ0, π, φ,Φ) is an entire function of s, this completes the proof. � Proposition 2.2

2.3 The conjecture holds for the trivial representation in the
even dimensional tower

Definition 2.7 ([HKS, Definition 4.6, p963]) For s0 ∈ C, χ a character and π and
irreducible admissible representation of G, we say that π occurs in the boundary at the
point s = s0 if

HomG×G(Q(r)
n (s0, χ), π ⊗ (χ · π∨)) 6= 0

for some r > 0.

Proposition 2.8 Let π = 1 the trivial representation of G, ̟E an uniformiser of E and
qE = |̟E|. We will denote Xu(E×) the set of unramified characters of E×. Let

X(1) =

{
(s, χ) ∈ C×Xu(E×)

∣∣∣∣χ(̟E) = (−1)k, s =
n

2
− r −

kiπ

log qE
, 1 6 r 6 r0

}

with 1 6 r 6 r0 and k ∈ Z.
Then 1 appears in the boundary at s if and only if (s, χ) ∈ X(1). Moreover if (s0, χ) 6∈

X(1), for any standard section Φ the operator Z(s, χ,1) is holomorphic at s = s0 and

HomG×G(In(s0, χ),1⊗ χ) = C · Z(s, χ,1).

Proof: We know from Lemma 2.1 that

HomG×G(Q(r)
n (s, χ),1⊗ χ) = HomG×G

(
IndG×GPr×Pr

(
χ|.|s+

r
2 ⊗ χ|.|s+

r
2 ⊗

(
S(G′) · (1⊗ χ)

))
,

1⊗ χ
)

≃ HomG×G

(
1⊗ χ−1,

IndG×GPr×Pr

(
χ−1| . |−s−

r
2 ⊗ χ−1| . |−s−

r
2 ⊗

(
C∞(G′) · (1⊗ χ−1)

)))
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≃ HomMr×Mr

(
1⊗ χ−1,

χ−1| . |−s−
r
2
+n−r

2 ⊗ χ−1| . |−s−
r
2
+n−r

2 ⊗
(
C∞(G′) · (1⊗ χ−1)

))

because the Jacquet module for 1⊗ χ−1 is 1⊗ χ−1 (as a representation of Mr)

≃ HomGL(U)×GL(U)

(
1⊗ χ−2, χ−1| . |−s+

n
2
−r ⊗ χ−1| . |−s+

n
2
−r

)

because if g corresponds to (a, g′) in Equation (2) then det g = det adet a−1 det g′ so that
χ(det g) = χ(det a)2χ(det g′) and because dim HomG′×G′(1⊗ χ−1,C∞(G′) · (1⊗ χ−1)) = 1
(see [HKS, end of section 4, p964] for general π).

It follows that π occurs in the boundary at s if and only if χ is unramified, χ(̟E) =
(−1)k and (s− n

2
+ r) log qE + kiπ = 0, as required.

Suppose (s0, χ) 6∈ X(1), i.e. that 1 does not appear in the boundary. Let k be the
maximum order of the pole of the Z integral in s = s0 (as Φ varies). Thus

Z(s, χ,1,Φ) =
τ−k(s, χ,1,Φ)

(s− s0)k
+ · · ·+ τ0(s, χ,1,Φ) + · · ·

where the τi are holomorphic functions of s in a neighbourhood of s0 and τ−k is non-zero.
The leading term τ−k is itself an intertwining operator. If we had k > 0, that is, if the Z

integral had a pole in s = s0, the restriction of τ−k to I
(0)
n (s0, χ) would be zero because the

Z integral is convergent on

I(0)
n (s0, χ) = Q(0)

n (s, χ) =≃ S(G) · (1⊗ χ)

thus convergent for every standard section Φ(s) such that Φ ∈ I(0)
n (s, χ). This means that

we would have a non-zero intertwining operator in HomG×G(Q
(r)
n (s, χ),1 ⊗ χ) for some

r > 0, which is impossible by hypothesis. Thus k > 0, i.e. the integral is entire for any
Φ ∈ In(s0, χ). Moreover, Z(s0, χ,1) is a non-zero intertwining operator between I

(0)
n (s0, χ)

and 1⊗χ, which means that HomG×G(I
(0)
n (s0, χ),1⊗χ) is non zero and thus has dimension

1 and that Z(s0, χ,1) is its basis.

