Department of Information Technology and Mathematical Methods

Working Paper

Series "Mathematics and Statistics"
n. $2 / \mathrm{MS}-2009$

An inequality for local unitary Theta correspondence
by

Zheng Gong, Loïc Grenié

COMITATO DI REDAZIONE ${ }^{\S}$

Series Information Technology (IT): Stefano Paraboschi
Series Mathematics and Statistics (MS): Luca Brandolini, Ilia Negri

[^0]
An inequality for local unitary Theta correspondence

Zheng GONG and Loïc GRENIÉ

January 22, 2009

1 Introduction, notations

This section recalls the local theta correspondence as in [Kud2] and cites some of the results of [HKS].

We fix once and for all a non archimedean local field F of residual characteristic different from 2.

The application Δ will always be a diagonal embedding, usually from G to $G \times G$ except in one point where it will be precised.

1.1 Heisenberg group

Let W be a vector space with a symplectic form $\langle.,$.$\rangle on which the group GL (W)$ will act on the right - accordingly, if f and g are two endomorphisms of W, we will denote $f \circ g$ the endomorphism such that $(f \circ g)(w)=g(f(w))$. We will denote, as usual,

$$
\operatorname{Sp}(W)=\left\{g \in \operatorname{GL}(W) \mid \forall(x, y) \in W^{2},\langle x g, y g\rangle=\langle x, y\rangle\right\}
$$

its isometry group.
Definition 1.1 The Heisenberg group of W if the group $H(W)=W \ltimes F$ with product

$$
\left(w_{1}, t_{1}\right)\left(w_{2}, t_{2}\right)=\left(w_{1}+w_{2}, t_{1}+t_{2}+\frac{1}{2}\left\langle w_{1}, w_{2}\right\rangle\right) .
$$

The centre of $H(W)$ is $\{(0, t) \mid t \in F\}$ and $\operatorname{Sp}(W)$ acts on $H(W)$ via its action on W :

$$
(w, t)^{g}=(w g, t)
$$

We recall
Theorem 1.2 (Stone-von Neumann theorem) Let ψ be a non trivial unitary character of F. There exists, up to isomorphism, one smooth irreducible representation $\left(\rho_{\psi}, S\right)$ of $H(W)$ such that

$$
\rho_{\psi}((0, t))=\psi(t) \cdot \mathrm{id}_{S} .
$$

If we fix such a representation $\left(\rho_{\psi}, S\right)$, for any $g \in \operatorname{Sp}(g)$, the representation $h \longmapsto \rho_{\psi}^{g}(h)=$ $\rho_{\psi}\left(h^{g}\right)$ is a representation of $H(W)$ with the same central character, which means that it must be isomorphic to ρ_{ψ}. Hence there is an isomorphism $A(g) \in \mathrm{GL}(S)$, unique up to a scalar, such that

$$
\begin{equation*}
\forall h \in H, \quad A(g)^{-1} \rho_{\psi}(h) A(g)=\rho_{\psi}^{g}(h) . \tag{1}
\end{equation*}
$$

The group

$$
\operatorname{Mp}(W)=\{(g, A(g)) \mid \text { equation (1) holds }\}
$$

is independent of the choice of ψ and is a central extension of $\operatorname{Sp}(W)$ by \mathbf{C}^{\times}:

$$
0 \longrightarrow \mathbf{C}^{\times} \longrightarrow \operatorname{Mp}(W) \longrightarrow \operatorname{Sp}(W) \longrightarrow 1
$$

The group $\operatorname{Mp}(W)$ has a natural representation, called the Weil representation, ω_{ψ} on S given by

$$
\begin{aligned}
\omega_{\psi}: \operatorname{Mp}(W) & \longrightarrow \operatorname{End}(S) \\
(g, A(g)) & \longmapsto A(g)
\end{aligned}
$$

1.2 The Schrödinger model of the Weil representation

The application $(g, A(g)) \mapsto A(g)$ defines a representation of $\operatorname{Mp}(W)$ of which there are several models. We are interested in the so-called Schrödinger model.

Let Y be a Lagrangian of W, i.e. a maximal isotropic subspace of W and $W=X \oplus Y$ a complete polarisation of W. We consider Y as a degenerate symplectic space and see $H(Y)=Y \ltimes F$ as a maximal abelian subgroup of $H(W)$. We consider the extension ψ_{Y} of the character ψ from F to $H(Y)$ defined by $\psi_{Y}(y, t)=\psi(t)$. Let

$$
S_{Y}=\operatorname{Ind}_{H(Y)}^{H(W)} \psi_{Y}
$$

We recall that S_{Y} is the space of those $f: H(W) \longrightarrow \mathbf{C}$ such that

$$
\forall h_{1} \in H(Y), f\left(h_{1} h\right)=\psi_{Y}\left(h_{1}\right) f(h)
$$

and such that there exists a compact open subgroup L of W such that

$$
\forall l \in L, f(h(l, 0))=f(h)
$$

We fix an isomorphism of S_{Y} with the space $S(X)$ of Schwartz functions on X by

$$
\left.\begin{array}{rl}
S_{Y} & \longrightarrow S(X) \\
f & \longmapsto \varphi: X
\end{array}\right) \mathbf{C}, ~=\varphi(x)=f(x, 0) .
$$

The group $H(W)$ acts on S_{Y} by right translation while it acts on $\varphi \in S(X)$ by

$$
(\rho(x+y, t) \varphi)\left(x_{0}\right)=\psi\left(t+\left\langle x_{0}, y\right\rangle+\frac{1}{2}\langle x, y\rangle\right) \varphi\left(x_{0}+x\right)
$$

where $x+y \in W$ is such that $x \in X$ and $y \in Y$. Then (see [MVW]) $(\rho, S(X))$ is a model for the Weil representation.

We specify the operator ω_{ψ} as follows. We identify an element $w \in W$ with the row vector $(x, y) \in X \oplus Y$. An element $g \in \operatorname{Sp}(W)$ will be of the form $g=\left(\begin{array}{c}a \\ a \\ c\end{array}\right)$ with $a \in$ $\operatorname{End}(X), b \in \operatorname{Hom}(X, Y), c \in \operatorname{Hom}(Y, X)$ and $d \in \operatorname{End}(Y)$. Let $P_{Y}=\{g \in \operatorname{Sp}(W) \mid c=0\}$ be the maximal parabolic subgroup of $\operatorname{Sp}(W)$ that stabilises Y and $N_{Y}=\left\{g \in P_{Y} \mid d=\right.$ $\left.\operatorname{id}_{Y}\right\}$ its unipotent radical. We have a Levy subgroup $M_{Y}=\left\{g \in P_{Y} \mid b=0\right\}$ of P_{Y} and $P_{Y}=M_{Y} N_{Y}$.

We define the following natural applications:

$$
\begin{array}{rlrl}
m: \mathrm{GL}(X) & \longrightarrow M_{Y} & n: \operatorname{Her}(X, Y) & \longrightarrow N_{Y} \\
a & \longmapsto m(a)=\left(\begin{array}{ccc}
a & 0 \\
0 & a^{\vee}
\end{array}\right) & b & \longmapsto n(b)=\left(\begin{array}{cc}
\operatorname{id}_{X} & b \\
0 & i_{Y}
\end{array}\right)
\end{array}
$$

where a^{\vee} is the inverse of the dual of a and $\operatorname{Her}(X, Y)$ is the subset of those $b \in \operatorname{Hom}(X, Y)$ which are Hermitian (in both cases we identify the dual of $X \oplus Y$ with $Y \oplus X$ using $\langle.,$.$\rangle).$

Proposition 1.3 ([Kud2, Proposition 2.3, p8]) Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}(g)$. The operator $r(g)$ of $S(X)$ defined by

$$
r(g)(\varphi)(x)=\int_{\left.\operatorname{Ker} c\right|^{Y}} \psi\left(\frac{1}{2}\langle x a, x b\rangle-\langle x b, y c\rangle+\frac{1}{2}\langle y c, y d\rangle\right) \varphi(x a+y c) \mathrm{d} \mu_{g}(y)
$$

is proportional to $A(g)$ and moreover is unitary for a unique Haar measure $\mathrm{d} \mu_{g}(y)$ on $\operatorname{Ker} c\rangle$.

1.3 Dual reductive pairs

Definition 1.4 A dual reductive pair $\left(G, G^{\prime}\right)$ in $\operatorname{Sp}(W)$ is a pair of subgroups of $\operatorname{Sp}(W)$ such that both G and G^{\prime} are reductive and

$$
\operatorname{Cent}_{\operatorname{Sp}(W)}(G)=G^{\prime} \quad \text { and } \quad \operatorname{Cent}_{\operatorname{Sp}(W)}\left(G^{\prime}\right)=G
$$

If $\left(G, G^{\prime}\right)$ is a dual reductive pair in $\operatorname{Sp}(W)$, we denote \widetilde{G} and \widetilde{G}^{\prime} the pullbacks of the subgroups in $\operatorname{Mp}(W)$. As seen in [MVW], there exists a natural morphism

$$
j: \widetilde{G} \times \widetilde{G}^{\prime} \longrightarrow \operatorname{Mp}(W)
$$

such that the restriction of j to $\mathbf{C}^{\times} \times \mathbf{C}^{\times}$is the product.
We consider the pullback $\left(j^{*}\left(\omega_{\psi}\right), S\right)$ of ω_{ψ} to $\widetilde{G} \times \widetilde{G}^{\prime}$. We note that the central character for both \widetilde{G} and \widetilde{G}^{\prime} is the identity:

$$
\omega_{\psi}\left(j\left(z_{1}, z_{2}\right)\right)=z_{1} z_{2} \cdot \mathrm{id}_{S}
$$

Let π be an irreducible admissible representation of \widetilde{G} such that the central character of π is the identity. Then if

$$
\mathcal{N}(\pi)=\bigcap_{\lambda \in \operatorname{Hom}_{\tilde{G}}(S, \pi)} \operatorname{Ker} \lambda
$$

$S(\pi)=S / \mathcal{N}(\pi)$ is the largest quotient of S on which \widetilde{G} acts by π. The action of \widetilde{G}^{\prime} on S commutes with the action of \widetilde{G} so that \widetilde{G}^{\prime} acts on $S(\pi)$ and thus $S(\pi)$ is a representation of $\widetilde{G} \times \widetilde{G}^{\prime}$. There exists (see [MVW]) a smooth representation $\Theta_{\psi}(\pi)$ of G^{\prime}, unique up to isomorphism, such that

$$
S(\pi) \simeq \pi \otimes \Theta_{\psi}(\pi)
$$

The principal result is the following
Theorem 1.5 (Howe duality principle) Let F be a non archimedean local field with residual characteristic different from 2 and let π be an irreducible admissible representation of \widetilde{G}. Then
i) If $\Theta_{\psi}(\pi) \neq 0$, then it is an admissible representation of \widetilde{G}^{\prime} of finite length.
ii) If $\Theta_{\psi}(\pi) \neq 0$, there exists a unique \widetilde{G}^{\prime}-submodule $\Theta_{\psi}^{0}(\pi)$ such that the quotient

$$
\theta_{\psi}(\pi)=\Theta_{\psi}(\pi) / \Theta_{\psi}^{0}(\pi)
$$

is irreducible. If $\Theta_{\psi}(\pi)=0$, we let $\theta_{\psi}(\pi)=0$.
iii) If two irreducible admissible representations π_{1} and π_{2} of \widetilde{G} are such that $\theta_{\psi}\left(\pi_{1}\right) \simeq$ $\theta_{\psi}\left(\pi_{2}\right) \neq 0$ then $\pi_{1} \simeq \pi_{2}$.

1.4 The unitary case

Let E / F be a quadratic extension and $\epsilon_{E_{/ F}}$ the corresponding quadratic character of F^{\times}.
Let V be a quadratic space of dimension m with Hermitian form

$$
(. \mid .): V \times V \longrightarrow E
$$

(linear in the second argument). We will denote

$$
G(V)=\{g \in \operatorname{GL}(V) \mid \forall v, w \in V,(g v \mid g w)=(v \mid w)\}
$$

the isometry group of V.
Let W be a quadratic space of dimension n with skew-Hermitian form

$$
\langle., .\rangle: W \times W \longrightarrow E
$$

(linear in the second argument). We will denote $G(W)$ its isometry group.

