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An inequality for local unitary Theta correspondence

Zheng GONG and Loic GRENIE
January 22, 2009

1 Introduction, notations

This section recalls the local theta correspondence as in [Kud2] and cites some of the results
of [HKS].

We fix once and for all a non archimedean local field F' of residual characteristic different
from 2.

The application A will always be a diagonal embedding, usually from G to G x G except
in one point where it will be precised.

1.1 Heisenberg group

Let W be a vector space with a symplectic form (.,.) on which the group GL(W) will act
on the right — accordingly, if f and g are two endomorphisms of W, we will denote f o g
the endomorphism such that (f o g)(w) = g(f(w)). We will denote, as usual,

Sp(W) = {g € GL(W) | Y(z,y) € W?, (xg,y9) = (z,y)}
its isometry group.

Definition 1.1 The Heisenberg group of W if the group H(W) =W x F with product

1
(wl,t1)(w2,t2) = (w1 + wz,tl + tQ + 5 <w1,w2>).

The centre of H(W) is {(0,t) | t € F'} and Sp(W) acts on H(W) via its action on W:
(w,t)? = (wg, ).
We recall

Theorem 1.2 (Stone—von Neumann theorem) Let ¢ be a non trivial unitary charac-
ter of F. There exists, up to isomorphism, one smooth irreducible representation (py, S)

of H(W) such that
pu((0,1)) = ¥(t) - ids.



If we fix such a representation (py, S), for any g € Sp(g), the representation h —— pi (h) =
py(h?) is a representation of H(W) with the same central character, which means that it
must be isomorphic to p,. Hence there is an isomorphism A(g) € GL(S), unique up to a
scalar, such that

vhe H, Alg)~'pu(h)Alg) = pi(h). (1)

The group
Mp(W) = {(g, A(g)) | equation (1) holds}

is independent of the choice of ¢ and is a central extension of Sp(1W) by C*:
0 — C* — Mp(W) — Sp(W) — 1.

The group Mp(WW) has a natural representation, called the Weil representation, w, on S
given by
wy : Mp(W) — End(S)
(9.A(9) — Alg)
1.2 The Schrodinger model of the Weil representation

The application (g, A (g)) — A(g) defines a representation of Mp(W) of which there are
several models. We are interested in the so-called Schrédinger model.

Let Y be a Lagrangian of W, i.e. a maximal isotropic subspace of W and W = X @Y
a complete polarisation of W. We consider Y as a degenerate symplectic space and see
H(Y) =Y x F as a maximal abelian subgroup of H(WW). We consider the extension 1y
of the character ¢ from F' to H(Y) defined by 1y (y,t) = ¥(t). Let

Sy = Indjyy) vy

We recall that Sy is the space of those f: H(W) — C such that
Vhy € H(Y'), f(lnh) = ¢y (h) f ()
and such that there exists a compact open subgroup L of W such that
vie L, f(hl1,0) = f(h).
We fix an isomorphism of Sy with the space S(X) of Schwartz functions on X by

fr—p: X—-C
v s o) = [(2,0).

The group H(W) acts on Sy by right translation while it acts on ¢ € S(X) by
1
(oa-+ 3u)9)e0) = 6 (£ L) + 5o ol +2)
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where  +y € W is such that x € X and y € Y. Then (see [MVW]) (p, S(X)) is a model
for the Weil representation.

We specify the operator wy, as follows. We identify an element w € W with the row
vector (z,y) € X @Y. An element g € Sp(IW) will be of the form g = (¢}%) with a €
End(X), b € Hom(X,Y), ¢ € Hom(Y, X) and d € End(Y'). Let Py = {g € Sp(W) | ¢ = 0}
be the maximal parabolic subgroup of Sp(WV) that stabilises Y and Ny = {g € Py | d =
idy } its unipotent radical. We have a Levy subgroup My = {g € Py | b = 0} of Py and
Py = MyNy.

We define the following natural applications:

m: GL(X) — My n: Her(X,Y) — Ny
a —ma)=(§.") b )= ("Fay)

where a” is the inverse of the dual of a and Her(X,Y) is the subset of those b € Hom(X,Y")
which are Hermitian (in both cases we identify the dual of X &Y with Y & X using (., .)).

Proposition 1.3 ([Kud2, Proposition 2.3, p8]) Let g = ( Z Z ) € Sp(g). The op-
erator r(g) of S(X) defined by

o)) = [ (Gtae ) (o) + 5o ) et ) ()

is proportional to A(g) and moreover is unitary for a unique Haar measure djug(y) on
Kerc\Y.

1.3 Dual reductive pairs

Definition 1.4 A dual reductive pair (G,G") in Sp(W) is a pair of subgroups of Sp(W)
such that both G and G' are reductive and

Centspw)(G) = G and  Centgyw)(G') = G.

If (G,@) is a dual reductive pair in Sp(W), we denote G and G’ the pullbacks of the
subgroups in Mp(W). As seen in [MVW], there exists a natural morphism

j:Gx G — Mp(W)

such that the restriction of j to C* x C* is the product.
We consider the pullback (j*(wy), S) of wy to G xG’. We note that the central character

for both G and G’ is the identity:

qu(j(zl, 22)) = Z1%9 ldS .



Let m be an irreducible admissible representation of G such that the central character
of 7 is the identity. Then if

N(r) = ﬂ Ker A

A€Hom gz (S,)

S(m) = S/N (r) is the largest quotient of S on which G acts by 7. The action of G’ on S
commutes with the action of G so that G" acts on S(7) and thus S(7) is a representation

of G x G'. There exists (see [MVW]) a smooth representation Oy () of G', unique up to
isomorphism, such that
S(m) ~ 71 ® Oy(n).

The principal result is the following

Theorem 1.5 (Howe duality principle) Let F' be a non archimedean local field with
residual characteristic different from 2 and let w be an irreducible admissible representation

of G. Then
i) If ©y(m) # 0, then it is an admissible representation of G’ of finite length.
ii) If Oy () # 0, there exists a unique G'-submodule Oy, (1) such that the quotient
0s(7) = Oy (m)/00), ()
is trreducible. If ©y(m) = 0, we let O (m) = 0.

iii) If two irreducible admissible representations m and m of G are such that Op(m) ~
Oy (m2) # 0 then m =~ mo.