Let λ ∈ HomG×G(In(s0, χ),1 ⊗ χ). Its restriction λ̄ to I
(0)
n (s0, χ) is a multiple of

Z(s0, χ,1). Since 1 is supposed not to appear in the boundary, if λ 6= 0, then λ̄ 6= 0, i.e.

λ̄ = cZ(s0, χ,1) for some c 6= 0. Since λ− cZ(s0, χ,1) is zero on I
(0)
n (s0, χ), it must be zero

everywhere, i.e. λ = cZ(s0, χ,1). �

Theorem 2.9 Let m be an even integer and χ0 the trivial character of E×, then

∀m 6 2n, HomG×G(Rn(V
−
m , χ0),1) = 0,

so that by (ii) of Proposition 1.6

HomG×G(Rn(V
−
2n+2, χ0),1) 6= 0

and thus m−
χ0

(1) = 2n+ 2. Since m+
χ0

(1) = 0, we have

m+
χ0

(1) +m−
χ0

(1) = 2n+ 2.
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Proof: By (i) of Proposition 1.6, it suffices to prove that

HomG×G(Rn(V
−
2n, χ0),1) = 0.

From Proposition 2.8 we know that

HomG×G

(
In

(
−
n

2
, χ0

)
,1

)

is non zero and generated by

Z
(
−
n

2
, χ0,1

)

which is holomorphic at −n
2
. The element of In(−

n
2
, χ0) equal to 1 on K is χ0,G̃. As seen

in [Li, Theorem 3.1, p186] and [LR, Proposition 3, p333] we have

Z
(
−
n

2
, χ0,1, φ

◦, χ0,G̃

)
6= 0

and thus Z(−n
2
, χ0,1)(χ0,G̃) 6= 0. Let

φ ∈ HomG×G(Rn(V
−
2n, χ0),1)

and
φ̃ = φ ◦M∗

n

(
−
n

2
, χ0

)
∈ HomG×G

(
In

(
−
n

2
, χ0

)
,1

)
.

We have χ0,G̃ ∈ Rn(V
+
0 , χ0,G̃) = kerM∗

n(−
n
2
, χ0) so that φ̃(χ0,G̃) = 0. This means that

φ̃ = 0 because it is a multiple of Z
(
−n

2
, χ0,1

)
. We know from Proposition 1.11 that the

application

M∗
n

(
−
n

2
, χ0

)
: In

(
−
n

2
, χ0

)
−→ Rn(V

−
2n, χ0)

is surjective so that φ = 0. �

2.4 Half of the conjecture

Theorem 2.10 Let π be an irreducible admissible representation of G(W ), then

m+
χ (π) +m−

χ (π) > 2n+ 2.

Proof: Fix m0 ∈ {0, 1}, a character χ of E× such that χ|F× = ǫm0

E/F and suppose we have

two Hermitian spaces V +
a and V −b such that

θχ(π, V
+
a ) 6= 0 and θχ(π, V

−
b ) 6= 0,

with dimV +
a = a, dimV −b = b, a and b of the parity of m0, ǫ(V

+
a ) = 1 and ǫ(V −b ) = −1.

Let V −b,− be the same space as V −b with opposite form and

Wa = V +
a ⊗W, Wb = V −b ⊗W, Wb,− = V −b,− ⊗W.
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We denote ωa,χ (resp. ωb,χ, ωb,−,χ) the representations of G induced by the representations
ωa,ψ (resp. ωb,ψ, ωb,−,ψ) of Mp(Wa) (resp. Mp(Wb), Mp(Wb,−)). By hypothesis on V +

a and
V −b we have two non-zero (and thus surjective) elements

λ ∈ HomG(ωa,χ, π), µ ∈ HomG(ωb,χ, π).

Let g0 ∈ GLF (W ) be an F -automorphism of W which is conjugate-linear as an E-
morphism. Then Ad(g0) is a MVW involution on G. Conjugating µ and π by Ad(g0)
we get a non-zero morphism

µ∨ ∈ HomG(ω∨b,χ, π
∨)

and thus a surjective

ν0 = λ⊗ µ∨ ∈ HomG×G(ωa,χ ⊗ ω∨b,χ, π ⊗ π∨).