Let $\mathbb{W}=\mathrm{R}_{E / F}\left(V \otimes_{E} W\right)$ with symplectic form

$$
\begin{aligned}
\langle\langle., .\rangle\rangle: \quad \mathbb{W} \otimes \mathbb{W} & \longrightarrow F \\
\left(v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right) & \longmapsto\left\langle\left\langle v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right\rangle\right\rangle=\frac{1}{2} \operatorname{Tr}_{E / F}\left(\left(v_{1}, v_{2}\right)\left\langle w_{1}, w_{2}\right\rangle\right) .
\end{aligned}
$$

The pair $(G(V), G(W))$ is a dual reductive pair in $\mathrm{Sp}(\mathbb{W})$. We have a natural inclusion

$$
\begin{aligned}
\iota: G(V) \times G(W) & \longrightarrow \mathrm{Sp}(\mathbb{W}) \\
(g, h) & \longmapsto \iota(g, h)=g \otimes h .
\end{aligned}
$$

For any pair of characters $\chi=\left(\chi_{m}, \chi_{n}\right)$ of E^{\times}such that

$$
\left.\chi_{n}\right|_{F^{\times}}=\epsilon_{E / F}^{n},\left.\quad \chi_{m}\right|_{F^{\times}}=\epsilon_{E / F}^{m},
$$

one can define a homomorphism

$$
\tilde{\iota}_{\chi}: G(V) \times G(W) \longrightarrow \operatorname{Mp}(\mathbb{W})
$$

lifting ι (the homomorphism $\tilde{\iota}_{\chi}$ does depend on χ). Since the context will usually make clear which of χ_{m} and χ_{n} is considered, we will often use χ instead of χ_{m} or χ_{n}. Moreover we define $\iota_{V, \chi}\left(\right.$ resp. $\left.\iota_{W, \chi}\right)$ the restriction of ι_{χ} to $G(V) \times 1$ (resp. $\left.1 \times G(W)\right)$.

We will denote ω_{ψ} the Weil representation of $\operatorname{Mp}(\mathbb{W})$ and ω_{χ} its pullback through $\tilde{\iota}_{\chi}$. As before, if π is an irreducible admissible representation of $G(V)$, we get a representation $\Theta_{\chi}(\pi, V)$ of $G(W)$ such that

$$
S(\pi) \simeq \pi \otimes \Theta_{\chi}(\pi, V)
$$

and if $\Theta_{\chi}(\pi, V) \neq 0$, we say that π appears in the local theta correspondence for the pair $(G(V), G(W))$. This condition depends on χ_{m} but not on χ_{n}. As above we define $\theta_{\pi}(\pi, V)$ to be the unique irreducible quotient of $\Theta_{\chi}(\pi, V)$ (or 0 if $\Theta_{\chi}(\pi, V)=0$).

Witt towers For a fixed dimension m, there are two equivalence classes of Hermitian spaces of dimension m over E. These two classes are distinguished by their Hasse invariant

$$
\epsilon(V)=\epsilon_{E / F}\left((-1)^{\frac{m(m-1)}{2}} \operatorname{det} V\right) .
$$

We thus get two families of spaces $V_{m}^{ \pm}$where the sign is the sign of the Hasse invariant. As Hermitian spaces we have $V_{m+2}^{ \pm} \simeq V_{m}^{ \pm} \oplus V_{1,1}$, where $V_{1,1}$ is an hyperbolic plane and the direct sum is orthogonal. We thus get four so-called Witt towers

$$
V_{2 r}^{+}=V_{0}^{+} \oplus\left(V_{1,1}\right)^{r}, V_{2 r+2}^{-}=V_{2}^{-} \oplus\left(V_{1,1}\right)^{r}, V_{2 r+1}^{+}=V_{1}^{+} \oplus\left(V_{1,1}\right)^{r}, V_{2 r+1}^{-}=V_{1}^{+} \oplus\left(V_{1,1}\right)^{r}
$$

where V_{0}^{+}is the null vector space, V_{2}^{-}is an anisotropic 2-dimensional Hermitian space and $V_{1}^{ \pm}$are one dimensional anisotropic Hermitian spaces. In each case the integer r is the Witt index of the corresponding Hermitian space ${ }^{[1]}$.

We have

[^1]Proposition 1.6 ([HKS],[Kud2]) Consider a Witt tower $\left\{V_{m}^{\epsilon}\right\}$ with $\epsilon= \pm$.
(i) (Persistence) If $\theta_{\chi}\left(\pi, V_{m}^{\epsilon}\right) \neq 0$ then $\theta_{\chi}\left(\pi, V_{m+2}^{\epsilon}\right) \neq 0$.
(ii) (Stable range) We have $\theta_{\chi}\left(\pi, V_{m}^{\epsilon}\right) \neq 0$ if the Weil index r_{0} of V_{m} is such that $r_{0} \geqslant n$.

We fix $m_{0} \in\{0,1\}$ and a character χ of E^{\times}such that $\chi_{\mid F^{\times}}=\epsilon_{E / F}^{m_{0}}$ and we consider the two towers $V_{m}^{ \pm}$with m of the parity of m_{0} (if $m_{0}=0$ we disregard V_{0}^{-}which does not exist). Let $m_{\chi}^{ \pm}(\pi)$ be the smallest m such that

$$
\theta_{\chi}\left(\pi, V_{m}^{ \pm}\right) \neq 0
$$

Based on several examples, we have
Conjecture 1.7 (Conservation relation, [HKS, Speculations 7.5 and 7.6], [KR, Conjecture 3.6])

$$
m_{\chi}^{+}(\pi)+m_{\chi}^{-}(\pi)=2 n+2 .
$$

1.5 Aim of this paper

We prove here one of the inequalities of Conjecture 1.7:
Theorem 1.8 Let π be an irreducible admissible representation of $G(W)$, then

$$
m_{\chi}^{+}(\pi)+m_{\chi}^{-}(\pi) \geqslant 2 n+2 .
$$

1.6 Degenerate principal series

Let W_{+}and W_{-}be two copies of W with respectively the same form as W and its opposite. We keep our pair of characters $\chi=\left(\chi_{m}, \chi_{n}\right)$. We fix for the space $W_{+} \oplus W_{-}$the complete polarisation $X \oplus Y$ where $X=\{(w,-w) \mid w \in W\}$ and $Y=\{(w, w) \mid w \in W\}=\Delta(W)$ where Δ is the diagonal embedding of W in $W_{+} \oplus W_{-}$. We let then

$$
\begin{array}{lll}
\mathbb{W}_{+}=\mathrm{R}_{E / F}\left(V \otimes_{E} W_{+}\right) & \mathbb{W}_{-}=\mathrm{R}_{E_{/ F}}\left(V \otimes_{E} W_{-}\right) \\
\mathbb{X}=\mathrm{R}_{E / F}\left(V \otimes_{E} X\right) & \mathbb{Y}=\mathrm{R}_{E_{/ F}}\left(V \otimes_{E} Y\right) .
\end{array}
$$

and we consider the representation $\omega_{V, W_{+} \oplus W_{-}, \chi}$ of $G(V) \times G\left(W_{+} \oplus W_{-}\right)$induced by the Weil representation of $\mathbb{W}_{+} \oplus \mathbb{W}_{-}$on $S=S(\mathbb{X}) \simeq S\left(V^{n}\right)$. Let $R_{n}(V, \chi)$ be the maximal quotient of S on which $G(V)$ acts by the character χ_{m}. The space $R_{n}(V, \chi)$ can be seen as a representation of $G(W) \times G(W)$ via the natural embedding

$$
i: G(W) \times G(W)=G\left(W_{+}\right) \times G\left(W_{-}\right) \hookrightarrow G\left(W_{+} \oplus W_{-}\right) .
$$

From now on, we will denote $G=G_{n}=G(W)$ and $\tilde{G}=\tilde{G}_{n}=G\left(W_{+} \oplus W_{-}\right)$so that $i: G \times G \hookrightarrow \tilde{G}$.

We then have

Proposition 1.9 ([HKS, Proposition 3.1 and discussion before]) Let π be an irreducible admissible representation of $G(W)$,

$$
\Theta_{\chi}(\pi, V) \neq 0 \Longleftrightarrow \operatorname{Hom}_{G \times G}\left(R_{n}(V, \chi), \pi \otimes\left(\chi_{m} \cdot \pi^{\vee}\right)\right) \neq 0 .
$$

Let P_{Y} be the parabolic subgroup of \tilde{G} stabilising Y. We will denote M_{Y} its maximal Levi subgroup and N_{Y} its unipotent radical. Recall that M_{Y} and N_{Y} are parametrised respectively by $\mathrm{GL}(X)$ and $\operatorname{Her}(X, Y)$.

For $s \in \mathbf{C}$ and χ a character of E^{\times}, let

$$
I_{n}(s, \chi)=\operatorname{Ind}_{P_{Y}}^{\tilde{G}} \chi|\cdot|^{s}
$$

be the degenerate principal series (the induction is unitary and the elements of $I_{n}(s, \chi)$ are locally constant functions $\Phi(g, s)$).

We can identify $R_{n}(V, \chi)$ as a subspace of some $I_{n}(s, \chi)$ by sending an element $\phi \in S$ to the function $g \longmapsto \omega_{\chi}(g) \phi(0)$ - here we denote $\omega_{\chi}=\omega_{\psi} \circ \tilde{\iota}_{V, \chi}$. The spaces $R_{n}\left(V_{m}^{ \pm}, \chi\right)$ allows us to decompose $I_{n}(s, \chi)$ as explained by the following proposition.

Proposition 1.10 ([KS, Theorem 1.2, p257]) Let $V_{m}^{ \pm}$be an m-dimensional unitary space of dimension m and Hasse invariant \pm. Let $s_{0}=\frac{m-n}{2}$ and χ a character of E^{\times} such that $\left.\chi\right|_{F^{\times}}=\epsilon_{E / F}^{m}$.
i) If $m \leqslant n$, i.e. if $s_{0} \leqslant 0$, then the modules $R_{n}\left(V_{m}^{ \pm}, \chi\right)$ are irreducible and $R_{n}\left(V_{m}^{+}, \chi\right) \oplus$ $R_{n}\left(V_{m}^{-}, \chi\right)$ is the maximal completely reducible submodule of $I_{n}\left(s_{0}, \chi\right)$.
ii) If $m=n$, i.e. if $s_{0}=0$, then $I_{n}(0, \chi)=R_{n}\left(V_{n}^{+}, \chi\right) \oplus R_{n}\left(V_{n}^{-}, \chi\right)$.
iii) If $n<m<2 n$, i.e. if $0<s_{0}<\frac{n}{2}$, then $I_{n}\left(s_{0}, \chi\right)=R_{n}\left(V_{m}^{+}, \chi\right)+R_{n}\left(V_{m}^{-}, \chi\right)$ and $R_{n}\left(V_{m}^{+}, \chi\right) \cap R_{n}\left(V_{m}^{-}, \chi\right)$ is the unique irreducible submodule of $I_{n}\left(s_{0}, \chi\right)$.
iv) If $m=2 n$, i.e. if $s_{0}=\frac{n}{2}$, then $I_{n}\left(s_{0}, \chi\right)=R_{n}\left(V_{2 n}^{+}, \chi\right), R_{n}\left(V_{2 n}^{-}, \chi\right)$ is of codimension 1 and is the unique irreducible submodule of $I_{n}\left(s_{0}, \chi\right)$.
v) If $m>2 n$, i.e. if $s_{0}>\frac{n}{2}$, then $I_{n}\left(s_{0}, \chi\right)=R_{n}\left(V_{m}^{ \pm}, \chi\right)$ is irreducible.

In all other cases $I_{n}(s, \chi)$ is irreducible.
To understand better the decompositions above we begin with the Bruhat decomposition of \tilde{G} :

$$
\tilde{G}=\coprod_{j=0}^{n} P_{Y} \omega_{j} P_{Y}, \quad \text { with } \omega_{j}=\left(\begin{array}{cccc}
I_{n-j} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{j} \\
0 & 0 & I_{n-j} & 0 \\
0 & -I_{j} & 0 & 0
\end{array}\right)
$$

and let us introduce, as in [Kud2, p19] and [Rao] the application

$$
\begin{aligned}
x: \tilde{G} & \longrightarrow E^{\times} / \mathrm{N}_{E / F} E^{\times} \\
p_{1} \omega_{j}^{-1} p_{2} & \longmapsto \operatorname{det}\left(\left.p_{1} p_{2}\right|_{Y}\right) \bmod \mathrm{N}_{E / F} E^{\times}
\end{aligned}
$$

Whenever $\left.\chi\right|_{F^{\times}}=\mathbf{1}$ we can introduce the character $\chi_{\tilde{G}}$ of \tilde{G}

$$
\chi_{\tilde{G}}(g)=\chi(x(g)) .
$$

We extend the definition of R_{n} as follows:

$$
R_{n}\left(V_{0}^{+}, \chi\right)=R_{n}(0, \chi)=\mathbf{C} \cdot \chi_{\tilde{G}}
$$

and $R_{n}\left(V_{0}^{+}, \chi\right)$ is a submodule of dimension 1 of $I_{n}\left(-\frac{n}{2}, \chi\right)$ (we are, at least formally, in the case i) of Proposition 1.10). As a last step, we define the intertwining operators

$$
M_{n}(s, \chi): I_{n}(s, \chi) \longrightarrow I_{n}(-s, \chi)
$$

by the integral

$$
M_{n}(s, \chi)(\Phi)=\int_{N_{Y}} \Phi\left(w_{n} u g, s\right) \mathrm{d} u=\int_{\operatorname{Her}(X, Y)} \Phi\left(w_{n} n(b) g, s\right) \mathrm{d} b
$$

which is convergent for $\operatorname{Re} s>\frac{n}{2}$ and by meromorphic continuation for $s \in \mathbf{C}$. The Haar measure $\mathrm{d} b$ is chosen self-dual with respect to the Fourier transform

$$
\hat{\phi}(y)=\int \phi(b) \psi(\operatorname{Tr}(b y)) \mathrm{d} b
$$

We normalise $M_{n}(s, \chi)$ using

$$
a(s, \chi)=\prod_{j=0}^{n-1} L_{F}\left(2 s+j-(n-1), \chi \epsilon_{E / F}^{j}\right)
$$

and then $M_{n}^{*}(s, \chi)=\frac{1}{a(s, \chi)} M_{n}(s, \chi)$ is holomorphic and non zero (see [KS, Proposition 3.2]).

