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Abstract

This paper deals with the study of differential inequalities with gra-

dient terms on Carnot groups. We are mainly focused on inequalities of

the form ∆ϕu ≥ f(u)l(|∇0u|), where f , l and ϕ are continuous functions

satisfying suitable monotonicity assumptions and ∆ϕ is the ϕ-Laplace

operator, a natural generalization of the p-Laplace operator which has re-

cently been studied in the context of Carnot groups. We extend to general

Carnot groups the results proved in [9] for the Heisenberg group, showing

the validity of Liouville-type theorems under a suitable Keller-Osserman

condition. In doing so, we also prove a maximum principle for inequal-

ity ∆ϕu ≥ f(u)l(|∇0u|). Finally, we show sharpness of our results for a

general ϕ-Laplacian.
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1 Introduction

Let G be a homogeneous Carnot group on RN , that is a Lie group with under-
lying manifold RN , equipped with a family of automorphisms {δλ}λ>0, called
dilations, of the form

δλ

(
x(1), x(2), . . . , x(r)

)
=
(
λx(1), λ2x(2), . . . , λrx(r)

)
,

where x(i) ∈ Rmi and m1 + . . . + mr = N , and such that the Lie algebra of G
is generated by the m1 left-invariant vector fields X1, . . . , Xm1 that agree with
∂/∂x

(1)
i at the origin.

The vector fields {X1, . . . , Xm1} are homogeneous of degree 1 with respect to

1



1 Introduction 2

the dilations δλ and their linear span is called the horizontal layer of the algebra
of G.
The canonical sub-Laplacian on G is the differential operator

∆G =
m1∑
i=1

X2
i ,

which is hypoelliptic by Hörmander’s theorem (see [7]). We refer the interested
reader to [4] for a detailed introduction to Carnot groups and sub-Laplacians.
If Γ denotes the fundamental solution of the sub-Laplacian and Q is the ho-
mogeneous dimension of G, defined as Q = m1 + 2m2 + . . . + rmr, then the
function

d = Γ
1

2−Q

is continuous and smooth out of the origin and it is a symmetric homogeneous
norm, i.e. d(δλ(x)) = λd(x), d(x) > 0 iff x 6= 0 and d(x−1) = d(x).
Setting d(x, y) = d(y−1 · x), one can verify that d(x, y) = d(y, x), d(x, y) = 0 iff
x = y and that a pseudo-triangle inequality is satisfied:

∃c > 0 : d(x, y) ≤ c[d(x, z) + d(z, y)] ∀x, y, z ∈ G. (1)

For u ∈ C1(G), we define the horizontal gradient ∇0u as the horizontal vector
field

∇0u =
m1∑
i=1

(Xiu)Xi.

For horizontal vector fields Y =
∑
yiXi and W =

∑
wiXi, we can define

Y ·W =
m1∑
i=1

yiwi,

so that by definition |∇0u|2 = ∇0u · ∇0u and the Cauchy-Schwarz inequality
holds. In particular, out of the origin we can consider the function |∇0d|, which
is homogeneous of degree zero, and therefore bounded. Without loss of gen-
erality, up to rescaling the homogeneous norm by a constant, we can assume
that 0 ≤ |∇0d| ≤ 1. Finally, the horizontal divergence is defined, for horizontal
vector fields as

div0W =
m1∑
i=1

Xi(wi),

so that
∆Gu = div0∇0u.



1 Introduction 3

In recent years, the p-Laplace operator, a generalization of the sub-Laplacian
defined, for p ≥ 2, by

∆pu = div0(|∇0u|p−2∇0u),

has been studied by many authors in the setting of Carnot groups (see, for
instance [6], [3], [2], [1]). In this paper, we consider a further generalization of
the p-Laplacian called the ϕ-Laplace operator and defined as follows:

∆ϕu = div0

(
|∇0u|−1

ϕ(|∇0u|)∇0u
)
,

where ϕ satisfies the structural conditionsϕ ∈ C0(R+
0 ) ∩ C1(R+), ϕ(0) = 0,

ϕ′ > 0 on R+.
(2)

This operator, which includes all the p-Laplacians, has been recently studied in
the context of Riemannian geometry and Carnot groups (see [9], [11] and [5]
and references therein).
In [9] the authors studied the existence of weak classical solutions of the differ-
ential inequality