Composing ν0 with ∆ and projecting on the trivial subquotient produces a non-zero element

ν ∈ HomG(ωa,χ ⊗ ω∨b,χ,1).

We have
ω∨b,ψ ≃ ωb,ψ ≃ ωb,−,ψ.

[5]

On the other hand we can identify Mp(Wb) and Mp(Wb,−) in which case we get

Lemma 2.11
ι̃b,χ ≃ ι̃b,−,χ−1 .

Where we added a subscript to ι̃ to remember which Hermitian space is involved.

Proof: The space V −b can be decomposed as an orthogonal direct sum of a split space and
zero, one or two anisotropic lines. Since the splitting ι̃ is additive, we consider separately
the split and the anisotropic case.

We first consider the case in which V −b is split. We will need some additional notations
(see [HKS, n.10, p950]). For any additive character η of F and a ∈ F we will let ηa be the
character such that ηa(x) = η(ax), γF (η) ∈ µ8 the Weil index of the quadratic character

x 7−→ η(x2) and γF (a, η) = γF (ηa)
γF (η)

. Recall that (see [HKS, n.11, p950])

γF (ab, η) = (a, b)FγF (a, η)γF (b, η).

Let η be the character such that η(x) = ψ(1
2
x) (i.e. η = ψ 1

2
). For g ∈ G, we denote j(g)

the integer such that i(g, In) ∈ PY δj(g)i(G×G). Since V −b is split we have (see [HKS, 1.15,
p953]),

ι̃b,χ(g) = (ιb(g), βV −
b
,χ(g))

with
βV −

b
,χ(g) = χ(x(g))γF (η ◦RV )−j(g)

[5]The first isomorphism because ωb,ψ is unitary, the second because of the definition of r(g) in 1.3
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where and
γF (η ◦RV ) = (∆, detV −b )FγF (−∆, η)bγF (−1, η)−b.[6]

Let
ϕ : Sp(Wb)×C1 ≃ Mp(Wb) −→ Sp(Wb,−)×C1 ≃ Mp(Wb,−)

(g , z) 7−→ (g , z)

be the identification. Then χ(x(g)) = χ−1(x(g)) and

γF (−∆, η)γF (−1, η)−1 =

(
γF (η−∆)

γF (η−1)

)
=
γF (η∆)

γF (η1)
= γF (∆, η)γF (1, η)−1

= (∆,−1)FγF (−∆, η)(−1,−1)FγF (−1, η)−1

= (∆,−1)FγF (−∆, η)γF (−1, η)−1

thus, since detV −b,− = (−1)b detV −b , we have βV −
b
,χ(g) = βV −

b,−
,χ−1(g) and

ϕ ◦ ι̃b,χ = ι̃b,−,χ−1

as claimed.
We now consider the case in which V −b is an anisotropic line. We identify V −b with

E and if (x, y) ∈ E2, we have 〈x, y〉 = axy for some a ∈ F . If g ∈ G(V −b ) = E1, we
decompose g = x+ δy (with x, y ∈ F ) and we have (see [Kud1, Proposition 4.8, p396])

βV −
b
,χ(g) = χ(δ(g − 1))γF (2ay(x− 1), η)γF (η)(∆,−2y(1− x))F

= χ(δ(g − 1))γF (η2ay(x−1))(∆,−2y(1− x))F

and
βV −

b,−
,χ(g) = χ(δ(g − 1))γF (η−2ay(x−1))(∆,−2y(1− x))F .

It is immediate that βV −
b,−

,χ−1(g) = βV −
b
,χ(g) and

ϕ ◦ ι̃b,χ = ι̃b,−,χ−1

as claimed. �

Let
Va,b,− = V +

a ⊕ V −b,−, Wa,b,− = Wa ⊕Wb,−

and, as before χ0 the trivial character of E×. We denote, as above, ωa,b,−,χ0 the represen-
tation of G induced by the Weil representation ωa,b,−,ψ. Let

ĩ : Mp(Wa)×Mp(Wb,−) −→ Mp(Wa,b,−)

[6]for this single proof, ∆ ∈ F× is the square of an element δ ∈ E× − F× which is used to identify the
Hermitian and skew-Hermitian spaces
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be the natural map whose restriction to C1 is the product. Then[7]

ĩ∗ωa,b,−,ψ = ωa,ψ ⊗ ωb,−,ψ.