Proposition 1.11 ([KS]) Let $V_{m}^{ \pm}$be the m-dimensional unitary space of dimension m and Hasse invariant \pm. Let $s_{0}=\frac{m-n}{2}$ and χ a character of E^{\times}such that $\left.\chi\right|_{F^{\times}}=\epsilon_{E / F}^{m}$.
i) If $m=0$, i.e. if $s_{0}=-\frac{n}{2}$, then $\operatorname{Ker}\left(M_{n}^{*}\left(-\frac{n}{2}, \chi\right)\right)=R_{n}\left(V_{0}^{+}, \chi\right)$ and $\operatorname{Im}\left(M_{n}^{*}\left(-\frac{n}{2}, \chi\right)\right)=$ $R_{n}\left(V_{2 n}^{-}, \chi\right)$.
ii) If $1 \leqslant m<n$, i.e. if $-\frac{n}{2}<s_{0}<0$, then $\operatorname{Ker}\left(M_{n}^{*}\left(s_{0}, \chi\right)\right)=R_{n}\left(V_{m}^{+}, \chi\right) \oplus R_{n}\left(V_{m}^{-}, \chi\right)$ and $\operatorname{Im}\left(M_{n}^{*}\left(s_{0}, \chi\right)\right)=R_{n}\left(V_{2 n-m}^{+}, \chi\right) \cap R_{n}\left(V_{2 n-m}^{-}, \chi\right)$.
iii) If $n \leqslant m<2 n$, i.e. if $0 \leqslant s_{0}<\frac{n}{2}$, then $\operatorname{Ker}\left(M_{n}^{*}\left(s_{0}, \chi\right)\right)=R_{n}\left(V_{m}^{+}, \chi\right) \cap R_{n}\left(V_{m}^{-}, \chi\right)$, $M_{n}^{*}\left(s_{0}, \chi\right)\left(R_{n}\left(V_{m}^{ \pm}, \chi\right)\right)=R_{n}\left(V_{2 n-m}^{ \pm}, \chi\right)$ thus we have $\operatorname{Im}\left(M_{n}^{*}\left(s_{0}, \chi\right)\right)=R_{n}\left(V_{2 n-m}^{+}, \chi\right) \oplus$ $R_{n}\left(V_{2 n-m}^{-}, \chi\right)$.
iv) If $m=2 n$, i.e. if $s_{0}=\frac{n}{2}$, then $\operatorname{Ker}\left(M_{n}^{*}\left(\frac{n}{2}, \chi\right)\right)=R_{n}\left(V_{2 n}^{-}, \chi\right)$ and $\operatorname{Im}\left(M_{n}^{*}\left(\frac{n}{2}, \chi\right)\right)=$ $M_{n}^{*}\left(\frac{n}{2}, \chi\right)\left(R_{n}\left(V_{2 n}^{+}\right), \chi\right)=R_{n}\left(V_{0}^{+}, \chi\right)$.

1.7 Local Zeta integral

The last element that we will use is the local Zeta integral of a representation. We fix π an irreducible admissible representation of $G(W)$.

Definition 1.12 A matrix coefficient of π will be a linear combinations of functions of the form

$$
\phi(g)=\left\langle\pi(g) \xi, \xi^{\vee}\right\rangle
$$

where ξ and ξ^{\vee} are vectors of the space of respectively π and π^{\vee}.
Moreover if ξ_{\circ} and ξ_{\circ}^{\vee} are preassigned spherical vectors of π and π^{\vee}, we let

$$
\phi^{\circ}(g)=\left\langle\pi(g) \xi_{0}, \xi_{0}^{\vee}\right\rangle
$$

We parametrise the space of matrix coefficients with the space of $\pi \otimes \pi^{\vee}$ through the obvious projection. If $s \in \mathbf{C}$ with Res large enough, $\xi \in \pi, \xi^{\vee} \in \pi^{\vee}, \Phi \in I_{n}(s, \chi)$, let

$$
Z\left(s, \chi, \pi, \xi \otimes \xi^{\vee}, \Phi\right)=\int_{G}\left\langle\pi(g) \xi, \xi^{\vee}\right\rangle \Phi\left(i\left(g, I_{n}\right), s\right) \mathrm{d} g
$$

and extend it linearly to the space of matrix coefficients of π. We fix a maximal compact subgroup K of \tilde{G} (for instance, one can fix a basis of $W_{+} \oplus W_{-}$, see \tilde{G} as a subgroup of $\operatorname{GL}(2 n, E)$ and take $\left.K=\tilde{G} \cap \operatorname{GL}\left(2 n, \mathcal{O}_{E}\right)\right)$.

Definition 1.13 A standard section Φ is an application from \mathbf{C} to the set of function from \tilde{G} to \mathbf{C} such that $\forall s \in \mathbf{C}, \Phi(g, s)=\Phi(s)(g) \in I_{n}(s, \chi)$ and, moreover, $\left.\Phi(s)\right|_{K}$ is independent of s.

It is rather obvious that any element $\Phi(g, s) \in I_{n}(s, \chi)$ can be inserted in a (unique) standard section. The Zeta integral above defines, for Re s sufficiently large, an intertwining operator

$$
Z(s, \chi, \pi) \in \operatorname{Hom}_{G \times G}\left(I_{n}(s, \chi), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)
$$

If Φ is a standard section, this operator can be meromorphically extended for all $s \in \mathbf{C}$ to an operator

$$
Z^{*}(s, \chi, \pi) \in \operatorname{Hom}_{G \times G}\left(I_{n}(s, \chi), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)
$$

2 Our results

2.1 Decomposition of the degenerate principal series

Let $\Omega\left(W_{+} \oplus W_{-}\right)$be the Grassmannian of the Lagrangians of $W_{+} \oplus W_{-}$. We can identify

$$
P_{Y} \backslash G\left(W_{+} \oplus W_{-}\right) \simeq \Omega\left(W_{+} \oplus W_{-}\right)
$$

using the map $P_{Y} \cdot g \longmapsto Y g$. There is a right action of $i(G(W) \times G(W))$ on $\Omega\left(W_{+} \oplus W_{-}\right)$ which orbits are parametrised by the elements of the decomposition

$$
G\left(W_{+} \oplus W_{-}\right)=\coprod_{r=0}^{r_{0}} P_{Y} \delta_{r} i(G(W) \times G(W))
$$

where r_{0} is the Witt index of W. The aforementioned orbits are of the form

$$
\Omega_{r}=P_{Y} \backslash P_{Y} \delta_{r} i(G(W) \times G(W))
$$

The orbit Ω_{r} is made of the Lagrangians Z such that $\operatorname{dim} Z \cap W_{+}=\operatorname{dim} Z \cap W_{-}=r$. The only open orbit is that of Y, which is Ω_{0}, while the only closed one is that of $\Omega_{r_{0}}$ and the closure of the orbit Ω_{r} is

$$
\bar{\Omega}_{r}=\coprod_{j \geqslant r} \Omega_{j} .
$$

We consider the filtration

$$
I_{n}(s, \chi)=I_{n}^{\left(r_{0}\right)}(s, \chi) \supset \cdots \supset I_{n}^{(1)}(s, \chi) \supset I_{n}^{(0)}(s, \chi)
$$

where

$$
I_{n}^{(r)}(s, \chi)=\left\{\Phi \in I_{n}(s, \chi)|\Phi|_{\bar{\Omega}_{r+1}}=0\right\}
$$

Let

$$
Q_{n}^{(r)}(s, \chi)=I_{n}^{(r)}(s, \chi) / I_{n}^{(r-1)}(s, \chi)
$$

be the successive quotients of the filtration. All $I_{n}^{(r)}(s, \chi)$ and $Q_{n}^{(r)}(s, \chi)$ are $G \times G$-stable.
Let T_{W} be the Witt tower containing W. For any $W^{\prime} \in T_{W}$ of dimension $n^{\prime}=n-2 r \leqslant n$, let $G_{n^{\prime}}=G\left(W^{\prime}\right)$. We identify W^{\prime} with a subspace of W isomorphic to W^{\prime}. There is a Witt decomposition

$$
W=U^{\prime} \oplus W^{\prime} \oplus U
$$

where U and U^{\prime} are dual isotropic subspaces of dimension r. Let P_{r} be the parabolic subgroup of G stabilising U. The Levi subgroup of P_{r} is isomorphic to GL $(U) \times G_{n^{\prime}}$ so that, if we denote M_{r} its Levi component and N_{r} its unipotent radical, we have isomorphisms

$$
\begin{align*}
M_{r} & \simeq \mathrm{GL}(U) \times G_{n^{\prime}} \tag{2}\\
P_{r} & \simeq\left(\mathrm{GL}(U) \times G_{n^{\prime}}\right) \ltimes N_{r} .
\end{align*}
$$

Note in particular for $r=0$ that $U=U^{\prime}=\{0\}, W^{\prime}=W$ and $P_{0}=G_{n}=G$.
Let

$$
\mathrm{St}_{r}=i^{-1}\left(\delta_{r}^{-1} P_{Y} \delta_{r} \cap i(G \times G)\right)
$$

be the stabiliser of $P_{Y} \delta_{r}$ in $i^{-1}\left(P_{Y}\right) \backslash G \times G$.

Lemma 2.1 For a convenient choice of δ_{r} (specified in Equation (3) below), we have

$$
\mathrm{St}_{r}=\left(\mathrm{GL}(U) \times \mathrm{GL}(U) \times \Delta\left(G_{n^{\prime}}\right)\right) \ltimes\left(N_{r} \times N_{r}\right) \subset P_{r} \times P_{r} .
$$

Moreover

$$
Q_{n}^{(r)}(s, \chi) \simeq \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(\chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes\left(S\left(G_{n^{\prime}}\right) \cdot(\mathbf{1} \otimes \chi)\right)\right)
$$

where the action of $G_{n^{\prime}} \times G_{n^{\prime}}$ on the space $S\left(G_{n^{\prime}}\right) \cdot(\mathbf{1} \otimes \chi)$ is given by $\left(g_{1}, g_{2}\right) \varphi(g)=$ $\chi\left(\operatorname{det} g_{2}\right) \varphi\left(g_{2}^{-1} g g_{1}\right)$.