1.4 The unitary case

Let E/F be a quadratic extension and egyp the corresponding quadratic character of F.
Let V' be a quadratic space of dimension m with Hermitian form

(():VxV—EFE
(linear in the second argument). We will denote
G(V) ={g € GL(V) [ Vv, w € V. (gv|gw) = (v[w)}

the isometry group of V.
Let W be a quadratic space of dimension n with skew-Hermitian form

(L) WxW-—E

(linear in the second argument). We will denote G(W) its isometry group.



Let W = Rg/(V ®g W) with symplectic form
() WeW  —F

(11 ® w1, v2 @ wa) > (V1 ® Wy, vy @ wa)) = 5 Trg)p ((Ul, 2) <w1,w2>) .

The pair (G(V), G(W)) is a dual reductive pair in Sp(W). We have a natural inclusion

t:G(V) x G(IW) — Sp(W)
(9,h) — (g, h) = g® h.

For any pair of characters x = (X, x»n) of E* such that

Xn |F>< = Eg/]m Xm |F>< = eg}/F’
one can define a homomorphism
iy : G(V) x G(IW) — Mp(W)

lifting ¢ (the homomorphism 7, does depend on ). Since the context will usually make
clear which of y,, and x,, is considered, we will often use x instead of x,, or x,. Moreover
we define vy, (resp. tw,) the restriction of ¢, to G(V) x 1 (resp. 1 x G(W)).

We will denote w,, the Weil representation of Mp(W) and w, its pullback through Z,.
As before, if 7 is an irreducible admissible representation of G(V'), we get a representation
O,(m, V) of G(W) such that

S(m) =71 ® Oy (m, V)
and if ©, (7, V) # 0, we say that 7 appears in the local theta correspondence for the pair

(G(V),G(W)). This condition depends on x,, but not on y,,. As above we define 0, (7, V)
to be the unique irreducible quotient of ©, (7, V) (or 0 if ©, (7, V) = 0).

Witt towers For a fixed dimension m, there are two equivalence classes of Hermitian
spaces of dimension m over . These two classes are distinguished by their Hasse invariant

m(m—1)

e(V) =egp((—1)" 2z detV).

We thus get two families of spaces V¥ where the sign is the sign of the Hasse invariant.
As Hermitian spaces we have an o V£ @ Vi, where V; 5 is an hyperbolic plane and the
direct sum is orthogonal. We thus get four so-called Witt towers

Vir =Vt @ (Vig)', Voo =Vo @ (Vin)", Vol =Vir @ (Vin)", Vo = Vir & (Vi)'

where V" is the null vector space, V,~ is an anisotropic 2-dimensional Hermitian space and
Vit are one dimensional anisotropic Hermitian spaces. In each case the integer r is the
Witt index of the corresponding Hermitian spacel').

We have

[IWe recall that the Witt index of a quadratic space is the dimension of a maximal totally isotropic
subspace




Proposition 1.6 ([HKS],[Kud2]) Consider a Witt tower {V,5} with e = +.
(i) (Persistence) If 0, (m, V) # 0 then 0, (7, Vs ,) # 0.
(it) (Stable range) We have 0, (m, V) # 0 if the Weil index ro of V,, is such that ro > n.

We fix mgy € {0,1} and a character x of £* such that xpx = EZT/; and we consider the two

towers V= with m of the parity of mq (if my = 0 we disregard V- which does not exist).
Let m3 (m) be the smallest m such that

0, (m, VE) #0.
Based on several examples, we have

Conjecture 1.7 (Conservation relation, [HKS, Speculations 7.5 and 7.6], [KR,
Conjecture 3.6])
my (m) +my (m) = 2n + 2.

1.5 Aim of this paper

We prove here one of the inequalities of Conjecture 1.7:
Theorem 1.8 Let m be an irreducible admissible representation of G(W'), then

+ —
m(m) +my () = 2n + 2.

1.6 Degenerate principal series

Let W, and W_ be two copies of W with respectively the same form as W and its opposite.
We keep our pair of characters x = (Xum, Xn). We fix for the space W, @ W_ the complete
polarisation X &Y where X = {(w, —w) |w € W} and Y = {(w,w) | w € W} = A(W)
where A is the diagonal embedding of W in W, & W_. We let then

W, = Rep(V@r W)  W_ = Rgp(VeopW.)

X = Rgp(V ®pX) Y = Rgp(VerY).
and we consider the representation wyw, ew_, of G(V) x G(W, @ W_) induced by the
Weil representation of W, @ W_ on S = S(X) ~ S(V"). Let R,(V,x) be the maximal

quotient of S on which G(V') acts by the character x,,. The space R,,(V,x) can be seen as
a representation of G(W) x G(W) via the natural embedding

i GW) x GW) = GW,) x GIW_) — G(W, & W_).

From now on, we will denote G = G,, = G(W) and G =G, =GW,®W.) so that
i:GxG—G.
We then have



Proposition 1.9 ([HKS, Proposition 3.1 and discussion before]) Let 7 be an irre-
ducible admissible representation of G(W),

Oy (m, V) # 0 <= Homgxa(Ru(V,X), T & (Xm - 7)) # 0.

Let Py be the parabolic subgroup of G stabilising Y. We will denote My its maximal
Levi subgroup and Ny its unipotent radical. Recall that My and Ny are parametrised
respectively by GL(X) and Her(X,Y).

For s € C and x a character of E*, let

In(s,x) = Indg, x| |°

be the degenerate principal series (the induction is unitary and the elements of I,,(s, x) are
locally constant functions ®(g, s)).

We can identify R, (V,x) as a subspace of some I,,(s, x) by sending an element ¢ € S
to the function g — w,(9)®(0) — here we denote w, = wy o iy,. The spaces R,(V.E, x)
allows us to decompose I,,(s, x) as explained by the following proposition.