According to [HKS, Lemma 5.2, p964],

ι̃a,b,−,χ0 = ĩ ◦ (ι̃a,χ × ι̃b,−,χ−1) ◦∆ : G −→ Mp(Wa,b,−).

Thus as a representation of G we have

ωa,χ ⊗ ωb,−,χ−1 ≃ ωa,b,−,χ0 .

We thus have a non-zero element

ν ∈ HomG(ωa,χ ⊗ ω∨b,χ,1) ≃ HomG(ωa,b,−,χ0 ,1).

We have dimVa,b,− = a+ b even. Let us compute ǫ(Va,b,−):

ǫ(Va,b,−) = (−1)
(a+b)(a+b−1)

2 detVa,b,−

= (−1)
a(a−1)+ab+ba+b(b−1)

2 detV +
a detV −b,−

= (−1)
a(a−1)+b(b−1)

2
+ab detV +

a (−1)b detV −b

= (−1)ab+b(−1)
a(a−1)

2 detV +
a (−1)

b(b−1)
2 detV −b

= (−1)ab+bǫ(V +
a )ǫ(V −b ).

Since both ab and b have the parity of m0 we have ǫ(Va,b,−) = ǫ(V +
a )ǫ(V −b ) = −1. Thus,

according to Theorem 2.9
a+ b > 2n+ 2

as needed. �

2.5 Criterion

Definition 2.12 For a given m ∈ {0, ..., 2n}, let m′ = 2n −m. The space V ±m′ is said to
be complementary to V ±m (the space V −2n has no complementary).

Remark 2.13 If V ±m and V ±m′ are complementary, then s′0 = m′−n
2

= 2n−m−n
2

= n−m
2

=
−s0.

We give the composition series for In(s0, χ) in each case where it is reducible, with indica-
tion of the action of the operators M∗(s0, χ). Implicitely we have m′ = 2n−m. All these

[7]Is it relevant ?

23



results are taken from [KS].

0 ⊂ Rn(V
+
0 , χ) ⊂ I(−n

2
, χ)

Rn(V
−
0 , χ) M∗(n

2
, χ)(Rn(V

+
2n, χ)) M∗(n

2
, χ)(I(n

2
, χ))

M∗(n
2
, χ)(Rn(V

+
2n, χ)) KerM∗(−n

2
, χ) m = 0, s0 = −n

2

M∗(−s0, χ)(Rn(V
+
m′ , χ))

Rn(V
+
m , χ)

⊂

0
⊂

⊂
Rn(V

+
m , χ)⊕Rn(V

−
m , χ) ⊂ In(s0, χ)

Rn(V
−
m , χ)

⊂
KerM∗(s0, χ)

M∗(−s0, χ)(Rn(V
−
m′ , χ)) 1 6 m < n, −n

2
< s0 < 0

M∗(0, χ)(Rn(V
+
n , χ))

Rn(V
+
n , χ)

⊂

0
⊂

⊂
Rn(V

+
n , χ)⊕Rn(V

−
n , χ) = I(0, χ)

KerM∗(0, χ) Rn(V
−
n , χ)

⊂

M∗(0, χ)(Rn(V
−
n , χ)) m = n, s0 = 0

Rn(V
+
m , χ)
⊂

0 ⊂ Rn(V
+
m , χ) ∩Rn(V

−
m , χ)
⊂

⊂
Rn(V

+
m , χ) +Rn(V

−
m , χ) = In(s0, χ)

ImM∗(−s0, χ) Rn(V
−
m , χ)
⊂

KerM∗(s0, χ) n < m < 2n, 0 < s0 <
n
2

0 ⊂Rn(V
−
2n, χ) ⊂Rn(V

+
2n, χ) = In

(
n
2
, χ

)

ImM∗(−n
2
, χ)

KerM∗(n
2
, χ) m = 2n, s0 = n

2
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In each case an inclusion sign means that the quotient is non-zero and irreducible. Note
that V −0 does not exist, but we define the space Rn(V

−
0 , χ) as the null space in Rn(V

+
0 , χ).

