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Abstract

In the last decades, air quality monitoring networks
have been increasingly installed around the world,
with designs which are developed often on a local
basis. For example, the Furopean Community gives
general rules for the member states which demand
local governments to design and manage such local
networks.

As a result, even if modern instruments are rather
precise, the EC monitoring network is very expensive
and appears rather heterogeneous from the point of
view of spatial representativeness, human risk expos-
ure etc.. Thickening the network at the global scale
is an unaffordable task.

Satellite measurements are then an interesting data
source because of homogeneity over time and space
and fized cost.

Along these lines, in this paper, we discuss statist-
ical issues in air quality indexes and spatio-temporal
modelling for merging ground level data, computer
simulation outputs and satellite data.

1 Introduction
The perspective of defining a European "common
monitoring methodology" for air quality is develop-
ing in these years from the level of "common meas-
urements methods" to the level of "common inter-
pretation methods".

In particular, the European Community started by
regulating measurement instruments (e.g. European
norm (EN 12341)) in the 1990’s and recent pro-

jects (CiteAir, Interreg I1IC) consider common index
methodology. Moreover Directorate General - En-
vironment of European Commission [4] envisaged a
common assessment methodology, which makes air
quality fully comparable in time and across different
countries.

This paper is then focussed on the level of "com-
mon interpretation methods", which means here, dis-
cussing statistical issues related to data diversity in
air quality with special reference to "common spatio-
temporal modelling" aimed at understanding import-
ant relations by means of parametric models and dy-
namical mapping. Moreover, we discuss "common air
quality indezes” assessing the network heterogeneity
around the European Community.

To this considering data from three diffeerent
sources is important. The first, more traditional data
source, is based on ground level air quality monitor-
ing networks which have been increasingly installed
around Europe and the world. Since they are de-
signed and managed mainly on a local basis diffi-
culties of comparisons may arise.

The second data source isa based on simulation
models both at the regional and continental scale
which are increasingly used, and give regularly spaced
data both in time and space. Bias often arises and
call for statitsical calibration.

The third more promising data source is abased
on satellite data which are very interesting because
of homogeneity over time and space and fixed cost.
Nevertheless, optical data are subject to meteorolo-
gical conditions.

In this frame, spatio-temporal modelling is con-
cerned with a number of statistical issues which first



are related with spatial correlation among the ob-
servations in different locations. Moreover data are
usually correlated over time so we have serial correl-
ations. In order to manage complexity an important
assumption to be considered is that of separability
that is spatial correlation is constant over time and
serial correlation is constant over space.

Since we are going to consider multiple responses,
we need multivariate model machinery which can be
managed by hierarchical models. Thanks to the state
space model representation we also manage data with
systematic missingness, arising from sensitivity to
meteorological conditions of satellite data.

The remaining part of the paper is divided in four
case studies which discuss data diversity in environ-
mental monitoring.

The first case study is related to instruments het-
erogeneity and calibration and arise from North-
ern Italy air quality pollution networks in the early
2000’s. It show that air quality modelling and cal-
ibration of different instruments may be performed
ex-post. This is important not only in day by day
monitoring but also in retrospective trend and time
series analysis.

The second case study considers design heterogen-
eity of air quality networks at the European level. It
is especially focussed on the effects of this kind het-
erogeneity on air quality indexes which are a very
useful tool for communicating to wide audience, in a
simple way the complex, multidimensional and spa-
tially dispersed concept of "air quality". Since air
quality indexes are often used for comparisons, we
focus on network design which may influence the in-
dex in various countries.

The third case study covers spatio-temporal model-
ling of computer output data and the EM algorithm.
It show estimation and dynamical mapping by using
the freely available software STEM.

The forth case study considers satellite data and
coregionalization and large problem EM algorithm.
This level of complexity is often tackled by the
Bayesian approach. In this paper we use the clas-
sical likelihood approach by resorting extensively to
the EM algorithm, here developed at various levels of
the hierarchy and coupled with coregionalization.

2 Instrumental heterogeneity

Measurement heterogeneity may arise both over
space and/or time because of relevant instrumental
differences and biases. For example, European gen-
eral rules for the member states demand local gov-
ernments to design, install and manage local monit-
oring networks, as a result, considering Italy, this is
accomplished separately by the 20 local governments
"Regioni".