Proposition 1.10 ([KS, Theorem 1.2, p257]) Let V.= be an m-dimensional unitary
space of dimension m and Hasse invariant . Let so = 5" and x a character of E*
such that x|px = e),..

i) If m < n, i.e. if so <0, then the modules R,(V.E,x) are irreducible and R,(V,", x) ®
R, (V. x) is the mazimal completely reducible submodule of I,,(so, x)-

ii) If m=mn, i.e. if so =0, then I,(0,x) = R,(V.",x) ® R.(V,”, Xx)-
iWi) If n < m < 2n, d.e. if 0 < sg < 2, then I,(so,x) = R.(V.5,x) + R.(V.,, x) and

27 m

R,(VX x)NR,.(V,..,x) is the unique irreducible submodule of I,,(so, x)-

m

w) If m = 2n, i.e. if so =%, then I,(so,x) = Ru(Van, X), Ru(Van, X) is of codimension 1
and is the unique irreducible submodule of I,,(so, X)-

v) If m > 2n, i.e. if so > 2, then I,(so, x) = Ru(Vis, x) is irreducible.
In all other cases I,,(s, x) is irreducible.

To understand better the decompositions above we begin with the Bruhat decomposi-
tion of G-

L, 0 0 0
LT . 0o 0 0 I
G = HO Pyw; Py, with w; = 0 0 I, 0

” 0 -, 0 0

and let us introduce, as in [Kud2, p19] and [Rao] the application

v G — E*/Ng/p B
pleipo — det(pipaly) mod Ng,pE*

7



Whenever x|px = 1 we can introduce the character xs of G

We extend the definition of R,, as follows:

and R,(Vy", x) is a submodule of dimension 1 o f I,(—%, x) (we are, at least formally, in
the case i) of Proposition 1.10). As a last step, we deﬁne the intertwining operators

My (s, x) + In(s, x) — In(=s, X)
by the integral
M, (s,x)(®) = / O (wyug, s)du = / O (w,n(b)g, s)db,
Ny Her(X,Y)

which is convergent for Res > 5 and by meromorphic continuation for s € C. The Haar
measure db is chosen self-dual with respect to the Fourier transform

/gb (Tr(by)) db.

We normalise M, (s, x) using
n—1 ‘
a(s,x) = H Lr (23 +7—(n— 1),XEJJ,3/F>
=0

and then M(s,x) = @Mn(s,x) is holomorphic and non zero (see [KS, Proposition
3.2]).

Proposition 1.11 ([KS]) Let V. be the m-dimensional unitary space of dimension m
and Hasse invariant +. Let so = ™5 and x a character of E* such that x|px = EE;F.

i) If m =0, i.e. if so = —%, then Ker(M}(=2,x)) = R.(V5", x) and Im(M (=%, x)) =
Ry (Vo X)-

i) If 1 <m < n, de if =5 < s9 <0, then Ker(M;(s0,x)) = Ru(V;¥,x) © Ru(V, x)
and Im(M;; (0, X)) = B(Vag > X) 0 B(Va s X)-

i) If n < m < 2n, d.e. if 0 < sg < 2, then Ker(M(so,x)) = R.(V.E,x) N R.(V,", X),
M (50, X)(Ra(VE X)) = R (Vs m,x) thus we have Im(M? (s, %)) = Rn(Voh ., X) @
RTL(‘/Q;—W’M X)

w) If m = 2n, i.e. if sp = %, then Ker(M;(5,x)) = Ru(Vs,,x) and Im(M;(5,x)) =
M (%, X)(Rn(Vay), x) = Ru(V5", X)-



1.7 Local Zeta integral

The last element that we will use is the local Zeta integral of a representation. We fix =
an irreducible admissible representation of G(W).

Definition 1.12 A matrix coefficient of © will be a linear combinations of functions of
the form

d(g) = (n(g)¢,¢")

where £ and £V are vectors of the space of respectively ™ and .
Moreover if & and &) are preassigned spherical vectors of ™ and 7", we let

¢°(9) = (7(9)&, &)

We parametrise the space of matrix coefficients with the space of # ® 7 through the
obvious projection. If s € C with Re s large enough, £ € 7, £&¥ € ¥, ® € (s, x), let

Z(s,xm @ €V, D) = / (n(9)E. €10 (i(g, 1), 5) dg

G

and extend it linearly to the space of matrix coefficients of . We fix a maximal compact
subgroup K of G (for instance, one can fix a basis of W, @ W_, see G as a subgroup of
GL(2n, F) and take K = G N GL(2n, Og)).

Definition 1.13 A standard section ® is an application from C to the set of function
from G to C such that Vs € C, ®(g,s) = D(s)(g) € I.(s,x) and, moreover, ®(s)|x is
independent of s.

It is rather obvious that any element ®(g,s) € I,(s,x) can be inserted in a (unique)
standard section. The Zeta integral above defines, for Re s sufficiently large, an intertwining
operator

Z(s,x,m) € HomGX(;(]n(s, X), T (x - Wv))

If ® is a standard section, this operator can be meromorphically extended for all s € C to
an operator

Z*(s,x,m) € Homgxe (Ln(s,x), 7@ (x - 7).

2  Our results

2.1 Decomposition of the degenerate principal series

Let Q(W, @ W_) be the Grassmannian of the Lagrangians of W, @ W_. We can identify

PAGWL & Wo) » o, @ w.)



using the map Py - g — Y'g. There is a right action of i(G(W) x G(W)) on Q(W, & W_)
which orbits are parametrised by the elements of the decomposition

GW, ®W.) = ]_[ Py6,i(GW) x G(W))

where ry is the Witt index of W. The aforementioned orbits are of the form
Q, = PAR8(G(W) x G(W)),

The orbit €, is made of the Lagrangians Z such that dim ZNW, =dim ZNW_ = r. The
only open orbit is that of Y, which is €2y, while the only closed one is that of €2,, and the
closure of the orbit €, is

Q=[]

jzr
We consider the filtration

In<87X) = I?STO)<57X> DD IT(Ll)(S7X) 2 11(10)(57X)7

where
I7(s,x) = {® € L(s,X)|®[g,,, = 0}.
Let
QW (s,x) =1\ (s, /101 (s, x)

be the successive quotients of the filtration. All [r(f)(s, X) and Qg)(s, X) are G x G-stable.