Theorem 2.14 Fix m0 ∈ {0, 1} and a character χ of E× such that χ|F× = ǫm0

E/F . Suppose
that

dim HomG×G(In(s0, χ), π ⊗ (χ · π∨)) = 1

for all s0 in {{
−n

2
, 1− n

2
, ..., n

2
− 1, n

2

}
if m0 = 0{

1−n
2
, 3−n

2
, ..., n−3

2
, n−1

2

}
if m0 = 1,

i.e. for all s0 ∈
m0

2
+ Z such that |s0| 6

n
2
. Then

m+
χ (π) +m−

χ (π) = 2n+ 2.

Proof: Fix m0 ∈ {0, 1} and a character χ of E× such that χ|F× = ǫm0

E/F . For 0 6 m′ 6 2n,

we put m = 2n−m′ and recall that s0 = m−n
2

.
The case m+

χ (π) = 0 is immediate because it implies π = 1 and Theorem 2.9 says that
m−
χ (π) = 2n+ 2.
If s0 > 0 we have In(s0, χ) = Rn(V

+
m , χ)+Rn(V

−
m , χ) and thus, thanks to the hypothesis

of the theorem, at least one of

HomG×G(Rn(V
±
m , χ), π ⊗ (χ · π∨))

is non zero. This in turn means, thanks to Proposition 1.9, that

min(m+
χ (π),m−

χ (π)) 6 n+ 1

(the bound is n + 1 and not n in case m and n have opposite parity). If s0 >
n
2

then
In(s0, χ) is irreducible and thus

Rn(V
±
m , χ) = In(s0, χ).

By the persistence principle (see Proposition 1.6, point i) since we have m > 2n >
min(m+

χ (π),m−
χ (π)), one and thus both

HomG×G(Rn(V
±
m , χ), π ⊗ (χ · π∨)) 6= 0.

This means max(m+
χ (π),m−

χ (π)) 6 2n+ 2−m0.
Let ǫ = ± be such that mǫ

χ(π) = min(m+
χ (π),m−

χ (π)). We let m′ be mǫ
χ(π) (and choose

m and s0 accordingly). As observed above, the case m′ = 0 has already been proven.
If m′ = 1, then from Theorem 2.10 we have m−ǫ

χ (π) > 2n + 1 and thus, thanks to the
preceeding bound, m−ǫ

χ (π) = 2n+ 1 (observe that if m′ = 1 then m0 = 1).
We now suppose 2 6 m′ 6 n, i.e. 0 6 s0 6 n

2
− 1. By Theorem 2.10 we thus have

m−ǫ
χ (π) > 2n+ 2−m′ > n+ 2. Since m′ is the minimum of m±

χ (π), we have

HomG×G(Rn(V
+
m′−2, χ)⊕Rn(V

−
m′−2, χ), π ⊗ (χ · π∨)) = 0 (9)
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(here Rn(V
−
0 , χ) = 0 as defined above). This means that any element of HomG×G(In(−s0−

1, χ), π ⊗ (χ · π∨)) factors through

In(−s0 − 1, χ)/Rn(V
+
m , χ)⊕Rn(V

−
m , χ) ≃ ImM∗(−s0 − 1, χ)

and thus
dim HomG×G(ImM∗(−s0 − 1, χ), π ⊗ (χ · π∨)) = 1.

On the other hand, let

µ ∈ HomG×G(In(s0 + 1, χ), π ⊗ (χ · π∨))

with µ 6= 0. We know from (9) that

µ ◦M∗(s0 + 1, χ) = 0

hence µ must be non-zero on KerM∗(s0 + 1, χ) = ImM∗(−s0 − 1, χ). Since s0 + 1 > 0,
the space ImM∗(−s0 − 1, χ) is a non-zero submodule of Rn(V

−ǫ
m+2) and thus

µ
∣∣
Rn(V

−ǫ
m+2)

6= 0,

hence
m−ǫ
χ (π) 6 m+ 2 = 2n+ 2−m′.

We thus have m+
χ (π) +m−

χ (π) = 2n+ 2 as claimed.
The only remaining case is m′ = n + 1. We thus have m = n − 1 and s0 = −1

2
. The

proof is similar to the preceeding one. If

µ ∈ HomG×G

(
In

(
1

2
, χ

)
, π ⊗ (χ · π∨)

)

is non-zero, then its composition with M∗(1
2
, χ) is zero, this means that the restriction of

KerM∗(1
2
, χ) must be non-zero. Hence, for the same reason as above, m+

χ (π) = m−
χ (π) =

n+ 1. �
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