Proof: We let $G^{\prime}=G_{n^{\prime}}$.
Recall the Witt decomposition

$$
W=U^{\prime} \oplus W^{\prime} \oplus U
$$

and consider the Lagrangian

$$
Z=U \times\{0\} \oplus \Delta\left(W^{\prime}\right) \oplus\{0\} \times U
$$

in $W_{+} \oplus W_{-}$. Since the action of \tilde{G} on $\Omega\left(W_{+} \oplus W_{-}\right)$is transitive, there exists $\delta_{r} \in \tilde{G}$ such that $Z=Y \delta_{r}$. Since any linear map from Y to Z can be extended to an element of \tilde{G}, we can furthermore require that

$$
\begin{align*}
\forall v \in U^{\prime},\left.\delta_{r}\right|_{\Delta\left(U^{\prime}\right)}(v, v) & =(0, v d) \in\{0\} \times U \\
\left.\delta_{r}\right|_{\Delta\left(W^{\prime}\right)} & =\operatorname{id}_{\Delta\left(W^{\prime}\right)} \tag{3}\\
\forall u \in U,\left.\delta_{r}\right|_{\Delta(U)}(u, u) & =(u, 0) \in U \times\{0\}
\end{align*}
$$

where $d: U^{\prime} \longrightarrow U$ is an isomorphism. Note in particular that $\delta_{0}=\mathrm{id}_{G}$. Following [Kud2, Proof of Proposition 2.1, p68], we find that there is a bijection between the orbit Ω_{r} of Z and the set

$$
\left\{\left(Z_{+}, Z_{-}, \lambda\right)\right\}
$$

where $Z_{ \pm}$is an isotropic subspace of $W_{ \pm}$of dimension r and

$$
\lambda: Z_{+}^{\perp} / Z_{+} \longrightarrow Z_{-}^{\perp} / Z_{-}
$$

is an isometry ${ }^{[2]}$. The action of $\left(g_{+}, g_{-}\right) \in G \times G$ on this set is given by

$$
\left(g_{+}, g_{-}\right)\left(Z_{+}, Z_{-}, \lambda\right)=\left(Z_{+} g_{+}, Z_{-} g_{-}, g_{+}^{-1} \circ \lambda \circ g_{-}\right)
$$

she stabiliser of $\left(Z_{+}, Z_{-}, \lambda\right)$ is

$$
\left\{\left(g_{+}, g_{-}\right) \in G \times G \mid g_{ \pm} \text {stabilises } Z_{ \pm} \text {and } g_{+}^{-1} \circ \lambda \circ g_{-}=\lambda\right\}
$$

[^2]In our situation and with our choice of δ_{r}, we have $Z_{+}=Z_{-}=U, Z_{+}^{\perp} / Z_{+}=W^{\prime}$ and $\lambda=\mathrm{id}_{W^{\prime}}$. Hence, denoting $\mathrm{pr}_{W^{\prime}}$ the projection on W^{\prime} parallel to $U^{\prime} \oplus U$,

$$
\begin{aligned}
\mathrm{St}_{r} & =\left\{\left(g_{+}, g_{-}\right) \in P_{r} \times P_{r}\left|g_{+}\right|_{W^{\prime}+U} \circ \mathrm{pr}_{W^{\prime}}=\left.g_{-}\right|_{W^{\prime}+U} \circ \mathrm{pr}_{W^{\prime}}\right\} \\
& =\left(\operatorname{GL}(U) \times \operatorname{GL}(U) \times \Delta\left(G^{\prime}\right)\right) \ltimes\left(N_{r} \times N_{r}\right)
\end{aligned}
$$

For further reference, an element of P_{r} has the form

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & e & b^{*} \\
0 & 0 & a^{\vee}
\end{array}\right)
$$

where b^{*} depends on b, a and e and where c satisfies an equation depending on a, b and e. We thus have

$$
g_{ \pm}=\left(\begin{array}{ccc}
a_{ \pm} & b_{ \pm} & c_{ \pm} \tag{4}\\
0 & e_{ \pm} & b_{ \pm}^{*} \\
0 & 0 & a_{ \pm}^{v}
\end{array}\right)
$$

and the condition $\left.g_{+}\right|_{W^{\prime}+U} \circ \mathrm{pr}_{W^{\prime}}=\left.g_{-}\right|_{W^{\prime}+U} \circ \mathrm{pr}_{W^{\prime}}$ is simply $e_{+}=e_{-}$.
The description of the stabiliser allows us to describe the induced representations. If $\tilde{g} \in \mathrm{St}_{r}$, then $p(\tilde{g})=\delta_{r} i(\tilde{g}) \delta_{r}^{-1}=n \cdot m\left(a_{r}(\tilde{g})\right) \in P_{Y}$. Let $\xi_{s, r}$ be the character of St_{r} defined by $\xi_{s, r}(\tilde{g})=\chi\left(a_{r}(\tilde{g})\right)\left|\operatorname{det} a_{r}(\tilde{g})\right|^{s+\frac{r}{2}}$. Consider the morphism of $G \times G$-modules

$$
\begin{aligned}
Q_{n}^{(r)}(s, \chi) & \longrightarrow \operatorname{Ind}_{\mathrm{St}}^{f} \\
\bar{f} & \left.\longmapsto \phi_{\bar{f}}^{G \times G}\left(g_{1}, g_{2}\right)=\int_{N_{r}^{\prime}}\right) \\
& f\left(\delta_{r} n(u) i\left(g_{1}, g_{2}\right)\right) \mathrm{d} u
\end{aligned}
$$

where $f \in I_{n}^{(r)}(s, \chi)$ is a representative of \bar{f}. This morphism is an isomorphism (see [HKS, Equation (4.9), p963]). Let $\tilde{g}=\left(g_{+}, g_{-}\right)$be an element of St_{r} decomposed as in (4). Then $\operatorname{det}\left(a_{r}(\tilde{g})\right)=\operatorname{det} a_{+} \operatorname{det} a_{-} \operatorname{det} e_{+}$(where we recall that $e_{+}=e_{-}$). Since $e_{+} \in G^{\prime}$, $\left|\operatorname{det} e_{+}\right|=1$ hence

$$
\begin{aligned}
Q_{n}^{(r)}(s, \chi) & \simeq \operatorname{Ind}_{\mathrm{St}_{r}}^{G \times G}\left(\chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes \chi\right) \\
& \simeq \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(\operatorname{Ind}_{\mathrm{St}_{r} \times P_{r}}^{P_{r}}\left(\chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes \chi\right)\right)
\end{aligned}
$$

The induction from St_{r} to $P_{r} \times P_{r}$ is an induction from $\Delta\left(G^{\prime}\right)$ to $G^{\prime} \times G^{\prime}$. Moreover, if $f \in \operatorname{Ind}_{\Delta\left(G^{\prime}\right)}^{G^{\prime} \times G^{\prime}} \chi$ then $f\left(h_{1}, h_{2}\right)=\chi\left(h_{2}\right) f\left(h_{2}^{-1} h_{1}, 1\right)$. Hence

$$
\operatorname{Ind}_{\Delta\left(G^{\prime}\right)}^{G^{\prime} \times G^{\prime}} \chi \simeq S\left(G^{\prime}\right) \cdot(\mathbf{1} \otimes \chi)
$$

where the action of $G^{\prime} \times G^{\prime}$ on $S\left(G^{\prime}\right) \cdot(\mathbf{1} \otimes \chi)$ is given by

$$
\rho\left(g_{1}, g_{2}\right) \varphi(g)=\chi\left(\operatorname{det} g_{2}\right) \varphi\left(g_{2}^{-1} g g_{1}\right)
$$

Hence

$$
\begin{aligned}
\operatorname{Ind}_{\mathrm{St}_{r}}^{P_{r} \times P_{r}}\left(\chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes \chi\right) & \simeq \chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes \operatorname{Ind}_{\Delta\left(G^{\prime}\right)}^{G^{\prime} \times G^{\prime}} \chi \\
& \simeq \chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes\left(S\left(G^{\prime}\right) \cdot(\mathbf{1} \otimes \chi)\right) .
\end{aligned}
$$

The result follows.

2.2 Simplicity of poles

We prove in our case the result of [KR, section 5]. We follow the same method. We denote χ_{0} the trivial character of F^{\times}.

Proposition 2.2 Let $\mathfrak{z}_{s} \in \mathcal{H}(G / / K) \otimes \mathbf{C}\left[q^{s}, q^{-s}\right]$ be the element defined by

$$
\mathfrak{z}_{s}=\prod_{i=1}^{r_{0}}\left(1-q^{-s-\frac{1}{2}} t_{i}\right)\left(1-q^{-s-\frac{1}{2}} t_{i}^{-1}\right) .
$$

For an unramified representation π of G, let $\pi\left(\mathfrak{z}_{s}\right)$ be the scalar by which \mathfrak{z}_{s} acts on the unramified vector in π. Then for all matrix coefficients ϕ of π and all standard sections $\Phi(s) \in I_{n}(s)$, the function

$$
\pi\left(\mathfrak{z}_{s}\right) \cdot Z\left(s, \chi_{0}, \pi, \phi, \Phi\right)
$$

is an entire function of s.
Proof: We divide the proof in several steps.

Step 1. By linearity of Z, we can limit ourselves to the case where ϕ is of the form

$$
\phi(g)=\left\langle\pi(g) \pi\left(g_{1}\right) \xi_{\circ}, \pi^{\vee}\left(g_{2}\right) \xi_{\circ}^{\vee}\right\rangle
$$

where ξ_{\circ} and ξ_{\circ}^{\vee} are spherical vectors in π and π^{\vee} and $g_{1}, g_{2} \in G$. We then have

$$
\begin{align*}
Z\left(s, \chi_{0}, \pi, \phi, \Phi\right) & =\int_{G}\left\langle\pi(g) \pi\left(g_{1}\right) \xi_{0}, \pi^{\vee}\left(g_{2}\right) \xi_{0}^{\vee}\right\rangle \Phi_{s}\left(i\left(g, I_{n}\right)\right) \mathrm{d} g \tag{5}\\
& =\int_{G}\left\langle\pi(g) \xi_{0}, \xi_{\circ}^{\vee}\right\rangle \Phi_{s}\left(i\left(g_{2} g g_{1}^{-1}, I_{n}\right)\right) \mathrm{d} g \\
& =\left|\operatorname{det} g_{2}\right|^{s+r_{0}-\frac{1}{2}} \int_{G} \phi^{\circ}(g) \Phi_{s}\left(i\left(g, I_{n}\right) i\left(g_{1}^{-1}, g_{2}^{-1}\right)\right) \mathrm{d} g
\end{align*}
$$

since $\left|\operatorname{det} g_{2}\right|=1$ and ϕ° is bi- K invariant, for all $k_{1}, k_{2} \in K$,

$$
\begin{aligned}
& =\int_{G} \phi^{\circ}(g) \Phi_{s}\left(i\left(k_{2}^{-1} g k_{1}, I_{n}\right) i\left(g_{1}^{-1}, g_{2}^{-1}\right)\right) \mathrm{d} g \\
& =\int_{G} \phi^{\circ}(g) \Phi_{s}\left(i\left(g, I_{n}\right) i\left(k_{1}, k_{2}\right) i\left(g_{1}^{-1}, g_{2}^{-1}\right)\right) \mathrm{d} g
\end{aligned}
$$

and thus

$$
=\int_{G} \phi^{\circ}(g) \Psi_{s}\left(i\left(g, I_{n}\right)\right) \mathrm{d} g
$$

where, for any $h \in H=G_{2 n}$,

$$
\begin{equation*}
\Psi_{s}(h):=\int_{K \times K} \Phi_{s}\left(h i\left(k_{1}, k_{2}\right) i\left(g_{1}^{-1}, g_{2}^{-1}\right)\right) \mathrm{d} k_{1} \mathrm{~d} k_{2} . \tag{6}
\end{equation*}
$$

Note that Ψ_{s} is $K \times K$-invariant section of $I_{n}(s)$ which is not necessarily standard.

Step 2. We consider in the algebra

$$
\mathcal{A}=\mathbf{C}\left[X, X^{-1}\right] \otimes \mathcal{H}(G / / K) \simeq \mathbf{C}\left[X, X^{-1}\right] \otimes \mathbf{C}\left[t_{1}, \ldots, t_{n}\right]^{W_{G}},
$$

where $\mathcal{H}(G / / K)$ is the K-spherical Hecke algebra of G, the element

$$
\mathfrak{z}=\prod_{i=1}^{r_{0}}\left(1-X q^{-\frac{1}{2}} t_{i}\right)\left(1-X q^{-\frac{1}{2}} t_{i}^{-1}\right) .
$$

We let $G \times G$ act on $I_{n}(s)$ through i, extend the action to $\mathcal{H}(G / / K) \times \mathcal{H}(G / / K)$ and let any $\phi \in \mathcal{H}(G / / K)$ act as $(\phi, 1) \in \mathcal{H}(G / / K) \times \mathcal{H}(G / / K)$. We let \mathcal{A} act on the space $I_{n}(s)^{K \times 1}$ of $K \times 1$-fixed vectors of $I_{n}(s)$ by the aforementioned action of $\mathcal{H}(G / / K)$ and X acts by multiplication by q^{-s}. Note that action of $1 \times G$ commutes with the action of \mathcal{A}.