∆ϕu ≥ f(u)l(|∇0u|) (3)

on the Heisenberg group and on Rn, under suitable assumptions on f , l and ϕ.
They introduced a generalized Keller-Osserman condition which ensures that (3)
has no non-negative entire solutions. Moreover, they show that, in the special
case of the p-Laplace operator, the Keller-Osserman condition is also necessary:
when it is not satisfied, non-constant positive solutions of ∆pu ≥ f(u)l(|∇0u|)
do, in fact, exist.
In this paper we extend the results introduced in [9] to every Carnot group
under suitable assumptions on ϕ and, when the Keller-Osserman condition is
not met, we also prove the existence of solutions for general ϕ-Laplacians.
We point out that, in dealing with this kind of problems in the more general
setting of Carnot groups, while the framework of the proofs remains the same,
some technical difficulties arise. As we shall see in the next section, most of these
concern the radialization of the ϕ-Laplacian, whose expression is considerably
more complicated than on the Heisenberg group. To overcome this difficulty
we were forced to add one assumption on ϕ that unfortunately has the effect of
making the ϕ-Laplacian close to a p-Laplacian. One of the main tools that we
exploit in this paper is a maximum principle for (3), which, to the best of our
knowledge, seems to be new and of independent interest and whose statement
and proof had to be modified from their equivalents on the Heisenberg group,
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as we shall see in Section 3.
Next, we introduce some notation and assumptions.
In this paper, we will consider weak classical solutions of (3), that is functions
u ∈ C1(G) such that, for every ζ ∈ C∞0 (G), ζ ≥ 0,

−
∫
RN

|∇0u|−1
ϕ(|∇0u|)∇0u · ∇0ζ ≥

∫
RN

f(u)l(|∇0u|)ζ. (4)

Our assumptions on f and l will be the following:f ∈ C0(R+
0 ), f > 0 on R+,

f is increasing on R+
0 ;

(5)

l ∈ C0(R+
0 ), l > 0 on R+, l(0) > 0,

l is B-monotone non-decreasing on R+
0 .

(6)

We recall that l is said to be B-monotone non decreasing on R+
0 if, for some

B ≥ 1,
sup
s∈[0, t]

l(s) ≤ Bl(t), ∀ t ∈ R+
0 .

Clearly, if l is monotone non decreasing on R+
0 , then it is 1-monotone non-

decreasing on the same set; in fact the above condition allows a controlled
oscillatory behavior of l on R+

0 .
In order to be able to state the generalized Keller-Osserman condition, we also
need to assume that

tϕ′(t)
l(t)

6∈ L1(+∞). (7)

We set

K(t) =
∫ t

0

sϕ′(s)
l(s)

ds; (8)

and observe that K is well defined since l(0) > 0. We also observe that K :
R+

0 → R+
0 is a C1-diffeomorphism with

K ′(t) =
tϕ′(t)
l(t)

> 0,

so that its inverse K−1 : R+
0 → R+

0 exists and is also increasing. Finally we set

F (t) =
∫ t

0

f(s) ds.

Definition 1.1. The generalized Keller-Osserman condition for inequal-
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ity
∆ϕu ≥ f(u)l(|∇0u|)

is the request:
1

K−1(F (t))
∈ L1(+∞). (KO)

This generalized Keller-Osserman condition was first introduced in [9] and,
when ϕ(t) = t and l ≡ 1, coincides with the classical Keller-Osserman condition
as seen in [10] and [8].
In order to deal with the problems of radialization, we need to request the
following conditions on ϕ and l:

(i) sϕ′(st) ≤ Csτϕ′(t)
(ii) sτ−1l(t) ≤ Λl(st)
(iii) tϕ′(t) ≤ C1ϕ(t)

(9)

for some constants C,Λ, C1 > 1 and τ ≥ 0 and for every s ∈ [0, 1] and t ∈ R+
0 .

We point out that condition (i) of (9) implies

ϕ(st) ≤ Dsτϕ(t), ∀t ∈ R+
0 , s ∈ [0, 1], (10)

which will come in handy later on; we also remark that conditions (i) and (iii)
of (9) imply that

atp ≤ ϕ(t) ≤ btp

for some constants a, b > 0 and p > 0 and for every t ∈ R+
0 .

We stress that (9) (ii) is a mild requirement: for example, it is satisfied by every
l(t) of the form

l(t) =
n∑
k=0

Ckt
νk , n ∈ N, Ck ≥ 0, νk ∈ (−∞, τ − 1] for every k.

The main results we are going to prove in this paper can be summerized in the
following statement:

Theorem 5.2. Assume the validity of (2), (5), (6), (9) and of (7). Then, the
following are equivalent:

(i) there exists a non-negative, non-constant solution u ∈ C1(G) of inequality
∆ϕu ≥ f(u)l(|∇0u|);

(ii)
1

K−1(F (t))
6∈ L1(+∞).

We observe that, as it will become apparent from the proof, several assump-
tions can be dropped if we only consider the implication (ii)⇒ (i). In this case
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we prove the existence of solutions in any Carnot group for any ϕ-Laplacian.
Moreover, condition (iii) of (9) is unnecessary on every group of Heisenberg
type and, more generally, in the class of polarizable group, which we shall dis-
cuss later on.