Let Ty be the Witt tower containing W. For any W’ € Ty, of dimension n’ = n—2r < n,
let G,y = G(W'). We identify W’ with a subspace of W isomorphic to W’. There is a Witt
decomposition

wW=UaeoWaU

where U and U’ are dual isotropic subspaces of dimension r. Let P. be the parabolic
subgroup of G stabilising U. The Levi subgroup of P, is isomorphic to GL(U) x G, so that,
if we denote M, its Levi component and N, its unipotent radical, we have isomorphisms

M, ~ GL(U) x Gy (2)
P, ~ (GL(U) x Gy) X N;.

12

Note in particular for r = 0 that U = U’ = {0}, W/ =W and P, = G, = G.
Let
St, =i (6, ' Py, Ni(G x G))

be the stabiliser of P-4, in i_l(Py)\G x G,
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Lemma 2.1 For a convenient choice of §, (specified in Equation (3) below), we have
St, = (GL(U) x GL(U) x A(Gy)) X (N, x N,) C P, x P,.
Moreover
QU (s,x) = 55, (x5 @ 75 @ (S(Gu) - (1@ )

where the action of G, x Gy on the space S(Gp) - (1 ® x) is given by (g1, 92)¢(g) =
X(det g2)¢(gs ' g91)-

PRroor: We let G/ = G,,.
Recall the Witt decomposition

W=UeaeWaU
and consider the Lagrangian
Z=Ux{0}a AW)e {0} xU

in W, @ W_. Since the action of G' on Q(W, @ W_) is transitive, there exists d, € é~such
that Z = Y d,.. Since any linear map from Y to Z can be extended to an element of G, we
can furthermore require that

Yo e U, 0p|awn(v,v) = (0,vd) € {0} x U
NI = idawr (3)
Vu e U, o |aw(u,u) = (u,0) € U x {0}

where d : U’ — U is an isomorphism. Note in particular that dy = idg. Following [Kud2,
Proof of Proposition 2.1, p68], we find that there is a bijection between the orbit €2, of Z
and the set

{<Z+7 Z—7 )‘)}

where Z4 is an isotropic subspace of W, of dimension r and
A :ZJFL/ZJr —>Zj'/Z_
is an isometry?l. The action of (g4,¢_) € G x G on this set is given by
(94,9 )21, Z-,0) = (2194, Z-g-,97 0 Aog ).
she stabiliser of (Z,,Z_,\) is

{(9+,9-) € G x G| g+ stabilises Zy and g; ' oXog_ = A}.

(2lin [Kud?2] it is an anti-isometry but, since W_ has the opposite of the form of W, here A is an isometry.

11



In our situation and with our choice of §,, we have 7, = Z_ = U, Zf/ZJr = W’ and
A = idy~. Hence, denoting pry,, the projection on W’ parallel to U’ & U,

St = {(9+a9—) € P. X Pr|gt|wriv oprys = g-|lwryv Oer/}
= (GL(U) x GL(U) x A(G")) x (N, x N,)

For further reference, an element of P, has the form

a b ¢
0 e b*
0 0 a

where b* depends on b, a and e and where ¢ satisfies an equation depending on a, b and e.
We thus have

a4 bi C4
g+ = 0 eyx 0% (4)
0 0 af

and the condition gy |w/ iy o pry = g—|wrv © pryy is simply e, =e_.

The description of the stabiliser allows us to describe the induced representations. If
g € St,, then p(g) = 6,i(g)d, ! = =n- m(ar( )) € Py. Let &, be the character of St, defined
by &.(9) = x(a-(g))| det a,(g)|°T2. Consider the morphism of G x G-modules

(s, y) — IHdeG(gsr)
f — ¢f 91792 fN’ 91792))d

where f € L(f)(s, X) is a representative of f. This morphism is an isomorphism (see [HKS,
Equation (4.9), p963]). Let § = (g+,9-) be an element of St, decomposed as in (4).
Then det(a,(g)) = detay deta_detey (where we recall that e, = e_). Since ey € G,
|det e, | =1 hence

Q) (s,x) ~Ind§ (x| . "2 @ x|.|"" 2 ® x)
~ Ind$5G, (Indi (x| "2 @ x| "2 @ X))

The 1nduct10n from St, to P, x P, is an induction from A(G’) to G’ x G'. Moreover, if
fe IndG ) X then f(hq, ha) = x(h2)f(hythi,1). Hence

Ind{ 57 x ~ S(G) - (1 @)
where the action of G’ x G' on S(G’) - (1 ® x) is given by
P91, 92)0(9) = x(det g2)(g5 " g9g1).

Hence
Ind$ (x| P2 @ x| P2 ey) 2 x| 2@ x]. e e Indi(XG,G
= x| 5 @] 175 @ (S(E) - (1@ X))
The result follows. O
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2.2 Simplicity of poles

We prove in our case the result of [KR, section 5]. We follow the same method. We denote
Xo the trivial character of F'*.

Proposition 2.2 Let 3, € H(G // K) ® Clq°, q~°| be the element defined by
0

= [JA—a 2t — a2,

i=1
For an unramified representation m of G, let w(35) be the scalar by which 35 acts on the
unramified vector in w. Then for all matriz coefficients ¢ of m and all standard sections
®(s) € I,(s), the function
(3s) - Z(s,X0, 7, ¢, P)

1s an entire function of s.

PrRoOOF: We divide the proof in several steps.

Step 1. By linearity of Z, we can limit ourselves to the case where ¢ is of the form

d(g9) = (m(g)m(g1)&, 7" (92)E))

where & and &) are spherical vectors in 7 and 7 and ¢;, go € G. We then have
Z(s.x07.60.9) = [ (<la)r(0)60 7 (0)60)0,(i(9,1,)) dg )
~ [ (7616, €100 1)) do
= et o [ 6(0)0 g T)ilor™ 07) g
since | det go| = 1 and ¢° is bi-K invariant, for all ki, ks € K,
= | @itk ok L)ilar 05 dg
= | #@.(ito. 1)tk Ra)ilar 05 dg
and thus

- /G #(9)W.(i(g, 1)) dg

where, for any h € H = G5,
U,(h) = / B, (hilkr, ka)i(gr", g51)) divdlky. (6)
KxK

Note that Wy is K x K-invariant section of I,,(s) which is not necessarily standard.
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Step 2. We consider in the algebra
A=CX, X|@H(G /| K) = C[X, X' @Clty,....t,]",

where H(G // K) is the K-spherical Hecke algebra of G, the element

o
3= - Xq o) (1 — Xq2t7).
i=1
We let G x G act on I,(s) through i, extend the action to H(G // K) x H(G // K) and
let any ¢ € H(G // K) act as (¢,1) € H(G // K) x H(G // K). We let A act on the space
I, ()51 of K x 1-fixed vectors of I,,(s) by the aforementioned action of H(G // K) and X
acts by multiplication by ¢~°. Note that action of 1 x G commutes with the action of A.