Particulate matters (PM;jp) monitors have been
greatly improved in the last years. In the 1990 monit-
ors based on a tapered element oscillating microbal-
ance (TEOM) were popular in EU because of the
low cost, automatic operations and high frequency
sampling. After they revealed to be biased with
bias size depending on climate conditions, European
Community directives asked to move to the method
of reference for sampling and measuring PMyg con-
centrations. This is given by the European norm
(EN 12341) and is based on the collection of the
particulate matters on a filter and the determina-
tion of its mass following the gravimetric principle:
the high- and low-volume gravimetric samplers (HVG
and LVG) comply with the above mentioned regula-
tion. Moreover, the norm suggests standardizing the
measurements coming from other samplers that don’t
respect the gravimetric method and allows also for so-
called B—TEOM . We may then have time series with
structural changes because of the change in instru-
ments and/or different stations equipped with differ-
ent instruments.

2.1 Calibration

Considering the data in Po Valley, 2003, the linear
dynamical calibration model of [5] is given by a ran-
dom intercept and a constant slope

)

Yac (57 t) _
Yyr (57 t)
where the "true value" u (s, t) is based on a k —dim
EOF decomposition:

u(s,t)

eq (s,t) )
a(t) + Bu(s,t)

ET (S, t)

u(s,t) =d(s)z(t)



The common pollution factor z(t) has a stable
Markovian dynamics over time:

2 =Az_ 1+

Information on « (¢) and § is accumulated around
the map, thanks to the spatial correlation of the er-
rors € which is covered by the empirical covariance.

The hidden component z is estimated by 2 (t) =
E;_1(2(t)|Y) which is given by the Kalman
smoother.

Maximum likelihood estimates are obtained by
Newton Raphson algorithm, giving

a B A log(a?)

232 034 0996 -1.28

0.03 0007 0002 0.0
log(02,) loglo2,) log(o?) log(02,)
2.16 038 052 435
0.08 0.15 0.16 0.12

M LFE parameters and standard errors for k = 4.

2.2 Conclusions

In the perspective of defining a FEuropean "common
model based monitoring methodology”, which makes
air quality comparable in time and across different
countries, ex post calibration based on stochastic
modelling may be used to reconstruct comparable
time series and improve with respect to those situ-
ations where fixed rules for calibration are used.

3 Network heterogeneity

In this section, we consider some issues related to
the influence of network heterogeneity with respect to
air quality indexes and comparisons at the European
level.

In particular, we consider an example of three
important regions around Central and Southern
Europe, which are subject to different climate, dif-
ferent industrialization and different administrative
rules.

Following [1], we consider the North West side of
Po Valley, Italy, of Fig. 1, which is heavily polluted
and subject to reduced air circulation caused by the
C-shaped mountain structure. Using data from 2005,
we compare this with two regions from the European
central plane, namely Berlin-Brandenburg in Ger-
many, Fig. 2, and Masovia in Poland, Fig. 3, which
are subject to Atlantic air circulation.

Figure 2: German Region of Berlin-Brandeburg.

The network heterogeneity arises here because sta-
tion density around the land and monitor type per
station are markedly different in the three regions
considered. In particular Tab. 1 shows that the three
networks are country unbalanced and sensor unbal-
anced.

3.1 Air quality indexes

Bruno and Cocchi [2] and [3] introduced a general
technique for building air quality indexes related to



Figure 3: Polish Region of Masovia.

Italy: Germany: Poland:

Piedimont- Berlin- Masovia

Lombardy | Brandeburg
Benzene 21 6 2
CcO 124 20 7
NO2 184 36 12
PMio 79 31 18
O3 86 26 8
SO2 75 20 11
N. Stations 199 41 21
Area 49°000 km?* | 30°000 km?* | 35000 km?

Table 1: Year 2005 — Number of stations according
to the sensor.

.
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Figure 4: Maxmax index for Italian region, 2005.

the well known air quality index (AQI) from USEPA
and European research projects known as CityAir
and Interreg III. We consider here the severe expos-
ure daily index commonly denoted by Mazxmaz:

[ (SP.MM) = max [max (Xspdﬂ

s 2 Up

where the symbol p stands for pollutants; namely
Benzene, carbon oxide (CO), Nitrogen dioxides
(NO3), particulate matters (PMjg), Ozone (O3) and
Sulphur dioxides (SO3). Hence the quantity X, is
the concentration of pollutant "p" at station "s” on
day "d". The denominator u, is the standard limit
value for pollutant "p".