2 Radial supersolutions

The core of the proofs of the non-existence theorem and of the maximum prin-
ciple relies on being able to find suitable supersolutions of (3) with certain
properties. This is achieved by considering the expression of the ϕ-Laplacian of
functions which are radial with respect to the homogeneous norm d, i.e. func-
tions v(x) = α(d(x)).
Keeping in mind the definition of the ϕ-Laplacian and the properties of the
horizontal divergence, such as the following

div0(fW ) = f div0W +∇0f ·W,

together with the fact that

∆Gd = |∇0d|2
Q− 1
d

(see e.g. [4]), some computation yields the following expression for the ϕ-
Laplacian of a radial function v:

∆ϕv =ϕ′(α′|∇0d|)α′′|∇0d|2 + ϕ(α′|∇0d|)|∇0d|
Q− 1
d

+
[
ϕ′(α′|∇0d|)α′ −

ϕ(α′|∇0d|)
|∇0d|

]
∇0|∇0d| ·

∇0d

|∇0d|
, (11)

where, for ease of notation, we have assumed α increasing. As we shall see, this
is not restrictive for our purposes.

Remark 2.1. The last term in (11) does not appear on Rn and on the Heisen-
berg group, where the homogeneous norm satisfies

∇0|∇0d| · ∇0d = 0. (12)

This is what makes treating radial functions more complicated on general Carnot
groups; it is also the reason why we need to assume hypothesis (9) (iii).
Carnot groups where (12) holds are called polarizable groups and have been stud-
ied in [3], where the authors proved that every group of Heisenberg type is po-
larizable.
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Because of this, every theorem in this paper can be restated on polarizable groups
without assuming condition (9) (iii).

Lemma 2.2. Let σ ∈ (0, 1]; then the generalized Keller-Osserman condition
(KO) implies

1
K−1(σF (t))

∈ L1(+∞). (13)

The proof of this lemma is achieved through a change of variable. For the
details, we refer the reader to [9].
We pass now to the construction of radial supersolutions of (3), the first of
which will be used in the proof of the maximum principle (Theorem 3.2).

Proposition 2.3. Assume the validity of (2), (5), (6), (7) and (9) and fix
q ∈ G, 0 < t0 < t1, 0 < h < k. Then there exist σ > 0 and a radial function
v = α ◦ d satisfying

∆ϕv ≤ f(v)l(|∇0v|) in Bt1(q) \Bt0(q)
v ≥ h on ∂Bt0(q),
v = k on ∂Bt1(q)

and such that α is strictly increasing and convex.

Proof. Consider σ ∈ (0, 1] to be determined later and set

Φ(z) =
∫ k

z

ds
K−1(σF (s))

.

Then Φ(k) = 0 and sup[0,k] Φ = Φ(0), where Φ(0) may possibly be +∞. There-
fore, for a fixed t, there exists a unique z > 0 such that the equality

t1 − t = Φ(z)

is satisfied if and only if t ∈ (t1 − Φ(0), t1]. Observing that Φ(0) → +∞ as
σ → 0, up to choosing σ sufficiently small we can assume that t1 − Φ(0) < t0.
Thus we can define the implicit function α(t) by requiring

t1 − t =
∫ k

α(t)

ds
K−1(σF (s))

on [t0, t1].

We observe that, by construction, α(t1) = k. Moreover, since the value α(t0)
increases as σ → 0, up to choosing σ small enough, we can assume that α(t0) ≥
h. A first differentiation yields

α′

K−1(σF (α))
= 1,
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hence α is monotone increasing and σF (α) = K(α′). Differentiating once more
we deduce

σf(α)α′ = K ′(α′)α′′ =
α′ϕ′(α′)
l(α′)

α′′.

Cancelling α′ throughout, we obtain

[ϕ(α′)]′ = ϕ′(α′)α′′ = σf(α)l(α′);

thus, integrating on [t0, t],

ϕ(α′(t)) = ϕ(α′(t0)) + σ

∫ t

t0

f(α(s))l(α′(s)) ds.

Now we set v = α◦d and observe that v is a C2 radial function whose ϕ-laplacian
can be computed through (11). We also note that ∇0d is homogeneous of degree
0 and therefore ∇0|∇0d| is homogeneous of degree −1. Moreover, since

|∇0|∇0d||2 =
m1∑
j=1

(
∑m1
i=1(XjXid)(Xid))2

|∇0d|2

and, for every j, we have

m1∑
i=1

(XjXid)(Xid) ≤

√√√√m1∑
i=1

(XjXid)2

√√√√m1∑
i=1

(Xid)2 =

√√√√m1∑
i=1

(XjXid)2 |∇0d|,

then we can bound |∇0|∇0d||2 by

|∇0|∇0d||2 ≤
m1∑
j=1

∑m1
i=1(XjXid)2|∇0d|2

|∇0d|2
=

m1∑
i,j=1

(XjXid)2.