Proposition 2.3 For any standard section ®; with associated section Vs defined by (6),
we have

W, x5 € IO (s)KxK,
PROOF: We want to show the the image of ¥, 3 in each QY (s) = QY (s, xo) is 0 for
0 <r < rg. Wewill, as an illustration, do the first step separately in the case of a split
Hermitian space (in particular n = 2rg). Consider the projection induced by restriction to
the closed orbit:

Pr,, < I(s) = I{7(s) — QYO(s) =~ Ind§, (|.[**%) @ nd§, (].[*+%)
o, +— ((gl,gg) — @S(i(gl,gg))) ,

We have
pr,, (U 3) = pr, (Us) * 3
if we let 3 act only on the first term of the tensor product on the right side. On the other

hand, we have i

Indg, (|.[*"%) C Ind§(\)
where B is the standard Borel subgroup of G and A is the unramified principal series
representation with Satake parameter®!

3 1
s+ro—35 s+35
4 2,054 2)'

1
s+ro—35

(q

The element 3 acts on the K-fixed vector of this representation by the scalar

70

[[ g 2gtora)1— g zg=o24) =0,
=1

This means that pr, (¥, *3) = 0i.e. that U 3 € LSTO_I)(S).

BIA vérifier
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More generally, if we restrict the orbit of a section to €2,, we obtain a map
pr, : I(s) — dE5G, (. [**2 @ .72 @ C(Gr-sy)) =t Bi(s)

where C(G,,_2,) is the space of smooth functions on G, _s,.. There is a non-degenerate
pairing between Q' (s) and B,(—s — r) given by

<f1>f2> = /P <f1(91,92),f2(91,92)>cn_r du(gl)du(gz),

X P\GXG

where the internal pairing is the integration over G,,_, and the external integral is the
invariant functional for functions which transform on the left according to the square of
the modulus character. A straightforward density argument shows that ¢ € Qg)(s) is 0 if
and only if it pairs to zero against all elements of the subspace Qg) (=s—r) C B (—s—r).
In addition if ¢ € QY (s)X*K we can limit ourselves to elements of QY (—s — r)K*K_ Let
£ € Q) (—s — 1)K and 3, = 5‘X:q78. We have

(pr,. (Vs +3), f2) = (pr,(Ws) * 35, fo) = (pr,(Vs), fo * 37)-

Lemma 2.4 For any f, € QY (—s — r)5*% we have

fs*ﬁ}slzo'

PROOF: Since f, is element of a parabolic induction and fixed by a maximal compact,
it is determined by its value at the identity element I,. It is not difficult to see that
fs(I,) € S(G)En—r*Kn—r where K,,_, = G,,_, N K. Let 7 be an irreducible admissible
representation of G,,_.. The action of S(G,,_,) on 7 determines a G,,_, X G,_,-equivariant
map

pir 2 S(Grey) — Hom™ ™ (1. 7) ~ 7V @ 7

where Hom®°°™" is the space of vector-space homomorphisms fixed by a compact open

subgroup of G,,_,. X G,,_.. The two factors of GG,,_, X G,,_, act respectively by pre- and
post-multiplication on the elements of Hom*™*™®(7, 1) so that each has finite dimensional
image. A function ¢ € S(G,,_,)Kn—>*En=r is nonzero if and only if there exists an irreducible
admissible representation 7 such that 7(¢) # 0, i.e. such that u.(¢) # 0.

Consider fs x3Y. Let T be, as above, an irreducible admissible representation of G,,_,.
The map p, induces

Wd(r) : A%, (1. 75 @15 ©.8(Gusr) — MG (. F 0] S o or)

which verifies Ind () (fs)(Ln) = p-(fs(1,)). The latter induced representation is isomor-
phic to )
Ind§, (. i @ ) ® Ind, (|. I 7: @ T)

15



which can be embedded in
Ind% \; @ Ind$ A,

where the Satake parameters!¥ are

e 1 o3 gl _ _ .
>\1:(q i 2,4 B 2,..,4 o*a 7‘7q V17"'7q VniT)

_ —s—1 s 3 —s+i-r 1 Un—
)\2_(q 2,q 2,54 2 » q 7"'7an)

(where (¢**,...,¢"~ ) is the Satake parameter of 7). The operator 3! acts on the unique
line of K x K-invariant vectors of this representation by the scalar

T

H(1 — g I (1 — ¢ g 2g ) - (factor) = 0,

=1

But Ind(u,)(fs) is a K x K-invariant vector in this representation so that Ind(u,)(fs)*3s = 0
and

pr(fs % 35 (1n)) = Ind(pr) (fs # 35) (1)

= (Ind(pr)(f5 % 3)) (1)
= 0.

Since this is true for all 7, we have f, *3/(I,) = 0 and thus f, * 3/ = 0. [J Lemma 2.4

We have pr,. (U, * 3) = 0 for all » > 0, which means that the support of Wy « 3 is included
in g, which concludes the proof. L] Proposition 2.3

Step 3. Consider the isomorphism
pry : I(s) — QU(G) ~ S(Q).

Proposition 2.3 shows that, for a fixed s, we have pry(¥,*3) € S(G)**X. Its support could
vary with s. The following proposition shows that the support of pry (¥, * 3) is bounded
uniformly in s.

Lemma 2.5
pro(¥, *3) € Clg®, ¢ ] ® S(G)**F = Cl¢*, ¢*] @ H(G /] K).

Proor: Using the Cartan decomposition, write
pro(We+3) = Y ea(s)Ln,
AEA

where L, is the characteristic function of the double coset K¢g,K and A is the usual
semigroup.