The Maxmax index is useful for characterizing crit-
ical situations and may be plotted by pointing out
the critical pollutant which is the index maximizer
for each day. For example, it is clear from Fig. 4-6
that the Italian pollution is much higher and obeys
to a stronger seasonality pattern. In summer Ozone
is the critical pollutant while in winter the critical
pollutant is PM7y as a consequence of the climatic
stability and lowering of the mixing boundary layer.

3.2 Spatial averaging

As long as Mazmazx is a measure of severe exposure
and should be used by decision makers for ad hoc
measures, milder indexes are sometimes required by
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Figure 5: Maxmax index for the German region,

2005.

policy planners. We consider here two different ways
of spatial averaging based on the median operator.

The first one is the spatial median of the worst pol-
lutant, which is given by

X
I(SP.mM) = median {max <Sm)]
s P Up
This index is shown below to be appropriated for as-
sessing the spatial or network variability. The second
one is the worst median pollutant, which is given by

X
I(PS.Mm) = max {median (wd>]
P

s Uy

and is a valid alternative to the Marmaz index for
air quality assessment and comparisons..
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Figure 6: Maxmax index for the Polish region, 2005.

In order to appraise network heterogeneity, [1] pro-
posed the following proper dispersion index, which is
given by the one’s complement of two indexes ratio

as follows
I, (SP.mM)

I, (SP.MM)
For example Tab. 2 shows the differences in average
and dispersion of the considered regions.

V=1-

Italy Germany Poland
T (SP.MM) 1.91 1.01 1.33
I(PS.Mm) 1.04 0.70 0.78
V=1-1gpias 072 031 0.48

Table 2: Annual average of considered indexes.

3.3 Conclusions

Simple indexes like above BC' index may be used for
synthetic communication of daily health risk related
to air pollution and regional comparisons.

In the perspective of defining a European "common
index methodology ", which makes air quality compar-
able in time and across different countries, we suggest
using companion indexes which can be used for "dia-
gnostics" as shown by index V' above.

4 Simulation models

4.1 Model structure

Computer model outputs are particularly useful for
mapping because they are available on fine and reg-
ular grids and do not have missing values.

The final output considered here is given by daily
concentration fields of some primary and secondary
pollutants defined on a regular 4K'm by 4Km grid
and given by the computer model chain of Fig. 7,
which is composed by

1. A meteorological module based on Minerve and
Surfpro models (developed, respectively, by Aria
Technologies and Arianet) with inputs on geo-
graphical information from Corine Land Cover
project.
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Figure 7: ARPA Piemonte model chain.

2. An emission module based on Emission Manager
model (developed by Arianet) with inputs from
the regional and national Emission Inventories.

3. A chemical-transport module based on FARM
(Flexible Air Quality Regional Model by
Arianet).

Although the quality and the reliability of such
computer-based data is an important point, this issue
is not taken into consideration here, and the covari-
ates to be used in the trend X, are chosen among a
set of gridded variables that are the intermediate or
final output of the EMCT deterministic model chain.
In particular, the set of daily variables under con-
sideration includes meteorological fields, particulate
primary emissions (PPM in g/s/Km?) and concen-
trations (SimPM in pg/m3) for year 2004.

4.2 Modelling
We use a measurement error equation
y(s,t) =u(s,t) +e(s,t)

The underlying “true” local pollution level (s, t) has
the following structure

u(s,t) =X (s,t) B+ 2zt + w(s,t)

where X comprises both computer model outputs
and other covariates (e.g. altitude)

The purely geostatistical component w has a Ma-
tern correlation structure given by

Covw(s,t),w(s,t)] =02Cs(]s — &)

Moreover, z; has a stable Markovian temporal dy-
namics given by

2 = Azg 1+
The parameter vector
U= (B,02,A,%,,0,02)

is estimated by Fasso et al. 2008a and by the G-EM
algorithm and bootstrap confidence intervals.

Remark 1 The results are much more stable then
NR likelihood optimization because most parameters
are updated by closed form formulas.