which is smooth out of the origin, hence bounded on compact sets which do not
contain the origin. Therefore, |∇0|∇0d|| is bounded by C2d

−1 for some positive
constant C2. Using this fact, along with condition (iii) of (9), we can estimate
the last term on the RHS of (11):[
ϕ′(α′|∇0d|)α′ −

ϕ(α′|∇0d|)
|∇0d|

]
∇0|∇0d|·

∇0d

|∇0d|
≤
[
C1
ϕ(α′|∇0d|)
|∇0d|

+
ϕ(α′|∇0d|)
|∇0d|

]
C2

d

Therefore, using this estimate in combination with assumption (i) of (9), we
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find that

∆ϕv ≤C|∇0d|τ+1

[
[ϕ(α′)]′ +

Q− 1
d

ϕ(α′)
]

+
[
C1
ϕ(α′|∇0d|)
|∇0d|

+
ϕ(α′|∇0d|)
|∇0d|

]
C2

d

≤C|∇0d|τ−1

[
[ϕ(α′)]′ +

Q− 1
d

ϕ(α′)
]

+ |∇0d|τ−1
ϕ(α′)

C3

d

≤C|∇0d|τ−1

[
[ϕ(α′)]′ +

C̃

d
ϕ(α′)

]

for some constant C̃. Now we use the properties of α that we discussed above
and perform some further manipulation:

∆ϕv ≤C|∇0d|τ−1

[
σf(α)l(α′) +

C̃

d
ϕ(α′(t0)) +

C̃

d
σ

∫ d

t0

f(α(s))l(α′(s)) ds

]

=C|∇0d|τ−1

[
σ +

C̃

d

ϕ(α′(t0))
f(α(d))l(α′(d))

+
C̃

d

σ
∫ d
t0
f(α(s))l(α′(s)) ds

f(α(d))l(α′(d))

]
f(α)l(α′)

≤C|∇0d|τ−1

[
σ +

C̃

d

Bϕ(α′(t0))
f(α(t0))l(α′(t0))

+
C̃

d

σBf(α(d))l(α′(d))(d− t0)
f(α(d))l(α′(d))

]
f(α)l(α′),

that is,

∆ϕv ≤ C̃|∇0d|τ−1

[
ϕ(α′(t0))

t0f(α(t0))l(α′(t0))
+ σ

]
f(α)l(α′), (14)

for some constant C̃. Since K(0) = 0 and α(t0) ≤ k, we deduce that α′(t0) =
K−1(σF (α(t0))) ≤ K−1(σF (k))→ 0 as σ → 0; moreover, since α(t0) ≥ k− δ >
0, so that f(α(t0)) is bounded away from zero. Therefore, choosing σ small
enough, we can estimate the whole square bracket with 1eCΛ

, so that

∆ϕv ≤ C̃|∇0d|τ−1 1

C̃Λ
f(α)l(α′) ≤ f(v)l(|∇0v|). (15)

In the next proposition we construct a supersolution which will be needed
in the proof of Theorem 4.1, the non-existence result.

Proposition 2.4. Assume the validity of (2), (5), (6), (7) and (9) and fix
q ∈ G, 0 < t0 < t1, 0 < ε < η < A, where A may possibly be equal to +∞ if
(KO) holds. Then there exist σ > 0, T > r1 and a radial function v = α ◦ d
satisfying 

∆ϕv ≤ f(v)l(|∇0v|) on BT (q) \Bt0(q),

v ≡ ε on ∂Bt0(q); v = A on ∂BT (q),

ε ≤ v ≤ η on Bt1(q) \Bt0(q).
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and such that α is strictly increasing and convex.

Proof. Consider σ ∈ (0, 1] to be determined later and choose Tσ > t0 such that

Tσ − t0 =
∫ A

ε

ds
K−1(σF (s))

.

Note that, when A = +∞ and (KO) holds, the RHS is well defined by Lemma
2.2. Moreover, since the RHS diverges as σ → 0+, up to choosing σ sufficiently
small we can shift Tσ in such a way that Tσ > t1. We implicitly define the
C2-function α(t) by requiring

Tσ − t =
∫ A

α(t)

ds
K−1(σF (s))

on [t0, Tσ).