MIA vérifier
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Lemma 2.6

ex(s) € Clg®, ¢
and thus is an entire function of s.
ProoOF: We have

q@wmwaﬁamwwm»m@@. (7)

The integral on the right is a (finite) linear combination, with coefficients in C[¢®, ¢~*] of
integrals of the form

/G/G(\IJS *3)(i(g, 1n)i(g0, 1)) - Lu(g0) dgo - La(g) dg (8)
N /G /G<‘1’s +3)(i(90, 1)) - (9™ 90) - La(g) dgodg
:Lé@w@w%h»w@m%

where ¢ is a function depending on A and p. Since this function is a (finite) linear com-
bination of characteristic functions of cosets gk, the integral is the last line of (8) is a
(finite) linear combination with coefficients in Clg®, ¢~*] of integrals of the form

/ / D (i(gka In)i(kla kQ)i(gfl: 92_1)) dkidkydk.
K JEKxK

But &, is standard, hence it is right-invariant under a fixed compact open subgroup H,
uniformly in s. This means that the set of g necessary to obtain the full integral (7) is finite
and fixed. The elements ¢g; and gy are fixed by the matrix coefficient ¢ we are considering
and thus the integral (7) is a (finite) linear combination of ¢** with ¢ € Z. O

Let then A; be the set of A € A such that ¢y # 0 and for A € A let
Dy ={se C:cy(s) =0}.

If A € Ay then D, is a numerable subset of C. Hence U)\e A D, is numerable and thus
different from C. Let sy € C be such that YA € Ay, ¢x(so) # 0. Since

pro(Wey #3) = 3 ealso) - Ln

AeA

has compact support, A; is finite and thus for all s € C, pry(¥s * 3) has support in
Unea; L. J Lemma 2.5
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Step 4. Returning to the Zeta integral in (5), we define

Z*(s, X0, ™, ¢, ® /qb YW, *3)(i(g, I,)) dg.

This integral is equal to the scalar by which pr,(¥, * 3) acts on &, and is thus an entire
function of s because it is an element of Clg®,¢ ®]. On the other hand, if Re(s) is large
enough we can unfold

z" (S X0, 7, ¢7 /(b ))dg
_ﬂ-(as)Z(‘SvXOaﬂ-?qba )

where 7(35) is the scalar by which 35 = 3! X acts on the spherical vector of 7. Since

=q— S

Z*(s, x0, ™, ¢, @) is an entire function of s, this completes the proof. [J Proposition 2.2

2.3 The conjecture holds for the trivial representation in the
even dimensional tower
Definition 2.7 ([HKS, Definition 4.6, p963]) For sy € C, x a character and © and
wrreducible admissible representation of G, we say that m occurs in the boundary at the
point s = sq if
HomeG(Qg)(Sm X)v T (X ' ,/T\/)) 7& 0

for some r > 0.

Proposition 2.8 Let m = 1 the trivial representation of G, wg an uniformiser of £ and
qe = |wg|. We will denote X"(E*) the set of unramified characters of E*. Let

kim
log qr ’

X(1) = {(s,x) € Cx XYE") |x(wg) = (—1)’“,32%—7“— 1 <7’<T0}

with 1 <r <rgand k € Z.
Then 1 appears in the boundary at s if and only if (s, x) € X(1). Moreover if (sg, x) &
X(1), for any standard section ® the operator Z(s, x, 1) is holomorphic at s = sy and

Homgywa(1n(S0,X), 1 @ x) = C- Z(s,x,1).
PrOOF: We know from Lemma 2.1 that
Homga (@) (5. %), 1@ x) = Homaxg (Ind55G, (x5 @ x5 @ (S(6) - (1@ ) ).
1® x)
~ HomGXG<1 ® X_l

mdsG, (x . T e T e (CNE@) - (texT)))
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~ Homys, « s, (1 X X_l,

n—r n—r

X2 @7 TTETE @ (OG- (Tex )

because the Jacquet module for 1 ® x ™' is 1 ® x~! (as a representation of M,)
~ Homgrw)xcrw) (1@ x 2, x . |t L)

because if g corresponds to (a,g’) in Equation (2) then det g = det adeta=!det ¢’ so that
x(det g) = x(det a)?x(det ¢') and because dim Homgrvo(1 @ x 1, C®°(G") - (1@ x 1)) =1
(see [HKS, end of section 4, p964] for general 7).

It follows that 7 occurs in the boundary at s if and only if y is unramified, y(wg) =
(=1)* and (s — 2 +r)log g + kim = 0, as required.

Suppose (sg,x) € X (1), i.e. that 1 does not appear in the boundary. Let k be the
maximum order of the pole of the Z integral in s = sy (as ® varies). Thus

T_k(s,x,1,P)
(s — so)k
where the 7; are holomorphic functions of s in a neighbourhood of sy and 7_, is non-zero.

The leading term 7_j is itself an intertwining operator. If we had k£ > 0, that is, if the Z

integral had a pole in s = s, the restriction of 7_; to IT(ZO)(S(), x) would be zero because the
Z integral is convergent on

I (s0,x) = Q) (s, x) == S(G) - (1@ x)

thus convergent for every standard section ®(s) such that ¢ € L(lo)(s, X). This means that

Z(SaX717(I)): +"'+7—0(S7X717<I>)+"'

we would have a non-zero intertwining operator in HomGXG(Q,(f)(s, X),1 ® x) for some
r > 0, which is impossible by hypothesis. Thus k£ > 0, i.e. the integral is entire for any
® € I,,(s0, x). Moreover, Z(sg, x, 1) is a non-zero intertwining operator between Lso)(so, X)
and 1®y, which means that HomGXG(],(LO) (80, %), 1®X) is non zero and thus has dimension
1 and that Z(sg, x, 1) is its basis.

Let A € Homgya(I(S0,%),1 ® x). Its restriction X\ to L(qo)(so,x) is a multiple of
Z(s0,x,1). Since 1 is supposed not to appear in the boundary, if A # 0, then A # 0, i.e.
A\ = cZ(s0,x, 1) for some ¢ # 0. Since A —cZ(sg, X, 1) is zero on 17(10)(80, X), it must be zero
everywhere, i.e. A = c¢Z(sg, x,1). O

Theorem 2.9 Let m be an even integer and xq the trivial character of E*, then
Vm < 2n, Homgxa(Ra(V,,;x0),1) =0,

so that by (ii) of Proposition 1.6

Homgxa(Rn(Vanias X0), 1) # 0
and thus m_ (1) = 2n + 2. Since m} (1) =0, we have

mi (1) +my (1) = 2n + 2.
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PROOF: By (i) of Proposition 1.6, it suffices to prove that
Homg (R (Van, X0), 1) = 0.