Proposition 2.3 For any standard section Φ_{s} with associated section Ψ_{s} defined by (6), we have

$$
\Psi_{s} * \mathfrak{z} \in I_{n}^{(0)}(s)^{K \times K}
$$

Proof: We want to show the the image of $\Psi_{s} * \mathfrak{z}$ in each $Q_{n}^{(r)}(s)=Q_{n}^{(r)}\left(s, \chi_{0}\right)$ is 0 for $0<r \leqslant r_{0}$. We will, as an illustration, do the first step separately in the case of a split Hermitian space (in particular $n=2 r_{0}$). Consider the projection induced by restriction to the closed orbit:

$$
\begin{aligned}
\operatorname{pr}_{r_{0}}: I_{n}(s)=I_{n}^{\left(r_{0}\right)}(s) & \longrightarrow Q_{n}^{\left(r_{0}\right)}(s) \simeq \operatorname{Ind}_{P_{r_{0}}}^{G}\left(|\cdot|^{s+\frac{r_{0}}{2}}\right) \otimes \operatorname{Ind}_{P_{r_{0}}}^{G}\left(|\cdot|^{s+\frac{r_{0}}{2}}\right) \\
\Phi_{s} & \longmapsto\left(\left(g_{1}, g_{2}\right) \longmapsto \Phi_{s}\left(i\left(g_{1}, g_{2}\right)\right)\right) .
\end{aligned}
$$

We have

$$
\operatorname{pr}_{r_{0}}\left(\Psi_{s} * \mathfrak{z}\right)=\operatorname{pr}_{r_{0}}\left(\Psi_{s}\right) * \mathfrak{z}
$$

if we let \mathfrak{z} act only on the first term of the tensor product on the right side. On the other hand, we have

$$
\operatorname{Ind}_{P_{r_{0}}}^{G}\left(|\cdot|^{s+\frac{r_{0}}{2}}\right) \subset \operatorname{Ind}_{B}^{G}(\lambda)
$$

where B is the standard Borel subgroup of G and λ is the unramified principal series representation with Satake parameter ${ }^{[3]}$

$$
\left(q^{s+r_{0}-\frac{1}{2}}, q^{s+r_{0}-\frac{3}{2}}, \ldots, q^{s+\frac{1}{2}}\right)
$$

The element \mathfrak{z} acts on the K-fixed vector of this representation by the scalar

$$
\prod_{i=1}^{r_{0}}\left(1-q^{-s-\frac{1}{2}} q^{s+r_{0}+\frac{1}{2}-i}\right)\left(1-q^{-s-\frac{1}{2}} q^{-s-r_{0}-\frac{1}{2}+i}\right)=0
$$

This means that $\operatorname{pr}_{r_{0}}\left(\Psi_{s} * \mathfrak{z}\right)=0$ i.e. that $\Psi_{s} * \mathfrak{z} \in I_{n}^{\left(r_{0}-1\right)}(s)$.

[^3]More generally, if we restrict the orbit of a section to Ω_{r}, we obtain a map

$$
\operatorname{pr}_{r}: I_{n}(s) \longrightarrow \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(|\cdot|^{s+\frac{r}{2}} \otimes|\cdot|^{s+\frac{r}{2}} \otimes C\left(G_{n-2 r}\right)\right)=: B_{r}(s)
$$

where $C\left(G_{n-2 r}\right)$ is the space of smooth functions on $G_{n-2 r}$. There is a non-degenerate pairing between $Q_{n}^{(r)}(s)$ and $B_{r}(-s-r)$ given by

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{P_{r} \times P_{r} \mid G \times G}\left\langle f_{1}\left(g_{1}, g_{2}\right), f_{2}\left(g_{1}, g_{2}\right)\right\rangle_{G_{n-r}} \mathrm{~d} \mu\left(g_{1}\right) \mathrm{d} \mu\left(g_{2}\right),
$$

where the internal pairing is the integration over G_{n-r} and the external integral is the invariant functional for functions which transform on the left according to the square of the modulus character. A straightforward density argument shows that $\phi \in Q_{n}^{(r)}(s)$ is 0 if and only if it pairs to zero against all elements of the subspace $Q_{n}^{(r)}(-s-r) \subset B_{r}(-s-r)$. In addition if $\phi \in Q_{n}^{(r)}(s)^{K \times K}$ we can limit ourselves to elements of $Q_{n}^{(r)}(-s-r)^{K \times K}$. Let $f_{s} \in Q_{n}^{(r)}(-s-r)^{K \times K}$ and $\mathfrak{z}_{s}=\left.\mathfrak{z}\right|_{X=q^{-s}}$. We have

$$
\left\langle\operatorname{pr}_{r}\left(\Psi_{s} * \mathfrak{z}\right), f_{2}\right\rangle=\left\langle\operatorname{pr}_{r}\left(\Psi_{s}\right) * \mathfrak{z}_{s}, f_{s}\right\rangle=\left\langle\operatorname{pr}_{r}\left(\Psi_{s}\right), f_{s} * \mathfrak{z}_{s}^{\vee}\right\rangle
$$

Lemma 2.4 For any $f_{s} \in Q_{n}^{(r)}(-s-r)^{K \times K}$ we have

$$
f_{s} * \mathfrak{z}_{s}^{\vee}=0
$$

Proof: Since f_{s} is element of a parabolic induction and fixed by a maximal compact, it is determined by its value at the identity element I_{n}. It is not difficult to see that $f_{s}\left(I_{n}\right) \in S(G)^{K_{n-r} \times K_{n-r}}$ where $K_{n-r}=G_{n-r} \cap K$. Let τ be an irreducible admissible representation of G_{n-r}. The action of $S\left(G_{n-r}\right)$ on τ determines a $G_{n-r} \times G_{n-r}$-equivariant map

$$
\mu_{\tau}: S\left(G_{n-r}\right) \longrightarrow \operatorname{Hom}^{\text {smooth }}(\tau, \tau) \simeq \tau^{\vee} \otimes \tau
$$

where Hom ${ }^{\text {smooth }}$ is the space of vector-space homomorphisms fixed by a compact open subgroup of $G_{n-r} \times G_{n-r}$. The two factors of $G_{n-r} \times G_{n-r}$ act respectively by pre- and post-multiplication on the elements of $\operatorname{Hom}^{\text {smooth }}(\tau, \tau)$ so that each has finite dimensional image. A function $\phi \in S\left(G_{n-r}\right)^{K_{n-r} \times K_{n-r}}$ is nonzero if and only if there exists an irreducible admissible representation τ such that $\tau(\phi) \neq 0$, i.e. such that $\mu_{\tau}(\phi) \neq 0$.

Consider $f_{s} * \mathfrak{z}_{s}^{\vee}$. Let τ be, as above, an irreducible admissible representation of G_{n-r}. The map μ_{τ} induces

$$
\operatorname{Ind}\left(\mu_{\tau}\right): \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(|\cdot|^{-s-\frac{r}{2}} \otimes|\cdot|^{-s-\frac{r}{2}} \otimes S\left(G_{n-r}\right)\right) \longrightarrow \operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(|\cdot|^{-s-\frac{r}{2}} \otimes|\cdot|^{-s-\frac{r}{2}} \otimes \tau^{\vee} \otimes \tau\right)
$$

which verifies $\operatorname{Ind}\left(\mu_{\tau}\right)\left(f_{s}\right)\left(I_{n}\right)=\mu_{\tau}\left(f_{s}\left(I_{n}\right)\right)$. The latter induced representation is isomorphic to

$$
\operatorname{Ind}_{P_{r}}^{G}\left(|\cdot|^{-s-\frac{r}{2}} \otimes \tau^{\vee}\right) \otimes \operatorname{Ind}_{P_{r}}^{G}\left(|\cdot|^{-s-\frac{r}{2}} \otimes \tau\right)
$$

which can be embedded in

$$
\operatorname{Ind}_{B}^{G} \lambda_{1} \otimes \operatorname{Ind}_{B}^{G} \lambda_{2}
$$

where the Satake parameters ${ }^{[4]}$ are

$$
\begin{aligned}
& \lambda_{1}=\left(q^{-s-\frac{1}{2}}, q^{-s-\frac{3}{2}}, \ldots, q^{-s+\frac{1}{2}-r}, q^{-\nu_{1}}, \ldots, q^{-\nu_{n-r}}\right) \\
& \lambda_{2}=\left(q^{-s-\frac{1}{2}}, q^{-s-\frac{3}{2}}, \ldots, q^{-s+\frac{1}{2}-r}, q^{\nu_{1}}, \ldots, q^{\nu_{n-r}}\right)
\end{aligned}
$$

(where $\left(q^{\nu_{1}}, \ldots, q^{\nu_{n-r}}\right)$ is the Satake parameter of τ). The operator \mathfrak{z}_{s}^{\vee} acts on the unique line of $K \times K$-invariant vectors of this representation by the scalar

$$
\prod_{i=1}^{r}\left(1-q^{-s} q^{-\frac{1}{2}} q^{s-\frac{1}{2}+i}\right)\left(1-q^{-s} q^{-\frac{1}{2}} q^{-s+\frac{1}{2}-i}\right) \cdot(\text { factor })=0
$$

But $\operatorname{Ind}\left(\mu_{\tau}\right)\left(f_{s}\right)$ is a $K \times K$-invariant vector in this representation so that $\operatorname{Ind}\left(\mu_{\tau}\right)\left(f_{s}\right) * \mathfrak{z}_{s}=0$ and

$$
\begin{aligned}
\mu_{\tau}\left(f_{s} * \mathfrak{\mathfrak { z }}_{s}^{\vee}\left(I_{n}\right)\right) & =\operatorname{Ind}\left(\mu_{\tau}\right)\left(f_{s} * \mathfrak{z}_{s}^{\vee}\right)\left(I_{n}\right) \\
& =\left(\operatorname{Ind}\left(\mu_{\tau}\right)\left(f_{s} * \mathfrak{z}_{s}^{\vee}\right)\right)\left(I_{n}\right) \\
& =0 .
\end{aligned}
$$

Since this is true for all τ, we have $f_{s} * \mathfrak{z}_{s}^{\vee}\left(I_{n}\right)=0$ and thus $f_{s} * \mathfrak{z}_{s}^{\vee}=0$. \square Lemma 2.4
We have $\operatorname{pr}_{r}\left(\Psi_{s} * \mathfrak{z}\right)=0$ for all $r>0$, which means that the support of $\Psi_{s} * \mathfrak{z}$ is included in Ω_{0}, which concludes the proof.

Proposition 2.3

Step 3. Consider the isomorphism

$$
\operatorname{pr}_{0}: I_{n}(s) \longrightarrow Q_{n}^{(0)}(G) \simeq S(G)
$$

Proposition 2.3 shows that, for a fixed s, we have $\operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right) \in S(G)^{K \times K}$. Its support could vary with s. The following proposition shows that the support of $\operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right)$ is bounded uniformly in s.

Lemma 2.5

$$
\operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right) \in \mathbf{C}\left[q^{s}, q^{-s}\right] \otimes S(G)^{K \times K}=\mathbf{C}\left[q^{s}, q^{-s}\right] \otimes \mathcal{H}(G / / K)
$$

Proof: Using the Cartan decomposition, write

$$
\operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right)=\sum_{\lambda \in \Lambda} c_{\lambda}(s) L_{\lambda},
$$

where L_{λ} is the characteristic function of the double coset $K g_{\lambda} K$ and Λ is the usual semigroup.

[^4]
Lemma 2.6

$$
c_{\lambda}(s) \in \mathbf{C}\left[q^{s}, q^{-s}\right]
$$

and thus is an entire function of s.
Proof: We have

$$
\begin{equation*}
c_{\lambda}(s) \cdot\left\|L_{\lambda}\right\|^{2}=\int_{G}\left(\Psi_{s} * \mathfrak{z}\right)\left(i\left(g, I_{n}\right)\right) \cdot L_{\lambda}(g) \mathrm{d} g . \tag{7}
\end{equation*}
$$

The integral on the right is a (finite) linear combination, with coefficients in $\mathbf{C}\left[q^{s}, q^{-s}\right]$ of integrals of the form

$$
\begin{align*}
& \int_{G} \int_{G}\left(\Psi_{s} * \mathfrak{z}\right)\left(i\left(g, I_{n}\right) i\left(g_{0}, I_{n}\right)\right) \cdot L_{\mu}\left(g_{0}\right) \mathrm{d} g_{0} \cdot L_{\lambda}(g) \mathrm{d} g \tag{8}\\
= & \int_{G} \int_{G}\left(\Psi_{s} * \mathfrak{z}\right)\left(i\left(g_{0}, I_{n}\right)\right) \cdot L_{\mu}\left(g^{-1} g_{0}\right) \cdot L_{\lambda}(g) \mathrm{d} g_{0} \mathrm{~d} g \\
= & \int_{G} \int_{G}\left(\Psi_{s} * \mathfrak{z}\right)\left(i\left(g_{0}, I_{n}\right)\right) \cdot \varphi\left(g_{0}\right) \mathrm{d} g_{0}
\end{align*}
$$

where φ is a function depending on λ and μ. Since this function is a (finite) linear combination of characteristic functions of cosets $g K$, the integral is the last line of (8) is a (finite) linear combination with coefficients in $\mathbf{C}\left[q^{s}, q^{-s}\right]$ of integrals of the form

$$
\int_{K} \int_{K \times K} \Phi_{s}\left(i\left(g k, I_{n}\right) i\left(k_{1}, k_{2}\right) i\left(g_{1}^{-1}, g_{2}^{-1}\right)\right) \mathrm{d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k .
$$

But Φ_{s} is standard, hence it is right-invariant under a fixed compact open subgroup H, uniformly in s. This means that the set of g necessary to obtain the full integral (7) is finite and fixed. The elements g_{1} and g_{2} are fixed by the matrix coefficient ϕ we are considering and thus the integral (7) is a (finite) linear combination of $q^{\ell s}$ with $\ell \in \mathbf{Z}$.