We observe that, by construction, α(t0) = ε and, since K−1 > 0, α(t) ↑ A as
t→ Tσ. As in the previous lemma, a first differentiation yields

α′

K−1(σF (α))
= 1,

hence α is monotone increasing and σF (α) = K(α′). With the same computa-
tion as in the proof of Proposition 2.3 we arrive to

∆ϕv ≤ C̃|∇0d|τ−1

[
ϕ(α′(t0))

t0f(α(t0))l(α′(t0))
+ σ

]
f(α)l(α′), (16)

for some uniform constant C̃. Since K(0) = 0, α(t0) = ε and α′(t0) =
K−1(σF (ε))→ 0 as σ → 0, choosing σ small enough, we can again estimate the
whole square bracket with 1eCΛ

, so that

∆ϕv ≤ C̃|∇0d|τ−1 1

C̃Λ
f(α)l(α′) ≤ f(v)l(|∇0v|). (17)

The only thing left to prove is that, possibly with a further reduction of σ,
α(t1) ≤ η. From the trivial identity∫ A

α(t1)

ds
K−1(σF (s))

= Tσ−t1 = (Tσ−t0)+(t0−t1) =
∫ A

ε

ds
K−1(σF (s))

+(t0−t1)

we deduce ∫ α(r1)

ε

ds
K−1(σF (s))

= t1 − t0.

It suffices to choose σ such that
∫ η
ε

ds
K−1(σF (s)) > t1− t0; then obviously α(t1) ≤

η.
Therefore, fixing a value for σ which satisfies all the above requirements and
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renaming T the corresponding Tσ, we have proved the claim.

3 The maximum principle

We begin this section by stating a comparison principle for the ϕ-laplacian on
Carnot groups.

Proposition 3.1 (Comparison principle). Let Ω ⊂⊂ G be a relatively compact
domain with C1 boundary and assume the validity of (2). Let u, v ∈ C0(Ω) ∩
C1(Ω) satisfy ∆ϕu ≥ ∆ϕv on Ω

u ≤ v on ∂Ω.
(18)

Then u ≤ v on Ω.

The proof of this comparison principle is achieved in the same way as for
the Heisenberg group (see [9]), so we omit it.
Next, we prove a maximum principle for inequality (3).

Theorem 3.2 (Maximum principle). Let Ω ⊂ G be a domain. Assume the
validity of (2), (5), (6), (7) and (9). Let u ∈ C0(Ω) ∩ C1(Ω) satisfy

∆ϕu ≥ f(u)l(|∇0u|) in Ω (19)

and let u∗ = sup
Ω
u. If u(qM ) = u∗ for some qM ∈ Ω, then u ≡ u∗.

Proof. By contradiction, assume there exist a solution u of (19) and qM ∈ Ω
such that u(qM ) = u∗, but u 6≡ u∗. Set Γ = {q ∈ Ω : u(q) = u∗}. Let δ > 0 and
define

Ω+ = {q ∈ Ω : u∗ − δ < u(q) < u∗}; Γδ = {q ∈ Ω : u(q) = u∗ − δ}; (20)

note that ∂Ω+ ∩ Ω = Γ ∪ Γδ. Let q′ ∈ Ω+ be such that

d(q′,Γ) < d(q′,Γδ), d(q′,Γ) < d(q′, ∂Ω) (21)

This is possible provided q′ is sufficiently close to qM . Indeed, if q′ is chosen so
that

d(q′, qM ) <
1
2c

min {d(qM ,Γδ), d(qM , ∂Ω)},

where c denotes the constant appearing in the pseudo-triangle inequality (1),
then we have

d(qM ,Γδ) ≤ c[d(qM , q′) + d(q′,Γδ)],
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which implies

d(q′,Γδ) ≥
d(qM ,Γδ)

c
− d(qM , q′) > d(qM , q′) ≥ d(q′,Γ)

and likewise for d(q′, ∂Ω).
Let now BR(q′) be the largest ball centered at q′ and contained in Ω+. Then, by
construction u < u∗ in BR(q′) while u(q0) = u∗ for some q0 ∈ ∂BR(q′). Since q0

is an absolute maximum for u in Ω, we have ∇u(q0) = 0. Now we construct an
auxiliary function by means of Proposition 2.3. Towards this aim, we consider
the annular region

ER(q′) = BR(q′) \BR/2(q′) ⊂ Ω+; (22)

and define a radial function v = α ◦ d such that
∆ϕv ≤ f(v)l(|∇0v|) in ER(q′)
v ≥ max∂BR/2(q′) u on ∂BR/2(q′),
v = u∗ on ∂BR(q′).

(23)

We point out that the function α is strictly increasing on the interval [R/2, R].
Let us now assume that the maximum of u− v on ER be positive. Then it has
to be internal, and therefore there must exist p0 in the interior of ER such that
u(p0) > v(p0) and ∇0u(p0) = ∇0v(p0), which, since l(0) > 0 and f is strictly
increasing, implies that

f(u(p0))l(|∇0u(p0)|) > f(v(p0))l(|∇0v(p0)|). (24)

Now set µ = maxER
(u− v) and let Λµ be the connected component of

{q ∈ ER : u(q)− v(q) = µ}

containing p0. Observe that, by continuity, (24), which holds at every point of
Λµ, implies that

∆ϕu ≥ ∆ϕv

on a neighborhood U of Λµ. Fix 0 < ρ < µ and let Ωρ be the connected
component containing p0 of

{
q ∈ E0

R : u(q) > v(q) + ρ
}
.