From Proposition 2.8 we know that

Homg e <In (-%Xo) ,1>

is non zero and generated by

n
Z(~5w01)
9 X0

which is holomorphic at —3. The element of I,,(—%, xo0) equal to 1 on K is x, 5. As seen
in [Li, Theorem 3.1, p186] and [LR, Proposition 3, p333] we have

n °
Z <_§7X0717¢ 7X07é> 7é 0

and thus Z(—%, x0, 1)(xog) # 0. Let

gb - HOmeG(RTL(%:N X0)7 1)

and

~ n n
¢=¢oM, (—§,X0> € Homgxe (In <—§;Xo) ,1> :

We have x, s € R, (Vo™ xoa) = ker M(=%,x0) so that é(Xo,é) = 0. This means that
¢ = 0 because it is a multiple of Z (—g,XO, 1). We know from Proposition 1.11 that the
application

My (‘%Xo) 1 <—g7>(0> — Ry (Vs Xo)

is surjective so that ¢ = 0. U

2.4 Half of the conjecture

Theorem 2.10 Let w be an irreducible admissible representation of G(W), then
mi (m) +my (m) = 2n + 2.

PROOF: Fix mg € {0,1}, a character x of E* such that x|px = eg‘/)F and suppose we have
two Hermitian spaces V" and V,~ such that

O, (m,V.") £ 0 and 6, (m,V, ) #0,

with dim V" = a, dimV,” = b, a and b of the parity of my, e(V,}) =1 and €(V}, ) = —1.
Let V,_ be the same space as V,~ with opposite form and

W, =V, oW, W,=V, W, W, =V,_ oW
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We denote w,,, (resp. we,y, wp— ) the representations of G' induced by the representations
Way (T€SP. Wh gy Wh— 1) of Mp(W,,) (resp. Mp(W,,), Mp(W,, _)). By hypothesis on V,* and
V,~ we have two non-zero (and thus surjective) elements

A € Homg(wgy, ), p € Homeg(wpy, ).

Let go € GLgp(W) be an F-automorphism of W which is conjugate-linear as an E-
morphism. Then Ad(go) is a MVW involution on G. Conjugating p and 7 by Ad(go)
we get a non-zero morphism

p' € Homg(wy,, m")

and thus a surjective
=A@ p" € Homgyg(Way ® wy,, @ 7).
Composing vy with A and projecting on the trivial subquotient produces a non-zero element
v € Homg (way ® wy, 1).

We have
\/ Y —_— Y 5
wbﬂﬂ — wbﬂl} — Wb7_’w.[ ]

On the other hand we can identify Mp(W;) and Mp(W, _) in which case we get

Lemma 2.11
Zqu = Zb7_7X71

Where we added a subscript to i to remember which Hermitian space is involved.

PROOF: The space V,~ can be decomposed as an orthogonal direct sum of a split space and
zero, one or two anisotropic lines. Since the splitting 7 is additive, we consider separately
the split and the anisotropic case.

We first consider the case in which V" is split. We will need some additional notations
(see [HKS, n.10, p950]). For any additive character n of F' and a € F' we will let 7, be the
character such that n,(z) = n(ax) vr(n) € ps the Weil index of the quadratic character

x — n(2?) and yp(a,n) = 7F "“ . Recall that (see [HKS, n.11, p950])
fYF(ab7 77) = (CL, b)F’}/F(aW 77)7F<b7 77)

2
the integer such that i(g, I,) € Pyd,(5)i(G x G). Since V" is split we have (see [HKS, 1.15,

p953]),
Zb,x(g) = (Lb(g)7ﬁvb*,x(g))

Let  be the character such that n(z) = ¥(3z) (ie. n = w%). For g € G, we denote j(g)

with |
ﬁv{vx(g) = x(z(9))yr(no RV)—J(g)

[BIThe first isomorphism because wp,y is unitary, the second because of the definition of r(g) in 1.3
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where and
vr(no RV) = (A, det V, ) pye(=A, 1) yp(—=1,17) "0

Let
¢ : Sp(W) x C' =~ Mp(W,) — Sp(W,,_) x C' =~ Mp(W,,_)

(g, 2) — (g, 2)
be the identification. Then x(z(g)) = x~'(z(g)) and

Ye(=A,n)yr(—1,7)"1 = <7F(77—A))

Yr(n-1 Yr(m
= (A, =D pye(=A,n)(=1, =1)pyr(=1,7)""
= (Av _1)F7F(_A7 n)fYF(_L )71

thus, since det V,~ = (—1)"det V;", we have By (9) = By~ ,-1(g) and

© O lpy = lp— x~1

as claimed.
We now consider the case in which V;~ is an anisotropic line. We identify V,~ with
FE and if (z,y) € E? we have (z,y) = aTy for some a € F. If g € G(V,”) = E', we
decompose g = = + dy (with z,y € F') and we have (see [Kudl, Proposition 4.8, p396])
By (9) = x(0(g = 1))yr(Ray(z — 1), n)yr(n)(A, —2y(1 — z))p
= x(0(9 — 1) vr(2aye—1)) (A, —2y(1 — 2))r

and
By 1(9) = X(8(g = D)vr(n-2ayte-1) (A, =2y (1 = 2)) .

It is immediate that ﬁvbf_»(fl(g) = ﬁvbjx(w and

PO lpy = lp—x1
as claimed. ]

Let
Vip-=Vr eV, Wa =W, oW, _

and, as before x( the trivial character of £*. We denote, as above, wq, — , the represen-
tation of G induced by the Weil representation w,p, — . Let

it Mp(W,) x Mp(W,,_) — Mp(W,,-)

[Slfor this single proof, A € F* is the square of an element § € E* — F* which is used to identify the
Hermitian and skew-Hermitian spaces
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be the natural map whose restriction to C' is the product. Then!”

E*wa7b7_7w = Wa,p @ Wp— -
According to [HKS, Lemma 5.2, p964],

Tab—xo =10 (Tay X Ip—y-1)0 A : G — Mp(Wyy ).