Let then Λ_{1} be the set of $\lambda \in \Lambda$ such that $c_{\lambda} \neq 0$ and for $\lambda \in \Lambda$ let

$$
D_{\lambda}=\left\{s \in \mathbf{C}: c_{\lambda}(s)=0\right\} .
$$

If $\lambda \in \Lambda_{1}$ then D_{λ} is a numerable subset of \mathbf{C}. Hence $\bigcup_{\lambda \in \Lambda_{1}} D_{\lambda}$ is numerable and thus different from \mathbf{C}. Let $s_{0} \in \mathbf{C}$ be such that $\forall \lambda \in \Lambda_{1}, c_{\lambda}\left(s_{0}\right) \neq 0$. Since

$$
\operatorname{pr}_{0}\left(\Psi_{s_{0}} * \mathfrak{z}\right)=\sum_{\lambda \in \Lambda_{1}} c_{\lambda}\left(s_{0}\right) \cdot L_{\lambda}
$$

has compact support, Λ_{1} is finite and thus for all $s \in \mathbf{C}, \operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right)$ has support in $\cup_{\lambda \in \Lambda_{1}} L_{\lambda}$.

Step 4. Returning to the Zeta integral in (5), we define

$$
Z^{*}\left(s, \chi_{0}, \pi, \phi, \Phi\right)=\int_{G} \phi^{\circ}(g)\left(\Psi_{s} * \mathfrak{z}\right)\left(i\left(g, I_{n}\right)\right) \mathrm{d} g
$$

This integral is equal to the scalar by which $\operatorname{pr}_{0}\left(\Psi_{s} * \mathfrak{z}\right)$ acts on ξ_{\circ} and is thus an entire function of s because it is an element of $\mathbf{C}\left[q^{s}, q^{-s}\right]$. On the other hand, if $\operatorname{Re}(s)$ is large enough we can unfold

$$
\begin{aligned}
Z^{*}\left(s, \chi_{0}, \pi, \phi, \Phi\right) & =\pi\left(\mathfrak{z}_{s}\right) \int_{G} \phi^{\circ}(g) \Psi_{s}\left(i\left(g, I_{n}\right)\right) \mathrm{d} g \\
& =\pi\left(\mathfrak{z}_{s}\right) Z\left(s, \chi_{0}, \pi, \phi, \Phi\right)
\end{aligned}
$$

where $\pi\left(\mathfrak{z}_{s}\right)$ is the scalar by which $\mathfrak{z}_{s}=\left.\mathfrak{z}\right|_{X=q^{-s}}$ acts on the spherical vector of π. Since $Z^{*}\left(s, \chi_{0}, \pi, \phi, \Phi\right)$ is an entire function of s, this completes the proof.
\square Proposition 2.2

2.3 The conjecture holds for the trivial representation in the even dimensional tower

Definition 2.7 ([HKS, Definition 4.6, p963]) For $s_{0} \in \mathbf{C}, \chi$ a character and π and irreducible admissible representation of G, we say that π occurs in the boundary at the point $s=s_{0}$ if

$$
\operatorname{Hom}_{G \times G}\left(Q_{n}^{(r)}\left(s_{0}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right) \neq 0
$$

for some $r>0$.
Proposition 2.8 Let $\pi=1$ the trivial representation of G, ϖ_{E} an uniformiser of E and $q_{E}=\left|\varpi_{E}\right|$. We will denote $X^{u}\left(E^{\times}\right)$the set of unramified characters of E^{\times}. Let

$$
X(\mathbf{1})=\left\{(s, \chi) \in \mathbf{C} \times X^{u}\left(E^{\times}\right) \mid \chi\left(\varpi_{E}\right)=(-1)^{k}, s=\frac{n}{2}-r-\frac{k i \pi}{\log q_{E}}, 1 \leqslant r \leqslant r_{0}\right\}
$$

with $1 \leqslant r \leqslant r_{0}$ and $k \in \mathbf{Z}$.
Then $\mathbf{1}$ appears in the boundary at s if and only if $(s, \chi) \in X(\mathbf{1})$. Moreover if $\left(s_{0}, \chi\right) \notin$ $X(\mathbf{1})$, for any standard section Φ the operator $Z(s, \chi, \mathbf{1})$ is holomorphic at $s=s_{0}$ and

$$
\operatorname{Hom}_{G \times G}\left(I_{n}\left(s_{0}, \chi\right), \mathbf{1} \otimes \chi\right)=\mathbf{C} \cdot Z(s, \chi, \mathbf{1}) .
$$

Proof: We know from Lemma 2.1 that
$\operatorname{Hom}_{G \times G}\left(Q_{n}^{(r)}(s, \chi), \mathbf{1} \otimes \chi\right)=\operatorname{Hom}_{G \times G}\left(\operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(\chi|\cdot|^{s+\frac{r}{2}} \otimes \chi|\cdot|^{s+\frac{r}{2}} \otimes\left(S\left(G^{\prime}\right) \cdot(\mathbf{1} \otimes \chi)\right)\right)\right.$,

$$
\begin{align*}
& \simeq \operatorname{Hom}_{G \times G}\left(\mathbf{1} \otimes \chi^{-1}\right. \\
& \left.\operatorname{Ind}_{P_{r} \times P_{r}}^{G \times G}\left(\chi^{-1}|\cdot|^{-s-\frac{r}{2}} \otimes \chi^{-1}|\cdot|^{-s-\frac{r}{2}} \otimes\left(\mathrm{C}^{\infty}\left(G^{\prime}\right) \cdot\left(\mathbf{1} \otimes \chi^{-1}\right)\right)\right)\right)
\end{align*}
$$

$$
\begin{aligned}
\simeq & \operatorname{Hom}_{M_{r} \times M_{r}}\left(\mathbf{1} \otimes \chi^{-1},\right. \\
& \left.\chi^{-1}|\cdot|^{-s-\frac{r}{2}+\frac{n-r}{2}} \otimes \chi^{-1}|\cdot|^{-s-\frac{r}{2}+\frac{n-r}{2}} \otimes\left(\mathrm{C}^{\infty}\left(G^{\prime}\right) \cdot\left(\mathbf{1} \otimes \chi^{-1}\right)\right)\right)
\end{aligned}
$$

because the Jacquet module for $\mathbf{1} \otimes \chi^{-1}$ is $\mathbf{1} \otimes \chi^{-1}$ (as a representation of M_{r})

$$
\simeq \operatorname{Hom}_{\mathrm{GL}(U) \times \operatorname{GL}(U)}\left(\mathbf{1} \otimes \chi^{-2}, \chi^{-1}|\cdot|^{-s+\frac{n}{2}-r} \otimes \chi^{-1}|\cdot|^{-s+\frac{n}{2}-r}\right)
$$

because if g corresponds to $\left(a, g^{\prime}\right)$ in Equation (2) then $\operatorname{det} g=\operatorname{det} a \overline{\operatorname{det} a^{-1}} \operatorname{det} g^{\prime}$ so that $\chi(\operatorname{det} g)=\chi(\operatorname{det} a)^{2} \chi\left(\operatorname{det} g^{\prime}\right)$ and because $\operatorname{dim} \operatorname{Hom}_{G^{\prime} \times G^{\prime}}\left(\mathbf{1} \otimes \chi^{-1}, \mathrm{C}^{\infty}\left(G^{\prime}\right) \cdot\left(\mathbf{1} \otimes \chi^{-1}\right)\right)=1$ (see [HKS, end of section 4, p964] for general π).

It follows that π occurs in the boundary at s if and only if χ is unramified, $\chi\left(\varpi_{E}\right)=$ $(-1)^{k}$ and $\left(s-\frac{n}{2}+r\right) \log q_{E}+k i \pi=0$, as required.

Suppose $\left(s_{0}, \chi\right) \notin X(\mathbf{1})$, i.e. that $\mathbf{1}$ does not appear in the boundary. Let k be the maximum order of the pole of the Z integral in $s=s_{0}$ (as Φ varies). Thus

$$
Z(s, \chi, \mathbf{1}, \Phi)=\frac{\tau_{-k}(s, \chi, \mathbf{1}, \Phi)}{\left(s-s_{0}\right)^{k}}+\cdots+\tau_{0}(s, \chi, \mathbf{1}, \Phi)+\cdots
$$

where the τ_{i} are holomorphic functions of s in a neighbourhood of s_{0} and τ_{-k} is non-zero. The leading term τ_{-k} is itself an intertwining operator. If we had $k>0$, that is, if the Z integral had a pole in $s=s_{0}$, the restriction of τ_{-k} to $I_{n}^{(0)}\left(s_{0}, \chi\right)$ would be zero because the Z integral is convergent on

$$
I_{n}^{(0)}\left(s_{0}, \chi\right)=Q_{n}^{(0)}(s, \chi)=\simeq S(G) \cdot(\mathbf{1} \otimes \chi)
$$

thus convergent for every standard section $\Phi(s)$ such that $\Phi \in I_{n}^{(0)}(s, \chi)$. This means that we would have a non-zero intertwining operator in $\operatorname{Hom}_{G \times G}\left(Q_{n}^{(r)}(s, \chi), \mathbf{1} \otimes \chi\right)$ for some $r>0$, which is impossible by hypothesis. Thus $k \geqslant 0$, i.e. the integral is entire for any $\Phi \in I_{n}\left(s_{0}, \chi\right)$. Moreover, $Z\left(s_{0}, \chi, \mathbf{1}\right)$ is a non-zero intertwining operator between $I_{n}^{(0)}\left(s_{0}, \chi\right)$ and $\mathbf{1} \otimes \chi$, which means that $\operatorname{Hom}_{G \times G}\left(I_{n}^{(0)}\left(s_{0}, \chi\right), \mathbf{1} \otimes \chi\right)$ is non zero and thus has dimension 1 and that $Z\left(s_{0}, \chi, \mathbf{1}\right)$ is its basis.

Let $\lambda \in \operatorname{Hom}_{G \times G}\left(I_{n}\left(s_{0}, \chi\right), \mathbf{1} \otimes \chi\right)$. Its restriction $\bar{\lambda}$ to $I_{n}^{(0)}\left(s_{0}, \chi\right)$ is a multiple of $Z\left(s_{0}, \chi, \mathbf{1}\right)$. Since $\mathbf{1}$ is supposed not to appear in the boundary, if $\lambda \neq 0$, then $\bar{\lambda} \neq 0$, i.e. $\bar{\lambda}=c Z\left(s_{0}, \chi, \mathbf{1}\right)$ for some $c \neq 0$. Since $\lambda-c Z\left(s_{0}, \chi, \mathbf{1}\right)$ is zero on $I_{n}^{(0)}\left(s_{0}, \chi\right)$, it must be zero everywhere, i.e. $\lambda=c Z\left(s_{0}, \chi, \mathbf{1}\right)$.