We observe that p0 ∈ Ωρ for every ρ and that Ωρ is a nested sequence as ρ tends
to µ. We claim that if ρ is close to µ, then Ωρ ⊂ U . This can be shown by a
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compactness argument such as the following: since Λµ is closed and bounded,
there exists ε > 0 such that d(U c,Λµ) ≥ ε. Suppose, by contradiction, that
there exist sequences ρn ↑ µ and {qn} such that qn ∈ Ωρn

and qn 6∈ U , therefore
d(qn,Λµ) > ε. Then, we can assume that the sequence is contained in Ωρ0 which,
by construction, has compact closure; passing to a subsequence converging to
some q, we have by continuity

d(q,Λµ) ≥ ε, (25)

but, on the other hand, (u − v)(q) = limn(u − v)(qn) ≥ limn ρn = µ, hence
q ∈ Λµ and this contradicts (25). Therefore, d(∂Ωρ,Λµ)→ 0 as ρ→ µ, and the
claim is proved.
Therefore, on Ωρ we have

∆ϕu ≥ ∆ϕv = ∆ϕ(v + ρ)

and u = v+ρ on ∂Ωρ which, by the comparison principle, implies that u ≤ v+ρ
on Ωρ, a contradiction since u(p0) = v(p0) + µ. This shows that the maximum
of u− v on ER has to be nonpositive, that is, u− v ≤ 0 on ER.

We point out that, while the horizontal gradient of the homogeneous norm may
vanish out of the origin (and in fact it does in every nontrivial Carnot group),
its Euclidean gradient does not. Postponing for a while the proof of this simple
fact, we conclude the proof of the maximum principle. In the light of this, there
exists a positive constant λ > 0 such that

〈∇v,∇d〉 = α′(d)|∇d|2 ≥ λ > 0 on ∂ER(q′). (26)

Going back to the function v− u, we found that it satisfies v− u ≥ 0 on ER(q′)
and v(q0)− u(q0) = u∗ − u∗ = 0, so that 〈∇(v − u),∇d〉(q0) ≤ 0. Therefore

0 = 〈∇u,∇d〉(q0) ≥ 〈∇v,∇d〉(q0) > 0, (27)

a contradiction.
Finally, to prove that the Euclidean gradient of the homogeneous norm does
not vanish out of the origin, fix x0 ∈ G and consider the composition g(t) =
d(δtx0) = td(x0). By elementary calculus, renaming for convenience of notation
δtx0 = γ(t) we get

d(x0) = g′(1) = ∇d(x0) · γ̇(1),

which cannot vanish out of the origin.

Remark 3.3. If G is a group of Heisenberg type or, more generally, a polarizable
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group, then a strong maximum principle for inequality

∆ϕu ≥ 0

can be stated and the proof can be adapted from the one in [9] with no effort.

4 Non existence results

This section is devoted to proving some Liouville-type results for inequality (3):
as the next theorem states, this inequality has no nontrivial entire non-negative
solution if the Keller-Osserman condition is satisfied.

Theorem 4.1. Let ϕ, f, l satisfy (2), (5), (6) and (7). Assume also the
validity of (9). If the generalized Keller-Osserman condition (KO) holds, then
every solution 0 ≤ u ∈ C1(G) of

∆ϕu ≥ f(u)l(|∇0u|) on G (28)

is identically zero.

Actually, we can prove that inequality (3) does not possess any non-negative
entire bounded solutions regardless of whether the Keller-Osserman condition
be satisfied or not. This is stated in the next

Theorem 4.2. Let ϕ, f, l satisfy (2), (5), (6), (7) and (9). Then every non-
negative bounded C1-solution u of (28) vanishes identically.

Proof of Theorems 4.1 and 4.2. Having proved Proposition 2.4 for a general
Carnot group G, the proof of the non-existence theorems follows the same out-
line as those for the Heisenberg group presented in [9]. However, we reproduce
the steps here for the sake of completeness. We first prove Theorem 4.2 under
the assumptions (2), (5), (6), (7) and (9). Later on, under the additional hy-
pothesis (KO), we will also prove the constancy of possibly unbounded solutions
u of (28).
Therefore, we denote by u∗ = supu and we first assume that u∗ < +∞. We
reason by contradiction and assume u 6≡ u∗; by Proposition 3.2 u < u∗ on G.
Choose r0 > 0 and define

u∗0 = sup
Br0

u < u∗.