Thus as a representation of G we have

Wa,xy @ Wp,— =1 = Wab,—,xo-
We thus have a non-zero element

v € Homg (e, ® wy,, 1) ~ Homg (Wap, - yo, 1)-

We have dim V,,;, - = a + b even. Let us compute €(V,;_):

(a+b)(a+b 1)

E(V ) 1 det Vab—
a(a—1)+ab+ba+b(b—1)

)5 det V) det V-

(1)
= (=1)
= (-1 +abdetw( 1)’ det V,~
= (-1
= (=1)

a(a—1)4b(b—1) 1)+b(b 1)

1)ob+b(—1) 5 det Vi (—1) "7
1) He(V, ><v;>.

Since both ab and b have the parity of mg we have (V) = ¢(V.")e(V,”) = —1. Thus,
according to Theorem 2.9
a+b>2n+2

as needed. O

2.5 Criterion

Definition 2.12 For a given m € {0, ...,2n}, let m' = 2n — m. The space V3, is said to
be complementary to V. (the space V,, has no complementary).

Remark 2.13 If VX and anf, are complementary, then s; = m;” = 2"73“" = 50 =

—S0-

We give the composition series for I,,(sg, x) in each case where it is reducible, with indica-
tion of the action of the operators M*(so, x). Implicitely we have m’ = 2n — m. All these

[Ms it relevant ?
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results are taken from [KS].

[
Ru(Vy . x) M* (%, X) (R (Vay, X)) = M*(5,x)(1(5, X))
I [
M*(%?X)(Rn(‘/?—’:?X)) Ker]\/[*(—%,x) m = 07 S0 = _%
M* (=50, X)(Rn(Vi, X))
I
R,(V.F,x)
I -
0 Ru(Viix) © Ru(Viy,x) C Ln(s0,X)
< — [
Rn(vn;7X) Ker M*<807X)
I
M*(=s0,x)(Rn(V.,, X)) I<m<mn, -5 <5 <0
M0, x)(Ra (V5 X))
I
Ro(V,5 %)
> <
0 R, (V.F,x) @ R,.(V, ,x) =1(0,x)
| <

Ker M*(0, x) R.(V,7,x)

n

H
M0, x) (Ru(V,7 X))

Rn(Vn;FaX)
s <
0 CR.(V,E,x) N Ru(V,, x) Ru(Vir s x) + Ru(Viy,x) = Ln(s0, )
I < -
Im M*(—s0, X) RV, X)

m

KerM*(sO,X) n<m<2n,0<so<§

KerM*(g,X)
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In each case an inclusion sign means that the quotient is non-zero and irreducible. Note
that V;~ does not exist, but we define the space R,(Vy ,x) as the null space in R, (V' x).

Theorem 2.14 Fiz mo € {0,1} and a character x of E* such that x|px = EE?F Suppose
that
dim Homegyw (1 (80, ), 7@ (x - 7)) =1

for all sy in
(-5.1-%..3-13
(5] w1,
i.e. for all sg € "2 4 Z such that |so| < 5. Then

mi (m) +my(m) = 2n 4+ 2.

PROOF: Fix mg € {0,1} and a character x of E* such that x|px = €7 For 0 <m’ < 2n,

m—-n

we put m = 2n —m’ and recall that s = ™5
The case m} (7) = 0 is immediate because it implies 7 = 1 and Theorem 2.9 says that
m(m) = 2n + 2.

If s = 0 we have I,,(so, X) = R.(V.F, x)+ R (V..

", x) and thus, thanks to the hypothesis
of the theorem, at least one of

HomGXG(Rn(Vrf7 X)7 ™ (X ' ﬂ—v))
is non zero. This in turn means, thanks to Proposition 1.9, that
min(my (), my (7)) <n+1

(the bound is n + 1 and not n in case m and n have opposite parity). If so > 5 then
I,,(s0, x) is irreducible and thus

Rn(an,X) = I,.(s0, X)-

By the persistence principle (see Proposition 1.6, point i) since we have m > 2n >
min(m; (7), m; (r)), one and thus both

Homgxa(Ra(Vyy, X), 7@ (x - 7)) # 0.

This means max(my (7), m (7)) < 2n + 2 — my.

Let € = £ be such that m$ (7) = min(m; (), m (7)). We let m’ be mS(7) (and choose
m and sg accordingly). As observed above, the case m’ = 0 has already been proven.
If m" = 1, then from Theorem 2.10 we have m_“(w) > 2n + 1 and thus, thanks to the
preceeding bound, m;“(7) = 2n + 1 (observe that if m’ = 1 then mo = 1).

We now suppose 2 < m' < n,ie. 0 < 59 < 5 — 1. By Theorem 2.10 we thus have

() = 2n+2—m' > n+ 2. Since m' is the minimum of mf(ﬂ), we have

My

Homgwa(Ra(V5 5, x) @ Ra(V, 5, x), 7@ (x 7)) =0 (9)
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(here R, (V;, x) = 0 as defined above). This means that any element of Homgy (1, (—So —
1L,x),m® (x - 7)) factors through

Li(=s0 = LX)/R, (V5 x) @ Ra(Vi7, x) = Im M*(—sp — 1, x)

m

and thus
dim Homgyxg(Im M*(—=so — 1, x), 7 ® (x - 7)) = 1.

On the other hand, let
p € Homgya(In(so + 1, %), 7 @ (x - 7))
with o # 0. We know from (9) that
pro M (so+1,x) =0

hence p must be non-zero on Ker M*(so + 1,x) = Im M*(—so — 1, x). Since s + 1 > 0,

the space Im M*(—so — 1, x) is a non-zero submodule of R, (V, {,) and thus

R, e 70

hence
my(m) <Km+2=2n+2—m"

We thus have m (7) +m; (1) = 2n 4 2 as claimed.
The only remaining case is m’ = n + 1. We thus have m =n — 1 and sy = —
proof is similar to the preceeding one. If

1
ne HOHIGXG (In (5, X) , TR (X . 71'\/))

is non-zero, then its composition with M *(%, X) is zero, this means that the restriction of

Ker M*(3, x) must be non-zero. Hence, for the same reason as above, m} (r) = my () =

n + 1. ]

%. The
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