Theorem 2.9 Let m be an even integer and χ_{0} the trivial character of E^{\times}, then

$$
\forall m \leqslant 2 n, \quad \operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{m}^{-}, \chi_{0}\right), \mathbf{1}\right)=0,
$$

so that by (ii) of Proposition 1.6

$$
\operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{2 n+2}^{-}, \chi_{0}\right), \mathbf{1}\right) \neq 0
$$

and thus $m_{\chi_{0}}^{-}(\mathbf{1})=2 n+2$. Since $m_{\chi_{0}}^{+}(\mathbf{1})=0$, we have

$$
m_{\chi_{0}}^{+}(\mathbf{1})+m_{\chi_{0}}^{-}(\mathbf{1})=2 n+2 .
$$

Proof: By (i) of Proposition 1.6, it suffices to prove that

$$
\operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{2 n}^{-}, \chi_{0}\right), \mathbf{1}\right)=0 .
$$

From Proposition 2.8 we know that

$$
\operatorname{Hom}_{G \times G}\left(I_{n}\left(-\frac{n}{2}, \chi_{0}\right), \mathbf{1}\right)
$$

is non zero and generated by

$$
Z\left(-\frac{n}{2}, \chi_{0}, \mathbf{1}\right)
$$

which is holomorphic at $-\frac{n}{2}$. The element of $I_{n}\left(-\frac{n}{2}, \chi_{0}\right)$ equal to 1 on K is $\chi_{0, \tilde{G}}$. As seen in [Li, Theorem 3.1, p186] and [LR, Proposition 3, p333] we have

$$
Z\left(-\frac{n}{2}, \chi_{0}, \mathbf{1}, \phi^{\circ}, \chi_{0, \tilde{G}}\right) \neq 0
$$

and thus $Z\left(-\frac{n}{2}, \chi_{0}, \mathbf{1}\right)\left(\chi_{0, \tilde{G}}\right) \neq 0$. Let

$$
\phi \in \operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{2 n}^{-}, \chi_{0}\right), \mathbf{1}\right)
$$

and

$$
\tilde{\phi}=\phi \circ M_{n}^{*}\left(-\frac{n}{2}, \chi_{0}\right) \in \operatorname{Hom}_{G \times G}\left(I_{n}\left(-\frac{n}{2}, \chi_{0}\right), \mathbf{1}\right) .
$$

We have $\chi_{0, \tilde{G}} \in R_{n}\left(V_{0}^{+}, \chi_{0, \tilde{G}}\right)=\operatorname{ker} M_{n}^{*}\left(-\frac{n}{2}, \chi_{0}\right)$ so that $\tilde{\phi}\left(\chi_{0, \tilde{G}}\right)=0$. This means that $\tilde{\phi}=0$ because it is a multiple of $Z\left(-\frac{n}{2}, \chi_{0}, \mathbf{1}\right)$. We know from Proposition 1.11 that the application

$$
M_{n}^{*}\left(-\frac{n}{2}, \chi_{0}\right): I_{n}\left(-\frac{n}{2}, \chi_{0}\right) \longrightarrow R_{n}\left(V_{2 n}^{-}, \chi_{0}\right)
$$

is surjective so that $\phi=0$.

2.4 Half of the conjecture

Theorem 2.10 Let π be an irreducible admissible representation of $G(W)$, then

$$
m_{\chi}^{+}(\pi)+m_{\chi}^{-}(\pi) \geqslant 2 n+2 .
$$

Proof: Fix $m_{0} \in\{0,1\}$, a character χ of E^{\times}such that $\left.\chi\right|_{F \times}=\epsilon_{E / F}^{m_{0}}$ and suppose we have two Hermitian spaces V_{a}^{+}and V_{b}^{-}such that

$$
\theta_{\chi}\left(\pi, V_{a}^{+}\right) \neq 0 \quad \text { and } \quad \theta_{\chi}\left(\pi, V_{b}^{-}\right) \neq 0
$$

with $\operatorname{dim} V_{a}^{+}=a, \operatorname{dim} V_{b}^{-}=b, a$ and b of the parity of $m_{0}, \epsilon\left(V_{a}^{+}\right)=1$ and $\epsilon\left(V_{b}^{-}\right)=-1$. Let $V_{b,-}^{-}$be the same space as V_{b}^{-}with opposite form and

$$
\mathbb{W}_{a}=V_{a}^{+} \otimes W, \quad \mathbb{W}_{b}=V_{b}^{-} \otimes W, \quad \mathbb{W}_{b,-}=V_{b,-}^{-} \otimes W
$$

We denote $\omega_{a, \chi}$ (resp. $\omega_{b, \chi}, \omega_{b,-, \chi}$) the representations of G induced by the representations $\omega_{a, \psi}$ (resp. $\left.\omega_{b, \psi}, \omega_{b,-, \psi}\right)$ of $\operatorname{Mp}\left(\mathbb{W}_{a}\right)$ (resp. $\operatorname{Mp}\left(\mathbb{W}_{b}\right), \operatorname{Mp}\left(\mathbb{W}_{b,-}\right)$). By hypothesis on V_{a}^{+}and V_{b}^{-}we have two non-zero (and thus surjective) elements

$$
\lambda \in \operatorname{Hom}_{G}\left(\omega_{a, \chi}, \pi\right), \quad \mu \in \operatorname{Hom}_{G}\left(\omega_{b, \chi}, \pi\right)
$$

Let $g_{0} \in \mathrm{GL}_{F}(W)$ be an F-automorphism of W which is conjugate-linear as an E morphism. Then $\operatorname{Ad}\left(g_{0}\right)$ is a MVW involution on G. Conjugating μ and π by $\operatorname{Ad}\left(g_{0}\right)$ we get a non-zero morphism

$$
\mu^{\vee} \in \operatorname{Hom}_{G}\left(\omega_{b, \chi}^{\vee}, \pi^{\vee}\right)
$$

and thus a surjective

$$
\nu_{0}=\lambda \otimes \mu^{\vee} \in \operatorname{Hom}_{G \times G}\left(\omega_{a, \chi} \otimes \omega_{b, \chi}^{\vee}, \pi \otimes \pi^{\vee}\right)
$$

Composing ν_{0} with Δ and projecting on the trivial subquotient produces a non-zero element

$$
\nu \in \operatorname{Hom}_{G}\left(\omega_{a, \chi} \otimes \omega_{b, \chi}^{\vee}, \mathbf{1}\right)
$$

We have

$$
\omega_{b, \psi}^{\vee} \simeq \omega_{b, \bar{\psi}} \simeq \omega_{b,-, \psi} \cdot{ }^{[5]}
$$

On the other hand we can identify $\operatorname{Mp}\left(\mathbb{W}_{b}\right)$ and $\operatorname{Mp}\left(\mathbb{W}_{b,-}\right)$ in which case we get

Lemma 2.11

$$
\tilde{\iota}_{b, \chi} \simeq \tilde{\iota}_{b,-, \chi^{-1}} .
$$

Where we added a subscript to $\tilde{\iota}$ to remember which Hermitian space is involved.
Proof: The space V_{b}^{-}can be decomposed as an orthogonal direct sum of a split space and zero, one or two anisotropic lines. Since the splitting $\tilde{\iota}$ is additive, we consider separately the split and the anisotropic case.

We first consider the case in which V_{b}^{-}is split. We will need some additional notations (see [HKS, n.10, p950]). For any additive character η of F and $a \in F$ we will let η_{a} be the character such that $\eta_{a}(x)=\eta(a x), \gamma_{F}(\eta) \in \mu_{8}$ the Weil index of the quadratic character $x \longmapsto \eta\left(x^{2}\right)$ and $\gamma_{F}(a, \eta)=\frac{\gamma_{F}\left(\eta_{a}\right)}{\gamma_{F}(\eta)}$. Recall that (see [HKS, n.11, p950])

$$
\gamma_{F}(a b, \eta)=(a, b)_{F} \gamma_{F}(a, \eta) \gamma_{F}(b, \eta)
$$

Let η be the character such that $\eta(x)=\psi\left(\frac{1}{2} x\right)$ (i.e. $\eta=\psi_{\frac{1}{2}}$). For $g \in G$, we denote $j(g)$ the integer such that $i\left(g, I_{n}\right) \in P_{Y} \delta_{j(g)} i(G \times G)$. Since V_{b}^{-}is split we have (see [HKS, 1.15, p953]),

$$
\tilde{\iota}_{b, \chi}(g)=\left(\iota_{b}(g), \beta_{V_{b}^{-}, \chi}(g)\right)
$$

with

$$
\beta_{V_{b}^{-}, \chi}(g)=\chi(x(g)) \gamma_{F}(\eta \circ R V)^{-j(g)}
$$

[^5]where and
$$
\gamma_{F}(\eta \circ R V)=\left(\Delta, \operatorname{det} V_{b}^{-}\right)_{F} \gamma_{F}(-\Delta, \eta)^{b} \gamma_{F}(-1, \eta)^{-b} \cdot[6]
$$

Let

$$
\begin{aligned}
\varphi: \operatorname{Sp}\left(\mathbb{W}_{b}\right) \times \mathbf{C}^{1} \simeq \operatorname{Mp}\left(\mathbb{W}_{b}\right) & \longrightarrow \operatorname{Sp}\left(\mathbb{W}_{b,-}\right) \times \mathbf{C}^{1} \simeq \operatorname{Mp}\left(\mathbb{W}_{b,-}\right) \\
(g, z) & \longmapsto(g, \bar{z})
\end{aligned}
$$

be the identification. Then $\overline{\chi(x(g))}=\chi^{-1}(x(g))$ and

$$
\begin{aligned}
\overline{\gamma_{F}(-\Delta, \eta) \gamma_{F}(-1, \eta)^{-1}} & =\overline{\left(\frac{\gamma_{F}\left(\eta_{-\Delta}\right)}{\gamma_{F}\left(\eta_{-1}\right)}\right)}=\frac{\gamma_{F}\left(\eta_{\Delta}\right)}{\gamma_{F}\left(\eta_{1}\right)}=\gamma_{F}(\Delta, \eta) \gamma_{F}(1, \eta)^{-1} \\
& =(\Delta,-1)_{F} \gamma_{F}(-\Delta, \eta)(-1,-1)_{F} \gamma_{F}(-1, \eta)^{-1} \\
& =(\Delta,-1)_{F} \gamma_{F}(-\Delta, \eta) \gamma_{F}(-1, \eta)^{-1}
\end{aligned}
$$

thus, since $\operatorname{det} V_{b,-}^{-}=(-1)^{b} \operatorname{det} V_{b}^{-}$, we have $\overline{\beta_{V_{b}^{-}, \chi}(g)}=\beta_{V_{b,-}^{-}, \chi^{-1}}(g)$ and

$$
\varphi \circ \tilde{\iota}_{b, \chi}=\tilde{\iota}_{b,-, \chi \chi^{-1}}
$$

as claimed.
We now consider the case in which V_{b}^{-}is an anisotropic line. We identify V_{b}^{-}with E and if $(x, y) \in E^{2}$, we have $\langle x, y\rangle=\mathbf{a} \bar{x} y$ for some $\mathbf{a} \in F$. If $g \in G\left(V_{b}^{-}\right)=E^{1}$, we decompose $g=x+\delta y$ (with $x, y \in F$) and we have (see [Kud1, Proposition 4.8, p396])

$$
\begin{aligned}
\beta_{V_{b}^{-}, \chi}(g) & =\chi(\delta(g-1)) \gamma_{F}(2 \mathbf{a} y(x-1), \eta) \gamma_{F}(\eta)(\Delta,-2 y(1-x))_{F} \\
& =\chi(\delta(g-1)) \gamma_{F}\left(\eta_{2 \mathbf{a} y(x-1)}\right)(\Delta,-2 y(1-x))_{F}
\end{aligned}
$$

and

$$
\beta_{V_{b,-}^{-}, \chi}(g)=\chi(\delta(g-1)) \gamma_{F}\left(\eta_{-2 \mathbf{a y}(x-1)}\right)(\Delta,-2 y(1-x))_{F}
$$

It is immediate that $\overline{\beta_{V_{b,-}^{-}, \chi^{-1}}(g)}=\beta_{V_{b}^{-}, \chi}(g)$ and

$$
\varphi \circ \tilde{\iota}_{b, \chi}=\tilde{\iota}_{b,-, \chi^{-1}}
$$

as claimed.
Let

$$
V_{a, b,-}=V_{a}^{+} \oplus V_{b,-}^{-}, \quad \mathbb{W}_{a, b,-}=\mathbb{W}_{a} \oplus \mathbb{W}_{b,-}
$$

and, as before χ_{0} the trivial character of E^{\times}. We denote, as above, $\omega_{a, b,-, \chi_{0}}$ the representation of G induced by the Weil representation $\omega_{a, b,-, \psi}$. Let

$$
\tilde{i}: \operatorname{Mp}\left(\mathbb{W}_{a}\right) \times \operatorname{Mp}\left(\mathbb{W}_{b,-}\right) \longrightarrow \operatorname{Mp}\left(\mathbb{W}_{a, b,-}\right)
$$

[^6]be the natural map whose restriction to \mathbf{C}^{1} is the product. Then ${ }^{[7]}$
$$
\tilde{i}^{*} \omega_{a, b,-, \psi}=\omega_{a, \psi} \otimes \omega_{b,-, \psi}
$$

According to [HKS, Lemma 5.2, p964],

$$
\tilde{\iota}_{a, b,-, \chi 0}=\tilde{i} \circ\left(\tilde{\iota}_{a, \chi} \times \tilde{\iota}_{b,-, \chi^{-1}}\right) \circ \Delta: G \longrightarrow \operatorname{Mp}\left(\mathbb{W}_{a, b,-}\right) .
$$