Fix η > 0 sufficiently small such that u∗− u∗0 > 2η and choose q̃ ∈ G \Br0 such
that u(q̃) > u∗−η. Choose also 0 < ε < η and A in such a way that A > 2η+ε.
We then set r1 = d(q̃) and, for our choice of r0, r1, A, ε, η we construct a radial
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function v(q) = α(d(q)) on BT \Br0 as in Proposition 2.4, so that
∆ϕv ≤ f(v)l(|∇0v|) on BT \Br0 ,

v ≡ ε on ∂Br0 ; v = A on ∂BT ,

ε ≤ v ≤ η on Br1 \Br0 .

Therefore
u(q̃)− v(q̃) > u∗ − η − η = u∗ − 2η,

and, on ∂Br0 ,
u(q)− v(q) ≤ u∗0 − ε < u∗ − 2η − ε.

Since also

u(q)− v(q) ≤ u∗ −A < u∗ − 2η − ε for q ∈ ∂BT ,

the difference u − v attains a positive maximum µ in BT \Br0 . Now the proof
proceeds exactly as for the maximum principle: we consider a parameter 0 <
ρ < µ and, applying Proposition 3.1 (the comparison principle) to the functions
u and v+ρ on a suitable neighborhood of a point of maximum, we get the desired
contradiction. This shows that u ≡ c, where c is a non-negative constant; since
l(0) > 0 we have 0 = ∆ϕc ≥ f(c)l(0). This implies f(c) = 0, hence c = 0.
Assume now the validity of the Keller-Osserman condition (KO), and suppose
that u is a solution of (28). By the previous arguments, if u is not constant
then necessarily u∗ = +∞. Again, fix r0 > 0 such that u 6≡ 0 on Br0 , and define
u∗0 = supBr0

u. Choose q̃, η, ε in such a way that u(q̃) > 2u∗0, 0 < ε < η < u∗0, and
consider the function α defined as before with A = +∞. Then, v(q) = α(d(q))
is a supersolution of (28) and

u(q)− v(q) ≤ u∗0 − ε on ∂Br0 ,

u(q̃)− v(q̃) > 2u∗0 − η > u∗0

u(q)− v(q)→ −∞ as r(q)→ T−.

Hence, u− v attains a positive maximum in BT \Br0 . The proof now proceeds
in the same way as in the previous case.

Remark 4.3. Theorem 4.1 can be restated for polarizable groups getting rid of
condition (iii) of (9).
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5 Existence

When the Keller-Osserman condition is not satisfied, then inequality (3) admits
entire, unbounded solutions. This result can be stated as follows.

Theorem 5.1. Assume the validity of (2), (5), (6) and (7). Then, if the
generalized Keller-Osserman condition (KO) is not satisfied, there exists a non-
negative, non-constant solution u ∈ C1(G) of inequality ∆ϕu ≥ f(u)l(|∇0u|).

In light of this, Theorem 4.1 and Theorem 5.1 can be combined in the fol-
lowing statement.

Theorem 5.2. Assume the validity of (2),(5), (6), (9) and of (7). Then, the
following are equivalent:

(i) there exists a non-negative, non-constant solution u ∈ C1(G) of inequality
∆ϕu ≥ f(u)l(|∇0u|);

(ii)
1

K−1(F (t))
6∈ L1(+∞).

Proof. First of all we observe that the sufficiency of the Keller-Osserman condi-
tion, i.e. implication (i)⇒ (ii), follows from Theorem 4.1. Our aim is therefore
to provide existence of unbounded C1-solutions of inequality (3) under the as-
sumption that (KO) is not satisfied; this will be achieved by pasting together
two subsolutions defined on complementary sets. Such solutions will be “radial’
in the variables of the first layer, that is, functions of the form v(x) = w

(∣∣x(1)
∣∣),

where

x =
(
x(1), . . . , x(r)

)
and

∣∣∣x(1)
∣∣∣ =

(
m1∑
i=1

(
x

(1)
i

)2
) 1

2

.

For notational convenience, we set z = x(1). Straightforward computation shows
that

|∇0|z|| ≡ 1, ∆|z| = m1 − 1
|z|

, (29)

and thus the expression of the ϕ-Laplacian for such functions is

∆ϕv = ϕ′(|w′(|z|)|)w′′(|z|) +
m1 − 1
|z|

sgn (w′(|z|))ϕ(|w′(|z|)|). (30)

Define implicitly the C2-function w on R+
0 by setting

t =
∫ w(t)

1

ds
K−1(F (s))

. (31)

Note that w is well defined, w(0) = 1 and, by Lemma 2.2 and since the Keller-
Osserman condition does not hold, w(t)→ +∞ as t→ +∞. Differentiating (31)
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yields
w′ = K−1(F (w(t))) > 0, (32)

and a further differentiation gives

ϕ′(w′)w′′ = f(w)l(w′). (33)

We fix z̄ > 0 to be specified later and set

Az̄ =
{(
x(1), . . . , x(r)

)
∈ G :