Remark 2 STEM software is an R library, developed
by Cameletti, available at CRAN repository of R-
project.

Remark 3 Bootstrap SE have been computed using
a cluster based on 10-pentium PC’s and snow library
for distributing the job in R language.

4.3 EM algorithm

The EM algorithm is a numerical technique for max-
imizing complex likelihood functions which is partic-
ularly suitable for hierarchical models. It is based on
iterating an E — step and an M — step.

Using a provisional value of the parameter vector
U, say ¥;_1, the F — step gives the expected loglike-
lihood conditional on all observed data:

Qj-1 (V) =Ey,_, (log L(¥)]Y)
The M — step is an update step:
U, =argmax Q;_1 (¥)

Thanks to hierarchical modelling we have a simpli-
fied optimization problem. To see this partition

v = ("IIX; \I,zy \ij)
and, accordingly,

Qi1 (¥)=Q,—1 (Ix)+Q,—1 (V) + Q-1 (T,)



Moreover, the first two quantities have closed form
formulas and only 0 requires numerical optimization.

Applying this algorithm EM to PMjo data for
2004, described in [6], one would get the parameter
estimates of Tab. 3 and 4 where some coefficients are
constant over seasons and others different winter and
summer values.

Winter
Estimate SE  95% CI bounds
Intercept 3.237  0.046 3.147  3.325
PPM 0.040  0.012 0.017 0.062
SimPM 0.239  0.019 0.203 0.275
Mixing height  -0.133  0.108 -0.364 0.072
Altitude -0.822  0.060 -0.948 -0.701
Summer
Estimate SE  95% CI bounds
Intercept 2.417  0.071 2.185 2.649
PPM 0.093  0.008 0.080 0.109
SimPM 0.233  0.016 0.204 0.268
Mixing height 0.191 0.076 0.047 0.335
Altitude -0.252  0.052 -0.348 -0.146

Table 3: Seasonal component estimates.

Estimate SE  95% CI bounds
03, 0.078 0.001 0.075 0.080
0 0.023 0.002 0.019 0.026
a§ 0.078 0.002 0.074 0.082
G 0.747 0.038 0.651 0.806
X 0.054 0.004 0.045 0.062
o -0.434 1.074 -2.544 1.551

Table 4: Nonseasonal component estimates.

4.4 Mapping

Using the estimated, the map is computed by the
dynamical Kriging equation

Y (s,t) =E;j_1 (Y (s,t)]Y)

for every s. This gives the dynamical map of Fig. 8
with standarda errors assessing the mapping uncer-
tainty as in Fig. 9.

Figure 8: Jan. 30, 2004 - PM - log scale.

Figure 9: Jan. 30, 2004 - Bootstrap SE of PMiq -
log scale.

4.5 Conclusions

On the one side computer model outputs may effect-
ively be used to increase the spatial representative-
ness of ground level monitoring networks. On the
other side integrating network data and simulated
data may be used for validation and understanding
of the computer model behavior.

The EM algorithm is a useful tool for separable
spatio-temporal model estimation as it reduces the
dimensionality of the related numerical optimization
problems.



5 Satellite data

Satellite measurements are an interesting data source
because of homogeneity over time and space and fixed
cost. For example, MODIS satellites, known as Terra
and Aqua give, twice a day, the so-called aerosol op-
tical thickness (AOT) which is reported at 10 x 10
km? resolution and may be used to get information on
airborne particulate matters PM;g and PMs 5 (Chu
et al., 2003). AOT are less precise than ground-level
measurements of particulate matters based on gravi-
meters, but can be calibrated using ground-level data
on PM;g and PM, 5 (Koelemeijer et al. 2006, Wang
& Christopher, 2003). Unfortunately AOT depends
on cloud free sky. So missing data are the rule rather
than the exception and using the previous regression-
type approach does not work.

Hence we move to a multivariate spatio-temporal
model which covers missing data in the response and
data from the various components are not necessarily
co-located. Candidate covariates are boundary layer
height (BLH) , land altitude, land use, wind, humid-

ity. Since relevant correlation of PM and gg};, we
use relative AOT, that is rAOT = ggg for mapping

oriented modelling.