Thus as a representation of G we have

$$
\omega_{a, \chi} \otimes \omega_{b,-, \chi^{-1}} \simeq \omega_{a, b,-, \chi_{0}}
$$

We thus have a non-zero element

$$
\nu \in \operatorname{Hom}_{G}\left(\omega_{a, \chi} \otimes \omega_{b, \chi}^{\vee}, \mathbf{1}\right) \simeq \operatorname{Hom}_{G}\left(\omega_{a, b,-, \chi_{0}}, \mathbf{1}\right)
$$

We have $\operatorname{dim} V_{a, b,-}=a+b$ even. Let us compute $\epsilon\left(V_{a, b,-}\right)$:

$$
\begin{aligned}
\epsilon\left(V_{a, b,-}\right) & =(-1)^{\frac{(a+b)(a+b-1)}{2}} \operatorname{det} V_{a, b,-} \\
& =(-1)^{\frac{a(a-1)+a b+b a+b(b-1)}{2}} \operatorname{det} V_{a}^{+} \operatorname{det} V_{b,-}^{-} \\
& =(-1)^{\frac{a(a-1)+b(b-1)}{2}+a b} \operatorname{det} V_{a}^{+}(-1)^{b} \operatorname{det} V_{b}^{-} \\
& =(-1)^{a b+b}(-1)^{\frac{a(a-1)}{2}} \operatorname{det} V_{a}^{+}(-1)^{\frac{b(b-1)}{2}} \operatorname{det} V_{b}^{-} \\
& =(-1)^{a b+b} \epsilon\left(V_{a}^{+}\right) \epsilon\left(V_{b}^{-}\right) .
\end{aligned}
$$

Since both $a b$ and b have the parity of m_{0} we have $\epsilon\left(V_{a, b,-}\right)=\epsilon\left(V_{a}^{+}\right) \epsilon\left(V_{b}^{-}\right)=-1$. Thus, according to Theorem 2.9

$$
a+b \geqslant 2 n+2
$$

as needed.

2.5 Criterion

Definition 2.12 For a given $m \in\{0, \ldots, 2 n\}$, let $m^{\prime}=2 n-m$. The space $V_{m^{\prime}}^{ \pm}$is said to be complementary to $V_{m}^{ \pm}$(the space $V_{2 n}^{-}$has no complementary).

Remark 2.13 If $V_{m}^{ \pm}$and $V_{m^{\prime}}^{ \pm}$are complementary, then $s_{0}^{\prime}=\frac{m^{\prime}-n}{2}=\frac{2 n-m-n}{2}=\frac{n-m}{2}=$ $-s_{0}$.

We give the composition series for $I_{n}\left(s_{0}, \chi\right)$ in each case where it is reducible, with indication of the action of the operators $M^{*}\left(s_{0}, \chi\right)$. Implicitely we have $m^{\prime}=2 n-m$. All these

[^7]results are taken from $[\mathrm{KS}]$.

In each case an inclusion sign means that the quotient is non-zero and irreducible. Note that V_{0}^{-}does not exist, but we define the space $R_{n}\left(V_{0}^{-}, \chi\right)$ as the null space in $R_{n}\left(V_{0}^{+}, \chi\right)$.

Theorem 2.14 Fix $m_{0} \in\{0,1\}$ and a character χ of E^{\times}such that $\left.\chi\right|_{F^{\times}}=\epsilon_{E / F}^{m_{0}}$. Suppose that

$$
\operatorname{dim} \operatorname{Hom}_{G \times G}\left(I_{n}\left(s_{0}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)=1
$$

for all s_{0} in

$$
\begin{cases}\left\{-\frac{n}{2}, 1-\frac{n}{2}, \ldots, \frac{n}{2}-1, \frac{n}{2}\right\} & \text { if } m_{0}=0 \\ \left\{\frac{1-n}{2}, \frac{3-n}{2}, \ldots, \frac{n-3}{2}, \frac{n-1}{2}\right\} & \text { if } m_{0}=1\end{cases}
$$

i.e. for all $s_{0} \in \frac{m_{0}}{2}+\mathbf{Z}$ such that $\left|s_{0}\right| \leqslant \frac{n}{2}$. Then

$$
m_{\chi}^{+}(\pi)+m_{\chi}^{-}(\pi)=2 n+2 .
$$

Proof: Fix $m_{0} \in\{0,1\}$ and a character χ of E^{\times}such that $\left.\chi\right|_{F^{\times}}=\epsilon_{E / F}^{m_{0}}$. For $0 \leqslant m^{\prime} \leqslant 2 n$, we put $m=2 n-m^{\prime}$ and recall that $s_{0}=\frac{m-n}{2}$.

The case $m_{\chi}^{+}(\pi)=0$ is immediate because it implies $\pi=\mathbf{1}$ and Theorem 2.9 says that $m_{\chi}^{-}(\pi)=2 n+2$.

If $s_{0} \geqslant 0$ we have $I_{n}\left(s_{0}, \chi\right)=R_{n}\left(V_{m}^{+}, \chi\right)+R_{n}\left(V_{m}^{-}, \chi\right)$ and thus, thanks to the hypothesis of the theorem, at least one of

$$
\operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{m}^{ \pm}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)
$$

is non zero. This in turn means, thanks to Proposition 1.9, that

$$
\min \left(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi)\right) \leqslant n+1
$$

(the bound is $n+1$ and not n in case m and n have opposite parity). If $s_{0}>\frac{n}{2}$ then $I_{n}\left(s_{0}, \chi\right)$ is irreducible and thus

$$
R_{n}\left(V_{m}^{ \pm}, \chi\right)=I_{n}\left(s_{0}, \chi\right)
$$

By the persistence principle (see Proposition 1.6, point i) since we have $m>2 n>$ $\min \left(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi)\right)$, one and thus both

$$
\operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{m}^{ \pm}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right) \neq 0
$$

This means $\max \left(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi)\right) \leqslant 2 n+2-m_{0}$.
Let $\epsilon= \pm$ be such that $m_{\chi}^{\epsilon}(\pi)=\min \left(m_{\chi}^{+}(\pi), m_{\chi}^{-}(\pi)\right)$. We let m^{\prime} be $m_{\chi}^{\epsilon}(\pi)$ (and choose m and s_{0} accordingly). As observed above, the case $m^{\prime}=0$ has already been proven. If $m^{\prime}=1$, then from Theorem 2.10 we have $m_{\chi}^{-\epsilon}(\pi) \geqslant 2 n+1$ and thus, thanks to the preceeding bound, $m_{\chi}^{-\epsilon}(\pi)=2 n+1$ (observe that if $m^{\prime}=1$ then $m_{0}=1$).

We now suppose $2 \leqslant m^{\prime} \leqslant n$, i.e. $0 \leqslant s_{0} \leqslant \frac{n}{2}-1$. By Theorem 2.10 we thus have $m_{\chi}^{-\epsilon}(\pi) \geqslant 2 n+2-m^{\prime} \geqslant n+2$. Since m^{\prime} is the minimum of $m_{\chi}^{ \pm}(\pi)$, we have

$$
\begin{equation*}
\operatorname{Hom}_{G \times G}\left(R_{n}\left(V_{m^{\prime}-2}^{+}, \chi\right) \oplus R_{n}\left(V_{m^{\prime}-2}^{-}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)=0 \tag{9}
\end{equation*}
$$

(here $R_{n}\left(V_{0}^{-}, \chi\right)=0$ as defined above). This means that any element of $\operatorname{Hom}_{G \times G}\left(I_{n}\left(-s_{0}-\right.\right.$ $\left.1, \chi), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)$ factors through

$$
I_{n}\left(-s_{0}-1, \chi\right) / R_{n}\left(V_{m}^{+}, \chi\right) \oplus R_{n}\left(V_{m}^{-}, \chi\right) \simeq \operatorname{Im} M^{*}\left(-s_{0}-1, \chi\right)
$$

and thus

$$
\operatorname{dim} \operatorname{Hom}_{G \times G}\left(\operatorname{Im} M^{*}\left(-s_{0}-1, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)=1
$$

On the other hand, let

$$
\mu \in \operatorname{Hom}_{G \times G}\left(I_{n}\left(s_{0}+1, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)
$$

with $\mu \neq 0$. We know from (9) that

$$
\mu \circ M^{*}\left(s_{0}+1, \chi\right)=0
$$

hence μ must be non-zero on $\operatorname{Ker} M^{*}\left(s_{0}+1, \chi\right)=\operatorname{Im} M^{*}\left(-s_{0}-1, \chi\right)$. Since $s_{0}+1>0$, the space $\operatorname{Im} M^{*}\left(-s_{0}-1, \chi\right)$ is a non-zero submodule of $R_{n}\left(V_{m+2}^{-\epsilon}\right)$ and thus

$$
\left.\mu\right|_{R_{n}\left(V_{m+2}^{-\epsilon}\right)} \neq 0
$$

hence

$$
m_{\chi}^{-\epsilon}(\pi) \leqslant m+2=2 n+2-m^{\prime} .
$$

We thus have $m_{\chi}^{+}(\pi)+m_{\chi}^{-}(\pi)=2 n+2$ as claimed.
The only remaining case is $m^{\prime}=n+1$. We thus have $m=n-1$ and $s_{0}=-\frac{1}{2}$. The proof is similar to the preceeding one. If

$$
\mu \in \operatorname{Hom}_{G \times G}\left(I_{n}\left(\frac{1}{2}, \chi\right), \pi \otimes\left(\chi \cdot \pi^{\vee}\right)\right)
$$

is non-zero, then its composition with $M^{*}\left(\frac{1}{2}, \chi\right)$ is zero, this means that the restriction of $\operatorname{Ker} M^{*}\left(\frac{1}{2}, \chi\right)$ must be non-zero. Hence, for the same reason as above, $m_{\chi}^{+}(\pi)=m_{\chi}^{-}(\pi)=$ $n+1$.

References

[HKS] Michael Harris, Stephen S. Kudla, and William J. Sweet. Theta dichotomy for unitary groups. J. Amer. Math. Soc., 9(4):941-1004, 1996.
[KR] Stephen S. Kudla and Stephen Rallis. On first occurrence in the local theta correspondence. In Automorphic representations, L-functions and applications: progress and prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pages 273-308. de Gruyter, Berlin, 2005.
[KS] Stephen S. Kudla and W. Jay Sweet, Jr. Degenerate principal series representations for $\mathrm{U}(n, n)$. Israel J. Math., 98:253-306, 1997.
[Kud1] Stephen S. Kudla. Splitting metaplectic covers of dual reductive pairs. Israel Journal of Mathematics, 87:361-401, 1994.
[Kud2] Stephen S. Kudla. Notes on the local theta correspondence. Available on Kudla's home page, http://www.math.utoronto.ca/ssk/castle.pdf, 1996.
[Li] Jian-Shu Li. Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math., 428:177-217, 1992.
[LR] Erez M. Lapid and Stephen Rallis. On the local factors of representations of classical groups. In Automorphic representations, L-functions and applications: progress and prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pages 309-359. de Gruyter, Berlin, 2005.
[MVW] Colette Moeglin, Marie-France Vigneras, and Jean-Loup Waldspurger. Correspondance de Howe sur un corps p-adique, volume 1291 of Lecture Notes in Mathemat$i c s$. Springer-Verlag, Berlin, 1987.
[Rao] R. Rao. On some explicit formulas in the theory of the Weil representation. Pacific J. Math., 157:335-371, 1993.

[^0]: ${ }^{\text {§ }}$ L'accesso alle Series è approvato dal Comitato di Redazione. I Working Papers della Collana dei Quaderni del Dipartimento di Ingegneria dell'Informazione e Metodi Matematici costituiscono un servizio atto a fornire la tempestiva divulgazione dei risultati dell'attività di ricerca, siano essi in forma provvisoria o definitiva.

[^1]: ${ }^{[1]}$ We recall that the Witt index of a quadratic space is the dimension of a maximal totally isotropic subspace

[^2]: ${ }^{[2]}$ in $[\mathrm{Kud} 2]$ it is an anti-isometry but, since W_{-}has the opposite of the form of W_{+}, here λ is an isometry.

[^3]: ${ }^{[3]}$ A vérifier

[^4]: ${ }^{[4]} \mathrm{A}$ vérifier

[^5]: ${ }^{[5]}$ The first isomorphism because $\omega_{b, \psi}$ is unitary, the second because of the definition of $r(g)$ in 1.3

[^6]: ${ }^{[6]}$ for this single proof, $\Delta \in F^{\times}$is the square of an element $\delta \in E^{\times}-F^{\times}$which is used to identify the Hermitian and skew-Hermitian spaces

[^7]: ${ }^{[7]}$ Is it relevant ?