∣∣∣x(1)
∣∣∣ < z̄

}
,

and let u1(x) be the function defined on G \Az̄ by the formula u1(x) = w(|z|).
Since, by (29), |∇0u1| = w′, using (30) and (33) we conclude that u1 satisfies

∆ϕu1 = ϕ′(w′(|x|))w′′(|x|) +
m− 1
|x|

ϕ(w′(|x|)) ≥ f(u1)l(|∇0u1|) (34)

on G \Az̄.
To produce a subsolution u2 on Az̄, we fix constants β0, Θ > 0 to be determined
later and define a function Ω (depending on Θ) through

∫ Ω(s)

0

dt

l(ϕ−1(t))
= Θs. (35)

Note that Ω is well defined since l(0) > 0 and solves the differential equation

Ω′(s) = Θ l(ϕ−1(Ω(s))).

We set

β(t) =
∫ t

0

ϕ−1(Ω(s))ds+ β0

for t ∈ [0, z̄] and, observing that β′(0) = 0, we deduce that the function u2(x) =
β(|x|) is C1 on Rm. Straightforward computation then shows that

∆ϕu2(x) ≥ ϕ′(β′(|x|))β′′(|x|) = Ω′(|x|) = Θ l(ϕ−1(Ω(|x|))) = Θ l(β′(|x|)).
(36)

So, by the monotonicity of f , it follows that, if

Θ ≥ f(β(z̄)), (37)

then
∆ϕu2 ≥ f(u2)l(|∇0u2|) on Az̄. (38)

To join u1 and u2 so that the resulting function u is C1, we shall choose the
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parameters z̄, Θ, β0 in such a way that (37) andβ(z̄) = w(z̄)

β′(z̄) = w′(z̄)
(39)

are satisfied. Setting w(z̄) = µ, where 1 < µ ≤ 2, this translates into
∫ z̄

0
ϕ−1(Ω(s))ds+ β0 = µ

ϕ−1(Ω(z̄)) = K−1(F (µ))

Θ ≥ f(β(z̄))

(40)

We observe that
z̄ =

∫ µ

1

ds
K−1(F (s))

(41)

and z̄ → 0 as µ→ 1+. Moreover, by the monotonicity of K−1 and F ,

µ− 1
K−1(F (2))

≤ z̄ ≤ µ− 1
K−1(F (1))

, (42)

From the second equation of (40) we deduce that

Ω(z̄) = ϕ(K−1(F (µ))),

which in turn, by (35) yields

Θz̄ =
∫ ϕ(K−1(F (µ)))

0

dt

l(ϕ−1(t))
.

We use this last equation to define Θ and observe that

Θ =
1
z̄

∫ ϕ(K−1(F (µ)))

0

dt

l(ϕ−1(t))

≥K
−1(F (1))
µ− 1

∫ ϕ(K−1(F (1)))

0

dt

l(ϕ−1(t))
→ +∞ as µ→ 1+.

Therefore the third of (40) is satisfied if µ is close enough to 1, since in this case
we certainly have

Θ ≥ f(2) ≥ f(µ).

Finally, the first of (40) becomes

β0 = µ−
∫ z̄

0

ϕ−1(Ω(s))ds,
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which is well defined if ∫ z̄

0

ϕ−1(Ω(s))ds < 1.

But this is trivially true for µ sufficiently close to 1 since∫ z̄

0

ϕ−1(Ω(s))ds ≤ z̄ϕ−1(Ω(z̄)) = z̄K−1(F (µ)) ≤ K−1(F (2))
K−1(F (1))

(µ−1)→ 0 as µ→ 1+.

Summing up, if µ is sufficiently close to 1, the function

u(x) =

u1(x) on G \Az̄
u2(x) on Az̄

(43)

is a weak classical solution of ∆ϕu ≥ f(u)l(|∇u|). Indeed, the weak inequality
follows easily from the C1-regularity of u on ∂Az̄. This concludes the proof.

Remark 5.3. The previous result is all the more valid on Rm, where the hy-
pothesis l(0) > 0 and conditions (9) are unnecessary and can be replaced by the
assumption:

1
l(ϕ−1(t))

∈ L1(0+), (44)

which is needed in order to be sure that the function Ω introduced in (35) is
well-defined.
We observe that if l(t) = tθ and ϕ(t) = tp−1, the integrability condition (44)
translates into the request θ < p − 1. Lastly, we remark that on polarizable
groups, and in particular on the Heisenberg group, condition (9) is, as usual,
unnecessary. Therefore Theorem 5.1 and Theorem 5.2 are improvements of
Theorem 1.3 of [9]

Remark 5.4. With the same assumptions, Theorem 5.5 and Theorem 5.7 of
[9], which are concerned with the existence and non-existence of non-negative,
non-constant solutions of

∆ϕu ≥ f(u)− h(u)g(|∇0u|),

can be also restated and proved with no effort in the context of Carnot groups.
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