5.1 Modelling

The calibration model is now defined using the meas-
urement vector given by

y(s,t) = ( ypum (8, 1) )

YrAOT (87 t)
and a two dimensional vector measurement error
equation which is given by

y(s,t) =u(s,t) +¢e(s,t)

Now, the two-dimensional underlying “true” local
pollution level u (s,t) has the following structure

uA (Sat) =Xa (s7t)BA+Zt+W(S7t)7

In this equation, the hidden component W is defined
by a two-dimensional coregionalization model, i.e.:

A=PM,rAOT

W (s,1) :ij (5,1)

and the W; are the coregionalization components.
That is W, ..., W, are independent and white noise
with spatial Matern covariance matrices given by

Cov [W; (s,), W; (s',1)] = V;Cp (|s — &)

5.2 EM algorithm

The EM algorithm used here extends both results of
section 4.3 and the Zhang algorithm introduced for
the co-located coregionalization without replications.

The parameter vector is now enlarged to include
the coregionalization components

U= (570—?71472777917‘/17 "'7967‘/6)
=(Ux, V., Ywy, ..., Uy.)

Thanks to the hierechical structure and parameter
partitioning the EM algorithm keeps the nice additive
form. Accordingly, the E — step gives:

Qi1 (W) = Q1 (¥x)+Qj—1 (L) + Y Qj—1 (¥w,)

i=1

Note that only 61, ..., 8. require numerical optimiz-
ation and all other parameters are update by (high
dimensional) closed form formulas.

In practice at j** EM-step, we need to compute
the Gaussian expectations conditional on all observed
data Y which are given y the following high dimen-
sional (HD) linear and Schur computations

() =Ej(z(0)]Y)

= HD Kalman smoother

W(o,t) = Ej—1 (W (e, 1) [Y)
= HD Gaussian linear computation
Q(t) = Var;_, (W (o,t)|Y)
= HD Gaussian Schur computation
Y (s,t) = Ej_1 (Y (5,1)|Y)
= HD Dynamic Kriging computation

5.3 Estimation and mapping

Preliminary results for model estimation are given
in Tab. 5 and 6.Using these estimates, we get both



\I/X \I/z
BLH altitude oZ A o}
PM;y, -0.08 -0.17 1.3 074 0.18
rAOT -0.21 1.1

Table 5: STEM2 model estimates
Wy Wy,

1 2
01 Vi 02 Vs
10.7 094 0.7 0.22 0.95

0.72

PMyg
rAOT

0.81
0.75

Table 6: STEM2 model estimates

missing values for AOT and rAOT and dynamical
mapping of PM;q far away from the original grdound
level network. This is done by the dynamical Kriging
formula, that is

Y (s,t) =E;j_1(Y (s,t)]Y)

As an example, we perfomed these computations
for Jan 5, 2006, when PM measurements are as in
Fig. 10 and missing values of 7 AOT are estimated as
in Fig. 11. Finally the reconstructed map for PMgis
shown in Fig. 12.

5.4 Conclusions

Integrating data from satellites and ground level net-
works at a sub-continental level gives rise a statistical
estimation problem which can be fully estimated by
the EM algorithm without the need of those oversim-
plifying and subjective assumptions which are extens-
ively used in most of meteorological and geographical
approaches.

The EM algorithm, implemented via Matlab or R
language (CRAN) on medium and relatively cheap
computer clusters, seems an adequate tool for per-
forming the required likelihood optimization.

The need of bootstrap for computing uncertainty
is not simply a computer time costly operation. As
a matter of fact, bootstrap simulation is an import-
ant step for understanding the model behavior at the
identification and validation stage.

Figure 10: Observed PM;y - Ground level network.
January 5, 2006.
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Figure 11: Relative AOT - missing estimated. Janu-
ary 5, 2006.

6 General Conclusions

In the perspective of defining a European common
monitoring methodology, which makes air quality
comparable in time and across different countries,
the statistical approach may be used together with
satellite data to integrate data coming from different
networks and to conform monitoring around EU.
On the one side spatio-temporal modelling with ex
post calibration may be used to improve air quality
mapping capability both at the EU level and at the



smaller local scales and giving uncertainty measures
of reconstructed values.

On the other side air quality indexes may be com-
pleted with diagnostic indicators useful to qualify
network heterogeneity.
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